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Abstract Modeling of gyroresonant wave-particle interactions in the radiation belts requires solving the
Vlasov-Maxwell system of equations in an inhomogenous background geomagnetic field. Previous works
have employed particle-in-cell methods or Eulerian solvers (such as the Vlasov Hybrid Simulation code) to
provide numerical solutions to the problem. In this report, we provide an alternative numerical approach
by utilizing a first order finite difference upwind scheme. When coupled to the narrowband Maxwell’s
equations, the model reproduces linear as well as nonlinear wave growth of coherent signals. Wave
growth is nonlinear growth when the wave amplitude exceeds the minimum value for phase trapping of
counterstreaming particles and is linear otherwise. The model also demonstrates free-running frequency
variation for a case with a high linear growth rate. In addition, the model confirms the theoretical prediction
of a stable “phase-space hole” during the nonlinear growth process. The plasma parameters and L shell
used in this study are typical of those associated with the Siple Station wave injection experiment.

1. Introduction

Whistler mode waves in the magnetosphere play an important role in the energization as well as loss of
energetic electrons in the Earth’s radiation belts [Abel and Thorne, 1998; Thorne, 2010]. Accurate modeling
of the problem requires tracking a distribution of energetic electrons in phase space while self-consistently
capturing the electromagnetic waves that will propagate through the background cold magnetized plasma
and be amplified by the hot plasma component. The evolution of the particle distribution function is
governed by the Vlasov equation while the wave fields are generated according to Maxwell’s equations.

Under the assumption of small amplitude waves, the Vlasov-Maxwell set of equations can be linearized and
solved analytically. Linear theory predicts that whistler mode waves of a given frequency can be amplified
provided that the energetic electron distribution has sufficient pitch angle anisotropy at the Doppler-shifted
cyclotron resonance velocity [Kennel and Petschek, 1966]. Coherent whistler mode waves, in particular,
can grow to large amplitudes at which point resonant electrons can be phase trapped and the interaction
becomes strongly nonlinear [Nunn, 1974; Omura et al., 1991]. The coherent wave instability is believed to
be responsible for the generation of discrete VLF emissions known as magnetospheric chorus which can in
turn energize electrons or precipitate them onto the neutral atmosphere [Bortnik and Thorne, 2007; Thorne
et al., 2010, 2013]. Amplification of injected VLF signals, such as in the case of the Siple Station wave injec-
tion experiment, can result in new coherent waves free running in frequency known as triggered emissions
[Helliwell, 1983]. Quantifying wave amplification in the nonlinear regime is difficult to accomplish with ana-
lytical techniques, and accurate numerical modeling is indispensable. Analytical and numerical modeling
of coherent wave-particle interactions have been addressed by several authors [Bell and Buneman, 1964;
Kennel and Petschek, 1966; Nunn, 1974; Hikishima et al., 2010; Albert et al., 2012; Harid et al., 2014].

Particle-in-cell (PIC) methods solve the Vlasov equation by using a large number of superparticles and are
used extensively in space plasma physics. PIC simulations have been successfully used to model rising tone
triggered emissions as well as discrete chorus emissions [Katoh and Omura, 2006, 2007; Omura et al., 2008;
Hikishima et al., 2010, 2009]. Katoh and Omura [2006] used a hybrid particle code that treats the background
cold plasma as a fluid while the energetic electrons are treated as particles in a PIC code. They found that
triggering of a rising tone occurs at the back end of the input signal close to the magnetic equator, and
the resonant current formation by untrapped electrons plays an important role in the triggering process.
Using the same simulation procedure, Omura et al. [2008] showed that chorus elements with rising tones are
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generated close to the magnetic equator and undergo further nonlinear growth while propagating away
while the wave frequency stays essentially the same. Hikishima et al. [2010] used a full particle code with no
approximations to Maxwell’s equations to simulate rising tone emissions. A monochromatic signal injected
at the magnetic equator was shown to trigger a rising emission. The triggering signal created a depletion of
electrons at the resonant velocity while the electrons exiting the wave trap generated a new wave rising in
frequency. Although PIC simulations have been extremely successful at modeling wave-particle interactions
in the radiation belts, the primary concern is including enough particles to accurately sample phase space
such that all the physically relevant particles are taken into account (i.e., electrons close to resonance). This
often requires spending computational resources on a large number of particles that may not contribute
significantly to wave growth.

Eulerian methods have also been used to model the coherent wave instability by solving the Vlasov
equation directly on a grid in phase space [Filbet and Sonnendrücker, 2003]. The Vlasov Hybrid Simula-
tion (VHS) code, as described in Nunn [1993], has been successfully used to model the dynamic spectra
of VLF-triggered emissions. In this technique, single-particle trajectories are traced continuously through
time while the distribution function is obtained by interpolating onto a phase-space grid at each time step.
Once the distribution function is known, the resonant currents are calculated and used to determine the
wave fields. The VHS code has the advantage of having a dynamic number of simulation particles and hence
does not suffer from the large number of particles required in PIC methods. The VHS code has been used to
model rising, falling, and hook-like emissions [Nunn et al., 2003]; however, rising emissions are most com-
monly observed in the simulations [Nunn et al., 1997]. The code has been employed in several studies over
the past few decades. Nunn and Smith [1996] simulated whistler-triggered emissions using the VHS code
and demonstrated both rising and falling tones triggered in good agreement with observations. Nunn et al.
[2005] considered a parametric study of the VHS code over a range of simulation parameters. It was found
that low input amplitudes generated fallers, intermediate amplitudes generated risers, and large amplitudes
generated fallers, hooks, or oscillating tones. The frequency sweep rate was shown to be most sensitive to
the cold plasma density with lower densities giving higher sweep rates. Nunn and Omura [2012] modified
the VHS code by restricting the interaction region to be only upstream of the equator where the inhomo-
geneity is positive. With the modification, the VHS code produced stable falling tones with the resonant
particle trap showing an enhanced distribution function (hill) in contrast to a depletion caused by a rising
emission. The component of the resonant current parallel to wave magnetic field was shown to be positive
for falling tones while it is negative for rising tones. Although the VHS code has been used to simulate vari-
ous aspects of triggered emissions, phenomena such as saturation and multiwave interactions are difficult
to reproduce with this model. Additionally, the artificial filtering required to keep the simulation stable may
unintentionally swamp physical effects. Gibby et al. [2008] also used a Vlasov hybrid technique to simulate
nonlinear growth; however, a backward semi-Lagrangian procedure was used such that the particle trajecto-
ries were restarted at each time step. The model was able to produce nonlinear growth as well as saturation
of the wave amplitude.

Eulerian schemes are compatible with nonuniform phase-space grids, which is a particularly useful fea-
ture since the resonance velocity varies significantly along the geomagnetic field line. Finite difference (FD)
schemes have the advantage of being easy to implement with the expense of requiring a uniform grid.
For this reason, FD schemes have not been a method of choice for solving the Vlasov equation in an inho-
mogenous magnetic field. In this study, using a procedure similar to Nunn [1990, 1993], we present the
transformation of the Vlasov equation into a resonance-subtracted coordinate system (including relativistic
corrections) such that a uniform grid can be used in the new coordinate space. We leverage the coordinate
transformation to complete the first successful numerical simulations of nonlinear amplitude growth of the
coherent wave instability using a standard upwind FD scheme.

2. Resonant Coordinate Transformation

The full six dimensional (⃗r, v⃗) Vlasov equation is computationally intensive; thus, several authors have used
the reduced four dimensional Vlasov equation (z, v⃗) with the background inhomogeneity incorporated as
a gradient term in the equations of motion [Inan et al., 1978]. Additionally, we make the assumption of par-
allel propagating waves which is a good approximation for ducted VLF signals [Haque et al., 2011]. For an
injected VLF signal propagating in one direction along the field line, significant energy exchange occurs
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when particles at the local gyroresonance velocity vres =
(

𝜔c

𝛾
− 𝜔

)
∕k interact with the wave. Here 𝜔c is the

electron gyrofrequency, 𝛾 is the lorentz factor, 𝜔 is the wave frequency, and k is the wave number.

The problem in using a uniform phase-space grid in parallel velocity is that the local resonance velocity
changes significantly along the magnetic field line forcing coverage of a large range of parallel veloci-
ties. However, the scale at which resonant particles change in v∥ is on the order of the trapping velocity,

vtr =
(

4qBw v⊥
mk

) 1
2

, which is effectively the size of the trap in v∥ space. Therefore, to resolve the fine-scale fea-
tures, Δv∥ ∼ vtr∕10 at the very least, where Δv∥ is the grid spacing in the v∥ coordinate. For a numerical
interaction region of ±5000 km at L=4 and conservative background parameters, a uniform grid can require
hundreds to thousands of points in parallel velocity with a large fraction of the grid not contributing to
the simulated physics at any given point in space and time. However, if the initial wave frequency of the
injected signal is known, the resonance velocity (or equivalently resonant momentum) is a known function
of z and p⊥. The following simple coordinate transformation p̂=p∥ − pres(z, p⊥) forces the local resonance

condition to occur at p̂=0 where pres is the resonant momentum (pres =𝛾mvres). Here 𝛾=
(

1 +
p2
⊥
+p2

∥
(mc)2

)
is

evaluated at p∥ =pres to give a quadratic equation Ap2
res + Bpres + C=0. The coefficients A, B, and C are given

in equations (1)–(3):

A =
( k

m𝜔

)2

−
( 1

mc

)2
(1)

B = −
2k𝜔c

m𝜔2
(2)

C =
(𝜔c

𝜔

)2
−
( p⊥

mc

)2
− 1 (3)

The root that gives the nonrelativistic resonance velocity in the limit 𝛾 ∼ 1 is selected for the coordinate
transformation. In canonical coordinates the Vlasov equation is given by equation (4).

𝜕f
𝜕t

+
n∑

i=1

dxi

dt
𝜕f
𝜕xi

= 0 (4)

The terms dxi

dt
are governed by the single-particle equations of motion (Lorentz force). The Vlasov equation

can be readily transformed from one coordinate system to another (xi → yj) using
dyj

dt
=

n∑
i=1

𝜕yj

𝜕xi

dxi

dt
and substi-

tuting (xi → yj) in equation (4). A significant amount of previous research has used a cylindrical coordinate
system (v∥, v⊥, 𝜙, z) for the equations of motion [Inan et al., 1978; Dysthe, 1971]. The new coordinates sim-
ply replace p∥ with p̂ to give (p̂, p⊥, 𝜙, z). Since pres is only a function of z and p⊥, the equation of motion

becomes dp̂
dt
= dp∥

dt
− dp⊥

dt

𝜕pres

𝜕p⊥
− v∥

𝜕pres

𝜕z
. The terms 𝜕pres

𝜕p⊥
and 𝜕pres

𝜕z
can be evaluated analytically or numerically.

The Vlasov equation in the new coordinate system is then given by equation (5).

𝜕f
𝜕t

+
(dz

dt

)
𝜕f
𝜕z

+
(

dp⊥

dt

)
𝜕f
𝜕p⊥

+
(

d𝜙
dt

)
𝜕f
𝜕𝜙

+
(

dp̂
dt

)
𝜕f
𝜕p̂

= 0 (5)

3. Numerical Model

In the new coordinate system, we employ a first-order accurate linear upwind difference scheme which is
diffusive but still provides a physically reasonable solution for a monochromatic input. The scheme works by
appropriately discretizing the derivatives using forward or backward finite differencing depending on the
direction in phase space that particles stream from. Equation (6) shows the upwind scheme explicitly.

f (t + Δt) = f (t) − Δt

(
n∑

i=1

dx+i
dt

D−
i f +

dx−i
dt

D+
i f

)
(6)

Here
dx+i
dt

=max
(

dxi

dt
, 0
)

and
dx−i
dt

=min
(

dxi

dt
, 0
)

. The quantities D−
i f and D+

i f denote the backward and for-
ward finite difference operators, respectively. The primary bottleneck of explicit finite difference schemes
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is that they are constrained by the Courant-Friedrichs-Lewy (CFL) condition, which states that particles
can traverse at most one phase-space grid cell in one time step. This enforces that the numerical domain
of dependence contains the analytical domain of dependence and is a necessary condition for numerical

stability. For the case of the Vlasov equation, the CFL condition is given by Δt <Cmax

( n∑
i=1

dxi
dt

Δxi

)−1

. Here

Δxi represent the phase-space grid spacings, and Cmax is generally a number less than 1. For the investi-
gations described herein, Cmax is set to 0.8 which is a conservative value. The time step is then selected

using Δt=Cmax

( n∑
i=1

dxi
dt

Δxi

)−1

. Since this quantity can change with every iteration, the time step is forced to

change dynamically.

Since the waves in this simulation are coherent, the Vlasov equation can be coupled to the narrowband
wave equations that also take the background cold plasma into account [Nunn, 1974]. The narrowband
equations are shown in equations (7) and (8).

𝜕Bw

𝜕t
− vg

𝜕Bw

𝜕z
= −

𝜇0vg

2
JE (7)

𝜕𝜙w

𝜕t
− vg

𝜕𝜙w

𝜕z
= −

𝜇0vg

2

JB

Bw
(8)

The quantities Bw and 𝜙w are the wave amplitude and phase of the modulating wave packet propagating
in the −z direction at the group velocity, vg. JE and JB are components of the resonant current in the direc-
tion of the wave electric and magnetic fields, respectively. Since the single-particle equations of motion
require knowing the wave frequency and wave number at each time step, the wave number is updated
using k=k0 + 𝜕𝜙w

𝜕z
and the wave frequency can be updated using 𝜔=𝜔0 + 𝜕𝜙w

𝜕t
. The time derivative can be

removed with the help of equation (8) to give 𝜔=𝜔0 − 𝜇0vg

2

JB

Bw
+ vg

𝜕𝜙w

𝜕z
. Here 𝜔0 and k0 are the initial wave

frequency and wave number and are given by the cold plasma dispersion relation.

The advantage of using the narrowband wave equations is that for a coherent wave, both Bw and 𝜙w will
be slowly varying functions of position even if the quantity Bwei𝜙w may be varying rapidly. Therefore, the
number of spatial grid points can be much fewer than if the wave equations were solved in vector form.
The disadvantage is that the phase evolution equation (equation (8)) can become unstable for small wave
amplitudes due to the Bw term in the denominator. However, for a zero order distribution function that is
conducive to growth, the wave amplitude in our simulations was not observed to become small enough to
be a concern for the simulations. For simulations with an arbitrary input signal (not monochromatic), solving
the vectorized version of the wave equations along with more spatial grid points would be advantageous.

Since the narrowband wave equations are also advective equations (with a source), they can also be
solved with the same finite difference scheme used for the Vlasov equation. The wave equations are also
constrained by a CFL condition, and the time step that is more restrictive (either for particles or wave)
is selected for the simulations. It is also worth noting that no artificial filtering is required for stability of
the algorithm.

4. Modeling Results

Since the objective of this study is to model wave amplification of injected coherent signals, we use parame-
ters associated with the Siple Station wave injection experiment [Helliwell, 1983]. Particularly, the simulation
parameters are L=4,Ncold =250 el/cm3. The hot plasma distribution function considered is a bi-Maxwellian
with T⊥

T∥
=2.16. Additionally, we use Np̂ × Np⊥

× N𝜙 × Nz = 101 × 24 × 32 × 400 for a total of 31 million

grid points.

The grid in p̂ space ranges ±5 trapping velocities around p̂=0 where the trapping velocity is evalu-
ated at the average perpendicular momentum and at the maximum wave amplitude predicted by linear
theory. This grid is large enough to accommodate approximately a ±300 Hz change in the wave frequency
and still contain the resonance velocity in the simulation space. A full grid is used in p⊥ such that range of
pitch angles in the simulations is between 20 and 80◦. The input wave amplitude used in the simulation is
Bw =100fT (−20 dB-pT). The initial amplitude filling the simulation space cannot be set to zero due to the Bw

term in the denominator of equation (8) and is initialized to 120 dB below the input wave amplitude.
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Figure 1. (a and b) The wave amplitude and phase, respectively, at three different time samples (f0 =4.5 kHz). The wave amplitude grows according to lin-
ear theory for z>0 and becomes nonlinear for z<0 after crossing the trapping threshold. As shown in Figure 1b, a nonzero phase shift occurs only for z<0
(nonlinear region) and is responsible for the changing frequency of a triggered emission. (c) The wave amplitude profile once the wave has filled the simula-
tion space (t = 0.8 s). (d) The phase-space distribution (integrated over p⊥) in the linear growth regime (z = 3325 km). (e and f) The wave profile as well as the
phase-space distribution in the nonlinear regime (z=−1525 km). In the nonlinear regime, there is a clear depletion in phase space within the trap resulting in a
stable “phase-space hole.” The dashed black curves in Figures 1c and 1e represent the minimum amplitude required for phase trapping.

Figure 1 shows the results of a simulation with a 4.5 kHz initial frequency and Nhot =0.5 el/cm3. Figures 1a
and 1b show the wave amplitude and phase profiles, respectively, at three different snapshots in time. As
shown in Figure 1b, the phase profiles only change significantly after sustained crossing of the trapping
threshold (shown by the dashed curves), which occurs after the wave has passed the equator, i.e., for z<0.
Figures 1c and 1e shows the amplitude profile after the wave has filled the simulation space (t = 0.8 s). As
shown, the wave amplitude grows according to linear theory before crossing the equator (z>0). The pertur-
bation to the phase-space distribution in (p̂, 𝜙) space (integrated over p⊥) is shown in Figures 1d and 1f at
two positions z=+3325 km and z=−1525 km, respectively. The distribution functions shown are first sub-
tracted from the unperturbed distribution and then normalized to the maximum value. The distribution
in Figure 1d corresponds to the linear regime. Close to the equator, the wave amplitude starts to deviate
from the prediction of linear theory. The phase-space distribution well into the nonlinear regime is shown
in Figure 1f, and a strong depletion in phase-space density inside the phase trap, resulting in a “phase-space
hole” [Nunn, 1974; Omura et al., 1991], is clearly visible. The hole is created since particles trapped down-
stream (of the wave) stay trapped at resonance for several trapping periods and, by Liouville’s theorem, will
drag the value of the phase-space density from the region downstream where they were first trapped. Since
the resonance velocity increases with distance away from the equator, the phase-space density will be lower
inside the trap than outside and is thus referred to as a “hole” [Omura and Nunn, 2011]. The depth of the
hole varies as a function of time and depends on the trapping history of particles and can even be negative
(hill instead of a hole) on the upstream side if the wave amplitude is above the trapping threshold. The the-
oretical idea of the phase-space hole has been proposed by several authors, and our model serves as useful
validation of this concept. The well-defined boundaries and shape of the phase-space hole in Figure 1d can
be contrasted with the result shown in Figure 7 of Hikishima and Omura [2012] that was obtained using a
full electromagnetic-PIC simulation. The ability to clearly resolve details in phase space is one of the primary
advantages of using an Eulerian Vlasov solver.
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Figure 2. (a–c) The wave amplitude, wave frequency, and currents, respectively, for Nhot = 0.02 el/cm3. The wave growth is purely linear in this case, and
there is no frequency change since the amplitude does not cross the trapping threshold. (d–f ) The amplitude, frequency, and resonant current profiles for
Nhot = 0.1 el/cm3. The wave growth crosses the trapping threshold in this case which occurs primarily for z < 0. Although the wave amplitude is large enough to
be nonlinear, the frequency change is still small as shown in Figure 2e. (g–i) The amplitude, frequency, and currents for Nhot = 0.5 el/cm3. The linear growth rate is
extremely high in this case (625 dB/s) and crosses the trapping threshold much before the wave crosses the equator. The wave growth is subsequently nonlinear
with a nonzero frequency change that resembles a triggered emission.

The reason nonlinear growth occurs primarily for (z < 0) in the results shown in Figure 1 is that linear
growth brings the wave amplitude up to trapping threshold only very close to magnetic equator. If the
linear growth rate or the injected wave amplitude were higher, the trapping threshold would be crossed
sooner and nonlinear growth would initiate before the wave reaches the equator. To examine the transition
from linear to nonlinear growth, we consider three simulations with three different hot plasma densities
(Nhot =,0.02, 0.1, and 0.5 el/cm3) at f0 = 1.5 kHz with an input pulse duration of 0.5 s. The corresponding
equatorial linear growth rates are 25, 125, and 625 dB/s. The simulation results are shown in Figure 2, with
each row corresponding to one simulation. Figures 2a, 2d, and 2g show the wave amplitude as a function
of position, Figures 2b, 2e, and 2h show the wave frequency, and Figures 2c, 2f, and 2i show the corre-
sponding resonant currents (JE and JB). Figures 2a–2c show the wave and current profiles at t = 0.75 s for
Nhot = 0.02 el/cm3. As shown, this case has the lowest hot plasma density, the wave amplitude does not cross
the trapping threshold (shown by the dashed black curve) and the growth is well described by linear the-
ory. In this linear regime, the frequency does not change from the injected value of 1500 Hz. This is because
the component of the current in the direction of the wave magnetic field (Jb) is responsible for frequency
change and should be identically zero according to linear plasma theory. As shown in Figure 2c, JB is approx-
imately an order of magnitude less than JE and linear theory is thus accurate in this case. Figures 2d–2f show
the wave and current profiles for Nhot = 0.1 el/cm3. In this case, the linear growth was high enough to make
the wave amplitude exceed the trapping threshold. As shown, the amplitude crosses the threshold very
close to the equator which is similar to the case in Figure 1. Figure 2e shows the frequency profile which has
not deviated much from the original 1500 Hz even where the wave growth is nonlinear. The current pro-
files in Figure 2f are largest for z < 0 where the wave amplitude is above the trapping threshold and hence
nonlinear. The last case, with Nhot = 0.5 el/cm3, is shown in Figures 2g–2f. In this case, the wave amplitude
crosses the trapping threshold significantly before the wave passes the equator. The wave subsequently
undergoes significant nonlinear growth and reaches values of approximately 100 dB-pT at the exit of the
simulation space. Note that the back end of the pulse does not look like it has traveled as far as the cases
with the lower hot plasma densities (Figures 2a and 2d). This occurs because particles that leave the back
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end of the pulse are forced to fall out of the trap and radiate additional wave energy in the process. This
extends the pulse length as well as changes the wave frequency which is shown in Figure 2h. The frequency
deviation is continuous but not at a constant sweep rate. This is consistent with Nunn et al. [2005] where
hooks and oscillating tones were found for cases with the largest wave amplitudes. In this simulation, the
frequency change (triggering) occurs close to where the wave crosses the trapping threshold and essentially
propagates away from that location. This result suggests that the transition from trapping to detrapping of
resonant particles plays an important role in the triggering free-running emissions.

Although the model reproduces nonlinear growth and frequency change that can resemble a triggered
emission, it is worth noting that the first-order upwind scheme is known to be dissipative when large gra-
dients are formed. Incorporating a higher-order finite difference scheme for the Vlasov-Maxwell solver is a
subject of future research.

5. Conclusion

We have shown that coherent wave amplification can be modeled using a finite difference scheme on a uni-
form grid after transforming to a resonance-subtracted coordinate system. We used a first-order upwind
scheme which is the simplest stable scheme but is diffusive. With this scheme, the model demonstrates
both linear as well as nonlinear growth, with the formation of a stable and well-defined phase-space hole
during the nonlinear growth process. The point at which the transition from linear to nonlinear takes place
depends on the linear growth rate such that linear growth can raise the wave amplitude above the trap-
ping threshold. For low growth rates, the amplification is purely linear since the trapping threshold is never
exceeded. For the case with a large linear growth rate, the trapping threshold is crossed quickly and a con-
tinuous change in frequency takes place close to where the wave first crosses the threshold and propagates
away from there. This suggests that particles leaving the back end of the wave trap are an important part of
the triggering process.
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