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Abstract Wave injection experiments provide an opportunity to explore and quantify aspects of
nonlinear wave-particle phenomena in a controlled manner. Waves are injected into space from
ground-based ELF/VLF transmitters, and the modified waves are measured by radio receivers on the ground
in the conjugate hemisphere. These experiments are expensive and challenging projects to build and to
operate, and the transmitted waves are not always detected in the conjugate region. Even the powerful
transmitter located at Siple Station, Antarctica in 1986, estimated to radiate over 1 kW, only reported a
reception rate of ∼40%, indicating that a significant number of transmissions served no observable scientific
purpose and reflecting the difficulty in determining suitable conditions for transmission and reception.
Leveraging modern machine-learning classification techniques, we apply two statistical techniques, a Bayes
and a support vector machine classifier, to predict the occurrence of detectable one-hop transmissions
from Siple data with accuracies on the order of 80%–90%. Applying these classifiers to our 1986 Siple data
set, we detect 406 receptions of Siple transmissions which we analyze to generate more robust statistics on
nonlinear growth rates, 3 dB/s–270 dB/s, and nonlinear total amplification, 3 dB–41 dB.

1. Introduction

Magnetospheric wave injection experiments are an important tool for studying nonlinear wave-particle
interactions and the resulting phenomena. One particularly prolific such experiment is the Siple Transmitter
Experiment, which operated from 1973 to 1988 [Li et al., 2014] from Siple Station, Antarctica (75.93∘S, 84.25∘W
geographic and L= 4.2). This experiment injected ELF/VLF waves into the magnetosphere, where they
were modified in interactions with energetic electrons in the radiation belts, and the resulting waves were
observed at a receiver located in the conjugate hemisphere at Lake Mistissini, Canada (50.42∘N, 73.87∘W
geographic) for the data analyzed here. (Prior to 1986, the receiver in the conjugate hemisphere was originally
located at Roberval, Canada.) The observations of various nonlinear wave-particle interaction phenomena,
such as nonlinear amplification and the generation of triggered emissions [Helliwell, 1979, 1988], provided
early opportunities to characterize the phenomena and remain an important source of data for validating
theoretical analysis and the numerical simulation of wave-particle interactions [Gibby et al., 2008; Hikishima
and Omura, 2012; Nunn and Omura, 2012; Li et al., 2015].

The experiment generated a substantial volume of data, but early work typically focused on individual
examples and case studies, making generalizations of behavior from anecdote rather than statistics. In the
years since the Siple Experiment, significant advances in computational resources allow us to digitize, store,
and process large volumes of data in order to rigorously quantify the range of observed nonlinear effects.
Recently, the original analog magnetic tapes containing the ground-based ELF/VLF measurements from Siple
and the conjugate region receivers have been digitized, containing 6971 h of data. Recent analysis efforts
have focused on statistically quantifying nonlinear amplification and the generation of triggered emissions
[Li et al., 2014, 2015].

One particular limitation of working with data from the Siple Experiment has been the relatively low rate of
reception in the conjugate hemisphere, with only ∼40% of Siple transmissions being detected [Gibby, 2008;
Li et al., 2015]. In order for Siple signals to be observed in the conjugate hemisphere, they must propagate in
the magnetosphere within field-aligned density irregularities known as ducts [Angerami, 1970]. The reception
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Figure 1. (a) Superposed epoch analysis of the mean Kp index over a 6 day period of minidiagnostic (MDIAG)
transmissions detected (blue) and of transmissions not detected (red) at the receiver in the conjugate hemisphere.
(b) The p values for a two-sample Kolmogorov-Smirnov statistical significance test are plotted for each 3 h interval, and
the y axis is inverted so that the more significant p values are better highlighted. This figure is an updated version
considering a larger number of transmissions from Figure 4 in Li et al. [2014].

of signals transmitted from Siple is more likely when geomagnetic conditions are less disturbed [Carpenter and
Bao, 1983; Li et al., 2014]. This requirement for quieting in Kp was also observed in wave injection experiments
using the HAARP ionospheric heater [Golkowski et al., 2011] and was attributed to the formation of stable
ducts. Figure 1a shows a superposed epoch analysis of the Kp index from 4 days before to 2 days after the
time of transmission for Siple transmissions received and not received in the conjugate hemisphere. There is
a significant difference, as described by a Kolmogorov-Smirnov significance test as shown in Figure 1b, in the
geomagnetic conditions characterized by the Kp index with a period of quieting beginning several days prior
to intervals with successful receptions of transmissions, indicating the potential utility of using the Kp index
to evaluate in advance conditions suitable for the reception of magnetospherically propagating signals. As
further described in section 2.1, Figure 1 is generated using the Kp index behavior associated with 1093 Siple
transmissions from 1986, with 423 receptions and 670 nonreceptions observed in the conjugate hemisphere.

The key information that allows for detecting a Siple transmission at the receiver comes from transmission
logs which detail the transmission format (the frequency-time elements transmitted in a set sequence), the
transmission time, and the fset transmission frequency (the central tuning frequency to which transmitted
elements were referenced). While the most thorough detection method would be a visual inspection of spec-
trograms of data from the conjugate region and manual detection of receptions, this manual identification
process does not scale with the amount of data and becomes too time consuming as the amount of data
increases. Another method attempts to automatically detect signals using a signal amplitude threshold that
determines if a sufficiently strong signal is above the noise floor [Li et al., 2014], but this approach suffers from
inherent limitations in only detecting strongly amplified signals in the presence of low background noise
conditions and is not sufficiently robust. Here we demonstrate the application of machine-learning classifi-
cation techniques as a preprocessing step for selecting intervals when receptions may be significantly more
likely. There has been thus far limited work in the space physics community taking advantage of more recent
machine-learning techniques, and most such results, using, for instance, support vector machines, tend to be
for regression models [Gavrishchaka and Ganguli, 2001; Ji et al., 2013; Yue et al., 2015].

Given the significant difference in the Kp index between received and not received Siple transmissions, we
apply two methods for classifying transmissions to develop a model for predicting intervals of receptions of
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Figure 2. (a) Illustration of the MDIAG transmission format transmitted from Siple Station and conjugate observations at
Lake Mistissini (LM) showing examples of a case where (b) the transmission was not received and (c) the transmission
was received.

Siple transmissions at Lake Mistissini based on the geomagnetic Kp index from the 6 days preceding the time
of transmission. Both methods, a naive Bayes classifier with Laplace smoothing and a support vector machine
classifier, have prediction accuracies of 80%–90%. We also demonstrate the statistical advantages of these
classification approaches by using the detected cases to update the statistics on nonlinear growth rate and
total growth of injected signals first presented in Li et al. [2014]. Applying these classifier approaches, using the
Kp index, to experimental studies may allow for more efficient experiments by selecting transmission times
and conditions that are significantly more likely to result in reception, and these techniques may provide
insight into understanding the conditions that lead to wave amplification from wave-particle interactions.

2. Classification Methodologies

Although there are many different classification techniques, we consider two simple supervised learning
methods for classification, naive Bayes with Laplace smoothing and support vector machines. We first describe
the common data set used for both classification approaches, including the generation of the ground
truth labels describing signal reception and the Kp geomagnetic indices used as the input feature set, and
then provide some intuition regarding the two classification techniques. While a naive Bayes classifier is a
commonly first implemented classifier to determine the effectiveness of applying machine-learning
techniques, a support vector machine (SVM) classifier is a more sophisticated and computationally intensive
method that often yields more accurate predictions although its internal parameters are more opaque.

2.1. The MDIAG Data Set
The data set is composed of observations of transmissions of a minidiagnostic (MDIAG) format during 1986.
This builds on the data set first developed by Li et al. [2014] in focusing on this single-transmission format
transmitted by Siple from April to December of 1986 and observed at the conjugate receiver at Lake Mistissini
(LM). The MDIAG format was a frequently transmitted format with a variety of elements used to evaluate the
conditions for transmitting different subsequent formats and is illustrated in Figure 2a. The format begins
with a 2 s tone at the central tuning frequency, fset (with an amplitude ramp from −10 dB to 0 dB over the
first second), followed by a descending staircase of five 200 ms tones spaced 250 Hz apart from fset + 500 to
fset−500, two descending frequency ramps (the first at 0 dB and the second at−6 dB) over the same frequency
range for 1 s each, and a 7 s long pair of constant frequency tones (called a doublet) at fset+480 and at fset+510
at 0 dB. These elements can be visually identified on spectrograms in order to determine if the transmission
was received in the conjugate hemisphere.

In 1986, we have data for 1093 transmissions of the MDIAG format, and as shown in Figure 2b, not all transmis-
sions were received and detected at Lake Mistissini. To develop ground truth labels describing the detection
of receptions of MDIAG transmissions, we process each MDIAG case into high frequency and time resolution
spectrograms and manually determine if the MDIAG transmission is observed through a visual inspection of
the spectrogram, as in Figure 2c. Of the 1093 transmissions, 423 receptions were detected and 670 were not
detected, giving a 39% reception rate. This matches well with general statistics compiled by Gibby [2008] and
with the smaller number of transmissions of a different format studied in Li et al. [2015]. We label the received
transmissions as Class 1 and the not received transmissions as Class 0.
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We select the Kp index as the input feature for the classification methods, in particular, the Kp index from
the 6 days preceding the time of transmission and including the Kp index at transmission. The Kp index was
chosen by noting that receptions generally occur when the geomagnetic condition as described by Kp is
less disturbed [Carpenter and Bao, 1983] and that geomagnetic conditions described by the Kp index differ
between cases of reception and nonreception [Li et al., 2014]. The 6 days preceding the time of transmission
were selected to include the entire window of time originally chosen for conducting the epoch analysis of Kp
behavior for received and not received cases shown in Figure 1a. An analysis of the significant intervals from
Figure 1b may indicate that fewer days may suffice as well.

2.2. Naive Bayes With Laplace Smoothing
The naive Bayes classifier belongs to the class of generative learning algorithms that model the distributions
of the input features for each class that the algorithm is trying to learn. Generative learning algorithms are
a supervised learning approach, which requires the training data to first be manually labeled. By assuming
that the features are conditionally independent given the class, the resulting algorithm is the well-understood
naive Bayes classifier [Rish, 2001]. In practice, the naive Bayes classifier works by first training the conditional
probability of each feature given each class. This corresponds with maximizing the likelihood of a given class
occurring given a set of features. Then, using the conditional probabilities trained for each feature, new cases
can be evaluated by calculating the conditional probability for each class and assigning a label for the class
that is more likely. Laplace smoothing adds a small, but nonzero probability to the conditional probabilities
for all of the features in order to prevent results with an indeterminate form; that is, both the numerator and
denominator are 0. This extends the functionality of the classifier to generate predictions for cases with new
features that were not identified in training. In the work presented here, the class labels are “1” for received
transmissions and “0” for not received transmissions. As the Kp index can vary substantially and the quieting
may be the important characteristic indicating suitable ducting conditions for propagation, we instead used
the change in Kp between 3 h intervals as the input feature for the naive Bayes classifier. Furthermore, as the
input features to these Bayes classifiers must be binary valued, we implement a simple binary representation
by creating a large lookup table binary array.

2.3. Support Vector Machines
Support vector machines were developed by Cortes and Vapnik [1995] and have become a widely used algo-
rithm in the machine-learning community. SVMs can be conceptualized as a way of separating the data by its
features into distinct classes by projecting the data into a higher dimensional space where the classes can then
be separated by a hyperplane. The projection depends on the chosen mathematical transformation, called a
kernel, and the hyperplane maximizes the distance to the closest points. The set of the closest points to the
hyperplane are then called support vectors. As the kernel transformation of the input features for the hyper-
plane separation is more opaque to understanding the specific workings of the classifier and as the input
features do not need to be binary valued, here we use the Kp indices directly as the input data features. We
implement this SVM classifier utilizing a standard, off-the-shelf implementation called LibSVM by Chang and
Lin [2011].

3. Classification Results

We apply these two classification techniques to the MDIAG data set, using the Kp indices from the 6 days pre-
ceding the time of transmission to automatically predict whether or not the MDIAG transmission is detected.
First, we train the naive Bayes classifier feature weights and the support vector machine classifier model on a
training set composed of 810 transmissions, with 317 detections and 493 undetected cases so that the train-
ing set distribution of detected and undetected cases is reflective of the overall reception rates in the data.
Then, we evaluate the accuracy of the models and verify their validity by analyzing their predictions given a
new set of testing data, the remaining 283 cases, with 106 detections and 177 undetected cases, which were
never used in the training of the models. For the amount of data considered here, both models take a neg-
ligible amount of time to train and to generate predictions. The detected and undetected cases used in the
training and testing sets were randomly selected from the entire set of data, and the classification results are
broadly applicable as validated through repeated random subsampling validation.

The prediction results and how they compare with the ground truth labels are shown in a confusion matrix in
Table 1. The upper half describes the results for the Bayes classifier, and the lower half for the SVM classifier.
The left column describes results for the training data, and the right column the results for the testing data.
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Table 1. Confusion Matrix Showing the Prediction Results of MDIAG Reception and Nonreception for the Bayes and
SVM Classifiersa

Observations of MDIAG Transmissions

Training Testing

Total Received Not Received Total Received Not Received

810 317 493 283 106 177

Bayes predicted

Received 301 270 31 111 92 19

Not received 509 47 462 172 14 158

SVM predicted

Received 300 278 22 115 97 18

Not received 510 39 471 168 9 159
aThe confusion matrix describes the number of true and false positives and negatives for each classifier.

The numbers indicate the predicted or observed number of transmissions. Overall, the accuracy for the Bayes
classifier is 90% (732/810) for the training data and 88% (250/283) for the test data. The accuracy is represen-
tative of the predictive capability of the classifier, with a high precision (correctly predicted detections divided
by all predicted detections) of 90% and of 83% and a high recall (correctly predicted detections divided by
all detections) of 85% and 87% for the training and test data, respectively. The results for the SVM are simi-
lar, if not slightly better. The accuracy is 92% and 90%, the precision is 93% and 84%, and the recall is 88%
and 92% for the training and test data, respectively. Incorrectly classified cases reveal transmissions where the
Kp behavior of received cases more closely resembles the Kp behavior of nonreception transmissions, and a
visual examination of the transmissions shows that these receptions are also usually weaker and less active.

Both classifiers perform well, with 80% to 90% accuracies in predicting the reception and nonreceptions of
transmitted Siple MDIAG signals. This compares favorably with the actual reception statistics, where the trans-
missions were detected only 40% of the time and may prove useful for guiding the operations of future wave
injection experiments or further analysis of the historic Siple data set. As Kp is a global geomagnetic index
with a 3 h resolution, efforts were made to consider the potential improvement in prediction by using local
magnetometer stations and by using a geomagnetic index with higher time resolution. However, using data
from three Canadian K indices stations, at Meanook, Ottawa, and Victoria, as the input features for both the
Bayes and SVM classifiers did not improve the prediction accuracies. Similarly, using the 1 min AE index as
the input feature to improve the time resolution was not successful, as the higher time resolution resulted in
too large of an input feature set, leading to overfitting and to ill-suited classifiers. Nonetheless, training the
classifiers on finer time resolution index values, which requires a larger number of training cases to avoid the
issues of overfitting, can improve the accuracy of these classifiers. Figure 6 of Sonwalkar et al. [1997] demon-
strates that the reception occurrence rate can vary over the scale of minutes, and errors in our predictions can
be attributed to these variations in the reception rate. The current 3 h resolution, while likely capturing the
relevant overall magnetospheric conditions necessary for reception, should be improved at least to 30 min or
hour-long resolutions to more accurately describe the reception conditions.

Having demonstrated the predictive capability of these two machine-learning techniques, we also provide
a general understanding of when these classifiers can be utilized effectively. Figure 3 illustrates the learning
curve for the SVM predictor (or classifier), describing the training (blue) and testing (red) accuracy as a function
of the number of training cases. Note that the training accuracy is generally high, over 90%, regardless of
the number of training cases. This is due to the mechanics of the SVM predictor, which tends to classify the
training data with high accuracy. To evaluate if the classifier has reasonable accuracy, it is more important
to consider the testing prediction accuracy and determine when it is comparable with the training accuracy.
Here we see that when the classifier is trained on more than 250 training cases, the testing prediction accuracy
exceeds 85% consistently, in spite of some oscillations due to the random sampling method employed. Having
demonstrated the power and broad applicability of machine-learning techniques to data of varying sample
sizes, in particular, using the SVM classifier/predictor, we point out that utilizing more data tends to increase
the prediction accuracy and also that the training data must have a balanced composition of the different
classes of data in order to generate meaningful predictions.
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Figure 3. A learning curve for the SVM classifier illustrating the prediction accuracy for the training (blue) and testing
(red) data as a function of the number of training cases utilized. The oscillations in the learning curve are due to the
random sampling of the data for training and testing.

While the SVM classifier tends to be more accurate, it also is opaque to understanding the structure of the
hyperplane (i.e., the boundary in the higher dimensional feature space that separates the two classes in
the data) and how the data is classified. Here we can instead consider the structure of the Bayes classifier.
The Bayes classifier generates probabilities for each element in the feature set, and an examination of these
probabilities may indicate additional details. Some precision in interpreting these results are required though,
as each element in the feature set describes a given change in Kp index between intervals for a given day
preceding transmission. We find that the most predictive element, indicating that reception is 42 times more
likely, is the token describing an increase in Kp index of two units during the interval of 3 days before the time
of transmission. This is interesting in pointing out that not only is the overall quieting needed for the forma-
tion of a stable duct for wave propagation but also a prior interval of higher geomagnetic activity, presumably
associated with the injection of energetic electrons into the inner magnetosphere, is also key to driving the
wave amplification such that reception of signals in the conjugate region is possible.

4. Updated Siple Statistics

Using the large number of detected MDIAG transmissions, we can provided updated statistics on nonlinear
amplification characteristics following the work of Li et al. [2014]. Here we have significantly more cases, 407
instead of 106, and we apply the same analytical approach in order to extract the amplitude characteristics
that describe the amplification behavior of injected whistler mode signals using the 2 s long tone transmitted
at the beginning of the MDIAG format. As before, we first extract 4 s of the full broadband data covering 2 s of
noise and the 2 s long tone and remove the noise from lightning-generated impulses, as shown in Figure 4a.
To find the narrowband signal amplitude, we multiply the broadband data by a complex exponential, shifting
the signal from its fset transmission frequency to baseband and filtering out other noise with a 100 Hz low-pass
filter. Finally, we smooth with a 10-point median filter to reduce impulsive noise in the signal and normalize
using the closest preceding reference calibration tone. From the narrowband signal amplitudes for all 407
cases, we measure the noise floor, the saturation power level, and the nonlinear growth rate as illustrated in
Figure 4b. In this characteristic amplitude plot, the noise floor (dashed red line) is interrupted by the signal
growing out of the noise at a nonlinear growth rate (dashed orange line), here 159.5 dB/s, and the signal
amplifies until saturating at the saturation threshold (dashed green line).

The use of these larger number of MDIAG transmissions provides an improved statistical understanding of
wave amplification behavior of injected whistler mode waves, as presented in Figures 4c–4e. This improves
on the results presented in Li et al. [2014] and even more so on statistics from earlier work such as Helliwell
and Katsufrakis [1974] and Helliwell et al. [1980]. Figure 4c shows a histogram of the nonlinear growth rates,
which ranges from 3 dB/s to 270 dB/s with a median growth rate of 68 dB/s. These values cover the range
of 30–200 dB/s observed by Helliwell et al. [1980] and provides a better understanding of the distribution
of the growth rates. Figure 4d shows a histogram of total nonlinear growth, calculated as the difference
between the saturation threshold and the noise floor, which ranges from 3 dB to 41 dB with a median total
growth of 18 dB. While these total growths, as mentioned in Li et al. [2014] cover the ranges observed in
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Figure 4. (a) Example spectrogram of the long-tone element in an MDIAG transmission from Siple Station. (b) The
narrowband amplitude of the long tone is characteristic of most observations where the signal amplifies out of the
noise floor (dashed red line), undergoing nonlinear amplification (dashed orange line) until saturating (dashed green
line). Statistics compiled from the amplitude characteristics of all MDIAG transmissions are presented as (c) a histogram
of the observed nonlinear growth rates, (d) a histogram of the observed total nonlinear growth, and (e) a scatterplot of
the saturation power level versus the noise floor (𝜌 = 0.73, p < 0.01).

Helliwell and Katsufrakis [1974], we again see that the often-cited 30 dB value of expected total growth should
be adjusted to around 20 dB. Although these values are most directly applicable to 1986, these bounds
provide improved statistical justification that may apply more generally. Finally, Figure 4e shows a significant
correlation (𝜌 = 0.73, p < 0.01) between the saturation threshold and the noise floor. The correlation
here improves upon, in significance and correlation, the earlier observation in Li et al. [2014] and supports
the hypothesis that conditions favoring higher linear amplification drive higher noise floors and also higher
maximum amplification thresholds for transmitted signals. Note that this statistical analysis of the signals
tends to aggregate transmissions under potentially widely varying amplification conditions. Finer time reso-
lution analysis would allow for identification of the hour- and minute-scale temporal variations in occurrence
rate and in amplification effects as measured by the saturation threshold and the nonlinear growth rates as
observed in Sonwalkar et al. [1997].

5. Conclusions

As the scale of data increases and scope of experiments include many more cases, more sophisticated tech-
niques for detection or classification may become more useful. Looking at a set of experiments from the Siple
transmitter experiment in 1986, we demonstrate the application of a naive Bayes with Laplace smoothing
classifier and a support vector machine classifier for the automatic detection of transmitted MDIAG transmis-
sions received at the conjugate receiver at Lake Mistissini. This is a nontrivial problem with 1093 transmissions
that are received at a 39% reception rate for a total of 423 receptions. The classifiers take as input features
the Kp indices from the preceding 6 days to predict the reception of transmissions with 80%–90% accuracy.
This work suggests further utilization of machine-learning techniques for active experiments in maximizing
the number of detectable receptions for scientific analysis, especially with the higher accuracies afforded by
more sophisticated techniques such as the SVM classifier. By analyzing the Bayes classifier probabilities, we
find that the most predictive token is a period of increasing activity 3 days prior to transmission. Thus, we
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conclude that reception of Siple signals requires a period of higher geomagnetic activity, which results in
higher fluxes of energetic electrons for wave amplification, followed by a period of quieting, which results in
the formation of stable-ducted paths for wave propagation.

The larger number of detected transmissions can also be used to improve our statistical understanding of
wave amplification behavior in studying the modifications of injected whistler mode waves by wave-particle
interactions. Here 407 of the transmissions include the 2 s long tone from which we can measure the noise
floor, the nonlinear growth rate, and the saturation threshold of the narrowband signal amplitude. The non-
linear growth rates range from 3 dB/s to 270 dB/s, and the total nonlinear growth ranges from 3 dB to 41 dB
with a median growth of 18 dB. And a significant correlation between the saturation threshold and the noise
floor confirms the result in Li et al. [2014].
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