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Abstract The interaction between coherent whistler mode waves and energetic radiation belt electrons
can result in pitch angle scattering of electrons into the bounce loss cone and subsequent precipitation. In
studying the effects of VLF transmitter signals on particle precipitation, past modeling efforts have focused
on the computation of diffusion coefficients for a Fokker-Planck model. In contrast, to capture the nonlinear
effects of large-amplitude coherent waves, we evaluate particle precipitation using a Vlasov-Liouville (VL)
model which computes the phase space particle distribution function directly using a characteristic-based
solution of the Vlasov equation. Previous work has shown that in the case of large-amplitude coherent
waves, phase trapping can significantly perturb resonant particles from their adiabatic paths. We evaluate
the importance of phase trapping over a range of wave amplitudes (up to 200 pT); the percentage of
particles that precipitate after being phase trapped is computed over a phase space grid in the loss

cone. The results demonstrate that phase trapping contributes significantly to precipitation when a
large-amplitude wave (>100 pT) is present. Additionally, linear theory can be valid over a broad range of
amplitudes and the relative accuracy of linear theory in calculating the precipitated flux depends strongly
on the initial particle distribution. Additionally, we demonstrate the ability of the VL model to calculate the
time evolution of the precipitated flux due to short-duration whistler mode pulses. The physical parameters
used in this study are typical of those associated with the Siple Station wave injection experiment.

1. Introduction

Plasma waves in the magnetosphere play an important role in the dynamics of the Earth'’s radiation belts.
The interaction between energetic electrons and plasma waves has been studied extensively over the

past 50 years [Helliwell, 1965; Bell and Buneman, 1964; Kennel and Petschek, 1966; Lyons et al., 1972; Omura
et al., 1991; Bortnik et al., 2008; Gendrin, 1981]. In modeling wave-particle interactions, two general classes
of waves are usually considered: incoherent sources and coherent sources. A common incoherent signal is
magnetospheric hiss. For precipitation studies, magnetospheric chorus is often treated as an incoherent
source as well even though discrete chorus elements are assumed to be coherent in wave amplification and
generation studies [Omura et al., 2008], highlighting the rich diversity of the phenomenon. Coherent waves
are usually encountered when studying scattering due to signals from VLF communication transmitters or
other wave injection sources (such as Siple Station or High Frequency Active Auroral Research Program)
[Helliwell, 1988; Gotkowski et al., 2008, 2010, 2011]. Regardless of the wave structure, the most fundamental
physical description of the interaction requires correctly modeling wave amplification while self-consistently
capturing the evolution of the particle distribution. The full treatment of amplification and scattering is a
difficult problem that requires solving the Vlasov-Maxwell system of equations [Nunn, 1974]. The Vlasov
equation dictates the time evolution of a particle distribution in phase space (7, V). Maxwell’s equations,

on the other hand, determine the evolution of any possible waves in the plasma. Simultaneously solving
these equations would describe general plasma behavior. Several authors have used Vlasov-Maxwell solvers
to model wave growth [Omura and Nunn, 2011; Gibby et al., 2008; Katoh and Omura, 2007; Hikishima et al.,
2010]; however, measuring particle precipitation in the same numerical model can be difficult to do accu-
rately. This is because wave growth models require solving the Vlasov equation everywhere along the field
line and wave growth is dominated by electrons with high pitch angles. On the other hand, precipitation is
due to low pitch angle particles falling into the loss cone at the exit of the interaction region.
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To quantify particle scattering, many authors consider simplified models where the wave generation mech-
anism is neglected. That is, waves are assumed to be generated by transmitters or by some unidentified
mechanism [Lyons, 1974]. If the density of energetic particles is small, wave growth is negligible and this
assumption of “no feedback” is valid. The wave propagation characteristics are governed by the background
cold, magnetized plasma while the hot plasma (radiation belt electrons) is simply scattered by the incoming
waves. A common method of evaluating particle scattering is through quasi-linear theory and the calcula-
tion of diffusion coefficients [Kennel and Petschek, 1966; Inan et al., 1978; Abel and Thorne, 1998; Albert, 1999;
Summers, 2005].

Quasi-linear theory involves a perturbative expansion of the Vlasov equation along with averaging the (gen-
erally assumed to be incoherent) wave fields [Kennel and Engelmann, 1966]. With these approximations, the
Vlasov equation is transformed into a Fokker-Planck diffusion equation in pitch angle, energy, and momen-
tum. This method has been used by numerous authors to model wave-particle interactions by coherent

as well as turbulent sources [Lyons et al., 1972; Steinacker and Miller, 1992; Albert, 1999, 2003; Glauert and
Horne, 2005]. For instance, this diffusion model has been successfully used to explain the emptying of the
slot region during periods of quiet geomagnetic activity [Lyons et al., 1972]. Pitch angle diffusion due to plas-
maspheric hiss has been used in several numerical models [Summers, 2005]. The primary advantage of this
method is that the diffusion coefficients can be calculated numerically (or in some cases analytically) [Lyons,
1974; Albert, 1994; Shprits et al., 2006; Tao et al., 2012], for a given wave power spectral density. The primary
disadvantage of quasi-linear theory is that it is formally valid only for small amplitude, incoherent signals.
Nevertheless, it has been used to model scattering by coherent sources as well [Inan, 1987; Albert, 2001]. In
the case of coherent, large-amplitude waves, the diffusive treatment is harder to justify [Inan et al., 1978].
Albert [2001] showed that under certain limits, scattering by monochromatic waves can be diffusive and that
quasi-linear theory is valid in this regime. However, the general treatment of nonlinear scattering (and pre-
cipitation) by large-amplitude coherent waves may not be correctly handled by quasi-linear theory in which
case the solution to the Vlasov equation should be computed directly. Inan et al. [1978] computed precip-
itated fluxes due to monochromatic waves by using a semi-Vlasov solver. Although their model solved the
nonlinear equations of motion to calculate pitch angle change, gyrophase dependence was neglected when
reconstructing the energetic particle distribution function. For large-amplitude waves, phase bunching and
phase trapping are important aspects of the nonlinear process [Dysthe, 1971; Matsumoto and Omura, 1981;
Bell, 1984; Gibby et al., 2008; Nunn, 1974; Albert et al., 2012]; it is therefore more appropriate to use a model
that retains the gyrophase dependence of the particle distribution function to correctly model the physics.

Since a large body of previous work has focused on quasi-linear theory, this study is important for evaluat-
ing precipitation in the regime where strongly nonlinear effects cannot be neglected. Additionally, the work
in this report has important implications for future studies on controlled precipitation of radiation belt elec-
trons. Controlled precipitation can be useful for scientific studies of the upper atmosphere Inan et al. [1978].
Additionally, enhanced radiation belt flux levels damage spacecraft yielding an additional motivation for
controlled precipitation [Inan et al., 2003].

Recent observations of chorus amplitudes on Time History of Events and Macroscale Interactions dur-
ing Substorms (THEMIS) [Li et al., 2011] show values of up to 300 pT indicating the need to understand
the effects of very large amplitude waves especially since chorus waves are capable of precipitating ener-
getic electrons [Lorentzen et al., 2001]. Although current VLF transmitters do not routinely inject such
large-amplitude waves into the magnetosphere, a thorough theoretical understanding would benefit any
future projects on controlled precipitation.

In this study, we address three main points in regard to precipitation by coherent waves. First, we dis-

cuss numerical modeling of precipitation using a characteristic-based solution to the Vlasov equation
(Vlasov-Liouville model). Second, we evaluate the net effect of phase trapping on precipitation, which is a
phenomenon that has often been neglected in modeling precipitation. Third, we compute the dependence
of precipitated flux on wave amplitude (up to 200 pT) and compare it to linear scattering theory for different
hot plasma distribution functions. We also discuss the uses of the Vlasov-Liouville model in simulating the
time evolution of the precipitated flux induced by short-duration whistler mode pulses (0.5 s in this study).

The next two sections will discuss theoretical aspects of coherent wave-particle interactions as well as
numerical modeling of particle precipitation by coherent waves using the Vlasov-Liouville model. Section 4
describes the results of numerical simulations. Concluding remarks are provided in section 5.
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Ew 2. Theoretical Background

V. The complete interaction between particles and waves should
include every relevant plasma wave mode and any arbitrary

éoR ® direction of propagation. However, for simplicity, we con-

wz ® sider only parallel-propagating whistler mode signals. This is

' a very reasonable assumption for signals that are guided by

) field-aligned density irregularities, known as “ducts.” In these

> Bw cases, waves will generally propagate nearly parallel to the

Figure 1. The geometry describing the inter- background geomagnetic field [Haque et al., 2011; Angerami,

action process. The wave-normal vector k of 1970]. Since one of the objectives of this study is to determine

the whistler mode wave is parallel to the back- ~ precipitation induced by injected signals, the previous assump-

ground field; the wave field components, B, tions are particularly useful. These assumptions are also used in

and £,,, are perpendicular to the direction of 1y ymerical modeling that shall be discussed in the next section.
propagation. The quantities v and v, are the

components of the velocity vector parallel The equations of motion (Lorentz force) used are shown in

and perpendicular to the background field. (1)-(4).

The gyrophase angle ¢ is the angle between

v B dz

v, and B,,. - =y M
dp, q Pi Jdw
— =—28 sin ¢ — < 2
dt  my wPy SN ¢ 2yo.m 0z @)

dp, PPy dw,

— =—qsingpB,v, +E,) + 3
dt qsin ¢B,vy + ) 2yo.m 0z )
d¢ g cos ¢
T —k(Vyes — V) = BV +Ey) (4)

L

The quantities p, and p; are the components of the electron’s momentum perpendicular and parallel to
the background geomagnetic field. The gyrophase angle, ¢, is the angle between p, and —EW (antiparal-
lel to wave magnetic field). The terms w,, v,.,, and y represent the gyrofrequency, resonance velocity and
the relativistic Lorentz factor respectively. Nonlinear scattering by coherent waves has been investigated
by numerous authors using (1)-(4) either in their current form or by using their nonrelativistic approxima-
tions [Dysthe, 1971; Roux and Pellat, 1978; Inan et al., 1978; Matsumoto and Omura, 1981; Bell, 1984]. These
equations describe the interaction between relativistic electrons and whistler mode waves immersed in

a background inhomogeneous magnetic field. The inhomogeneity of the background field is taken into
account as a gradient term in (2) and (3). The problem geometry is shown in Figure 1.

In general, when the doppler-shifted wave frequency experienced by the particle equals a multiple of the
gyrofrequency (2 = w + kv), the particle can resonate with the wave and subsequently undergo a
large degree of scattering. Equivalently, if an electron travels at the correct velocity, i.e., the resonance
velocity, it will experience an approximately constant value of the wave field. Under the approximation
of parallel-propagating whistler mode waves, the n = 1 condition is most important, and the resonance
velocity is defined by (5).

V.=~ ©)

The quantities w and k represent the wave frequency and wave number and are related by the usual cold
plasma dispersion relation.

In the absence of a wave field, the mirror force (geomagnetic field) dictates the motion of particles, and the
trajectories are adiabatic. For a given equatorial value of (v, @), the adiabatic particle trajectory can intersect
the gyroresonance curve v,.(2) at only two points on the field line for a dipole background magnetic field
and diffusive equilibrium cold plasma density model [Inan et al., 1978].
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Figure 2. Instantaneous single particle trajectories in (0, {) coordinates for

an inhomogeneous background field and monochromatic wave (¢ = —¢).
k(vres_V”) .

Here § = —=—=" and represents a normalized change from the reso-

nance veIocciljct)r/. 1ghe formation of a separatrix and phase space trap is clearly
visible within the region delineated by the red curves. The phase space
trap is a function of position along the field line. At the equator, the phase
space trajectories correspond to the homogenous case; however, away
from the equator, the trap decrease in size and the stable phase (center

of trap) drifts as well. Far enough from the equator, no trap exists at all
and the nonlinear wave effects become negligible. The trajectories shown
correspond to —1<S5<1.

(introducing ¢ = —¢) can be simplified to (6) and (7),

d
d—g; = Kk(Vyes — Vi)
d*¢

F—wfr(sinc+5)=0

An important consequence of
equations (1)—(4) is phase trapping
and the formation of a separatrix in
phase space. This concept has been
studied by several authors and con-
tinues to be a topic of active research
[Dysthe, 1971; Nunn, 1974; Inan et al.,
1978; Matsumoto and Omura, 1981;
Park, 1981; Albert, 2002; Gibby et al.,
2008; Omura et al., 2008; Tao et al.,
2012]. To describe the dynamics of
resonant electrons, we follow the
procedure of Omura et al. [2008]. For
simplicity, particles of nonrelativistic
energies are considered; however, the
same framework applies for the rel-
ativistic regime. If only particles that
are close to resonance are examined
and the small contribution of cen-
tripetal acceleration due to the wave
is neglected, equations (2) and (4)

7

Where w,, is the trapping frequency and is given by 4/ %Bwkvl. S is the “collective inhomogeneity factor”

[Omura et al., 1991] and is given by (8),

2
wtr 26()C 2

S:l kVi+%
0z

ow,

(8)

The expression for S given in (8) assumes no frequency sweep rate (monochromatic) and assumes a constant
plasma frequency. Note that the S parameter in this work is opposite in sign to the one used in Omura et al.
[1991, 2008], since our waves propagate in the —z direction and not +z as in the those works. For the simpli-
fying case of S = 0 (homogenous case), equation (7) is identical to the well-known pendulum equation. That
is, the motion of the electron’s v, about the wave magnetic field, EW, is analogous to the motion of a classical
pendulum in a constant gravitational field. To illustrate the formation of the separatrix, particle trajectories
must be examined in the (v, ¢) coordinates. Figure 2 demonstrates the formation of a separatrix (shown
by the closed red curves). The separatrix divides the trajectories into two regions: trapped and untrapped.
Trapped particle trajectories (interior) form closed curves while the untrapped particle trajectories swing
around the separatrix. The formation of this trap is a crucial aspect of coherent wave-particle interactions;
the motion of particles in, out, and around the trap describes the nonlinear interaction.

So far, only the simplifying case of S = 0 has been examined in equation (7). The inclusion of the inho-
mogeneity term makes the problem more complex. The concept of phase trapping carries over to the
inhomogeneous problem; however, the shape of the trap changes as a function of position along the field
line. Figure 2 shows the instantaneous phase space trajectories for a monochromatic signal in an inhomo-
geneous background field. At the equator, the trajectories are identical to the homogenous case; however,
away from the equator, the trap shrinks and the stable phase location changes (center of trap). Far enough
from the equator, the trap disappears altogether. Formally, the separatrix can only exist when —1 <S< 1.
If the background plasma were homogenous (S = 0), then the initially trapped particles will stay trapped
and untrapped particles will stay untrapped. However, for a spatially dependent S, this is not necessarily
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B, =80pT the case. Particles can either swing
0.076 F around the trap or be trapped for
0.074 F many trapping periods before being
L o072} detrapped. The exact dynamics are
g 0.07 | ] strongly dependent on the particles’ ini-
0.068 ‘ ‘ ‘ g tial phase angle, energy, and pitch angle
_2000 0 2000 4000 [Inan et al., 1978]. This analysis can sim-
z [km] plify numerical modeling since the bulk

of the nonlinear interaction occurs only

0.08 . .
in a narrow spatial extent around the
© 0075} equator (where —1 < 5(z) <1); however,
> 0 the size of the interaction region grows
0.07 f 1 with the wave amplitude. Note that
2000 o 2000 2000 trapped and untrapped particles refer
2 [km] to phase-trapped and phase-untrapped

particles, respectively, and shall be
referred to as such in the remainder of
this report.

Figure 3 (middle) shows the trajectories

of 12 particles (uniformly distributed in

2000 0 2000 2000 gyrophase) that have the same v; and

z [km] aeq at the exit of the interaction region

) ) ) ) ) o ) (right-hand side). Figure 3 (middle) iden-
Figure 3. Particle trajectories for 12 particles uniformly distributed in .
gyrophase. Trapped particles are shown in black while untrapped parti- tifies the untrapped electrons (green)
cles are shown in green. The red dashed curve corresponds to the local ~ and the phase-trapped electrons (black).
resonance velocity while the solid red curves represent bounds of +1vy,  As shown, the instantaneous trajecto-
(size of the trap). (top) A case where the particles v equals the reso-
nance velocity near the equator and are all trapped. (middle) A smaller . . .
percentage of trapped particles since the resonance velocity is encoun- deviate from the adiabatic paths and
tered farther up the field line. (bottom) Only untrapped particles with are forced to follow the local resonance

no particles being phase trapped; this is because the particles come velocity curve for multiple trapping peri-
into resonance much farther up the field line (where |S|>1).

ries of trapped particles significantly

ods. Although there is a large change in
v on one side of the equator, there is an
opposite change on the other side leading to smaller net effect. The change in energy and pitch angle for
trapped particles has been demonstrated by several authors, and the focus has often been on the interac-
tion in only one hemisphere leading to a less symmetric change [Tao et al., 2013; Bortnik et al., 2008; Furuya
et al., 2008; Inan et al., 1978]. Interaction in only one hemisphere is reasonable for waves generated at the
equator and propagating away. In the case of a ground-based wave injection experiment (such as Siple Sta-
tion), the electrons will interact with the wave on both sides of the field line and result in more symmetric
phase-trapped trajectories as shown in Figure 3 (at least once the wave fills the simulation space). The cor-
responding change in pitch angle can be seen in Figure (4). As shown, the pitch angle of a trapped electron
will increase (decrease) when the parallel velocity decreases (increases). The reason for this is that the effect
of the wave electric field is rather small and phase trapping is due to the wave magnetic field [Inan 1978].
Since magnetic fields can only alter a particle’s momentum, this implies that the wave scatters particles with
a larger change to the momentum in comparison to the energy. The result is a change in pitch angle oppo-
site in sign to the change in parallel velocity. In section 4, the net pitch angle change is compared in detail
for trapped and untrapped particles.

In order to correctly model precipitation for a distribution of particles, a full analytical treatment is

not possible and numerical simulations are required. However, the theoretical foundations described

in this section provide the general framework for setting up numerical simulations. The next section
describes the numerical model used in this study to simulate precipitation of a particle distribution due to
coherent waves.
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3. Model Description

All simulations are performed using

a centered dipole geomagnetic field
model, at L = 4. We use the cold den-
sity model from Carpenter and Anderson
[1992] to determine the cold plasma
parameters under quiet geomagnetic
conditions. At L = 4, the equatorial
gyrofrequency is f, = 13.6 kHz; the sim-
ulations use an input wave frequency of
fo = f./3 = 4.5 kHz and a cold plasma
density of N4 =400 el /cm3.

o [deg]

o [deg]

In addition, we assume field-aligned
. propagation (ducted waves) in the
-2000 0 2000 4000 whistler mode. Two families of particle

z [km] distributions are considered for the ener-
getic electrons. The first is a loss cone
bi-Maxwellian distribution which is given
by (9)

o, [deg]

2
2 2
_A L Pi

22 32 ~ 22
f(p”,pl) =Cpe Pl | e e — e Piu

0 L
-4000 -2000 0
z [km] The term f is a configurable parame-

ter (0< < 1) such that larger values of
B give a more depleted loss cone while
B =0is a pure bi-Maxwellian. Addition-

Ny N
—h N, isthe hot
40Py, (V2"

plasma density and py, and py,, repre-
sent the average momenta (of the hot
plasma) parallel and perpendicular to the geomagnetic field. All simulations use vy,; = 0.4cand vy, = 0.17¢
unless specifically stated otherwise (where c is the speed of light in free space). The second distribution is a
sin-alpha distribution and is given by

Figure 4. (top-bottom) The instantaneous pitch angle trajectories for
the same particles as Figure 3. Trapped particles are shown in black
while untrapped particles are shown in green. Note that the peak pitch
angle change is very large for trapped particles; however, the net pitch ~ ally, C, =
angle change is still similar to that of untrapped particles.

(sin a)’s
m

f(a.p) = C, (10)

where C; is a normalization constant. The quantities y; and m are configurable parameters that define the
distribution. Both distributions assume f(a < a;¢) = 0 to ensure an initially empty loss cone. This also
ensures zero precipitated flux for zero wave field.

The wave fields are taken into account by illuminating the entrance of the interaction region with an input
signal and using this as a boundary condition for the wave equations. Since all the waves in this study
exist over a small range of frequencies, the narrowband approximation of Maxwell’s equations is used to
minimize computational effort. The narrowband wave equation is shown in (11).

B, 0B,
B o 1
ot 970z (an

Here v, is the group velocity for a parallel-propagating wave in the whistler mode. Equation (11) describes
the advection of a wave packet in —z direction with velocity v (z). Modified versions of this equation have
also been derived by several authors to model coherent wave-particle interactions (generally including a
source term) [Nunn, 1974; Omura and Nunn, 2011; Gibby, 2008; Gibby et al., 2008]. Note that equation (11)
is used only to save on computational effort; it can be replaced by Maxwell’s equations for general (not
narrowband) wave fields.
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A fourth-order Runge-Kutta (RK4) time-stepping scheme is used to evolve the single particle equations of
motion. The wave equation is time stepped using a semi-Lagrangian scheme with cubic spline interpolation.

3.1. Vlasov-Liouville (VL) Model

The Vlasov-Liouville numerical model essentially solves the Vlasov equation for given a wave field at a partic-
ular location along the field line. The Vlasov equation governs the evolution of collisionless plasma in phase
space (7, p). The Vlasov equation is shown in (12); the terms in parenthesis correspond to equations (1)-(4).

af+<dz>af+<dp||) of +<dpl> of +<d<;b> —o 12)
dt dt / ap, dt / op, dp

Since we are only interested in whether particles at the exit of the interaction region fall into the loss cone, it
is unnecessary to commit computational resources to solve for the distribution function everywhere along
the field line. However, since the Vlasov equation is an advective-type partial differential equation (PDE),
information propagates around phase space in a complicated manner. That is, the distribution function at

the exit of the interaction region depends on the distribution at many other locations in phase space at
previous times.

An accurate method of computing the distribution is by using the method of characteristics, which in the
context of the Vlasov equation is equivalent to Liouville’s theorem. This is done by considering characteristic
curves, which are curves along which the distribution function is advected. This turns the PDE into a set of
ODEs. More specifically, consider a general advection equation shown in (13)

I e o (13)
ar
This type of equation describes advection of the quantity f(t,7) at “speed” ¢ at “position” ¥. To find the
characteristics, we find the trajectories, 7(t) for which the total derivative vanishes, shown in (14)

df(t.7(®) _ af o drof _

14
dt dt g (14)

The original advection equation (13) can only be satisfied if (15) is satisfied

dr

PP =c (15)

Another interpretation is that in the frame of reference moving at speed ¢, the quantity f does not change.
Thus, by solving for the trajectories using (15), we find the curves along which f is advected. In the case of
the Vlasov equation, the characteristic curves are found by solving (1)-(4). This means the value of the dis-
tribution function at any particular point can be determined by tracing the characteristic curves back until
time zero. As long as characteristics do not intersect (which is the case for the Vlasov equation), this method
works very well. In this method, a grid is generated over (¢, v, @) in the loss cone at the exit of the interac-
tion region. The characteristics are traced backward (formally dt — —dt for the equations of motion and
narrowband wave equations) until time zero or until they reach the “entrance” of the interaction region.
Similar procedures have been used by previous authors in modeling particle dynamics [Nunn and Omura,
2011; Speiser, 1965]. It is assumed that the numerical interaction region is large enough that outside this
region the distribution function is essentially unperturbed (one pass precipitation). This allows the simula-
tion to stop before reaching time zero, hence saving on computational time. Therefore, for a sampled set
of times, the loss cone distribution function can be obtained. To evaluate precipitation, an integral is com-
puted over the loss cone to obtain a precipitated flux. Since the VL model directly computes the phase space
distribution function, characterizing precipitation requires computing the appropriate integral. To quantify
precipitation, two different measures are utilized: the precipitated flux f, in el/m? s and the precipitated
energy flux £, in J/m? s. Equations (16)-(17) explicitly show the integrals in the (a, ¢, py) coordinate system.

2n
F, —// / vifa.b.pyp S'”(( ))3d¢dadp“ (16)
2n
E, —// / vy(myc® — me*f(a, p, p”)p2 sm(( ))3d¢dadp|| (17)

HARID ET AL.

©2014. American Geophysical Union. All Rights Reserved. 7



@AG U Journal of Geophysical Research: Space Physics 10.1002/2014JA019809

45 Figure 5 shows sample trajectories
that demonstrate how the loss cone is
40 b j being filled at the exit of the interaction

region. The actual particle trajectories
flow from left to right. However, in the
Vlasov-Liouville method, the scattering
is performed backward in time, and the

35

30 1 . . .
trajectories are computed from right to
left. As can be seen in Figure 5, particles

g, 25 i that end up in the loss cone (on the right)

k=l start with various initial pitch angles and

S 20 ] can be scattered in complicated ways.
The local loss cone is shown in red and is

15 . calculated by providing an initial equa-
torial loss cone pitch angle value and

10 , constructing the rest of the curve accord-

ing to adiabatic motion. All trajectories
that start from inside the loss cone (on
the left) and end up in the loss cone (on
— ‘ the right) do not contribute to precipi-
—%000 —4000  -2000 0 2000 4000 6000 tation (at least for an initially empty loss
z [km] cone). Only particles that start outside
the loss cone (on the left) and end up

i

Figure 5. Thirty randomly selected pitch angle trajectories from the

Vlasov-Liouville model (B,, = 80 pT). The particles’ initial conditions inside the loss cone (on the right) will
sample the loss cone at the “exit” of the interaction region (right); the ~ contribute to precipitation (for an initially
trajectories are then tracked backward in time until they reach the empty loss cone).

entrance of the interaction region (left). Only trajectories that are above
the local loss cone angle at the left side of the interaction region con-  The VL model requires a grid in phase

tribute to a nonzero precipitated density (for an initially empty loss space, and the range of initial v and o
cone). Trapped particles are shown in black, and untrapped particles must be chosen correctly. The simula-
are shown in green. The local loss cone is represented by the solid . . . . .
red curve tions use an interaction region that is

approximately +6000 km around the
geomagnetic equator. The phase space grid has N‘,H x N, x N, =200 x 50 x 32 = 320,000 grid points. Since
only the precipitated distribution function is of interest, the phase space grid consists of 0 <a < a,c.

3.2. Comparison to Monte Carlo Simulation

The VL model was chosen to analyze precipitation because the loss cone is very well defined. This way,
the phase space grid is created precisely over the loss cone at the exit of the interaction region and
the trajectories are traced backward in time until reaching the entrance (or time zero). In this manner,
only the trajectories that fall into the loss cone are kept track of, a feature which saves tremendously on
computational effort.

In contrast, a more brute force approach would use a Monte Carlo-type simulation. A Monte Carlo model
first starts by treating the particle distribution as a probability distribution and sampling it with a number
of test particles. Then, the particles are essentially “let go” and are forced to follow the equations of motion.
A genuine concern with this model is whether the distribution has been sampled with enough particles to
capture the nonlinear effects. This is similar to the concern faced by PIC (particle-in-cell) simulations. Only
a fraction of particles fall into the loss cone per time step which means a very large number of particles are
necessary to extract the precipitated particle distribution (much higher than the VL model). In PIC simu-
lations of wave-particle interactions, it is not uncommon to use 108 superparticles [Hikishima et al., 2010].
Thus, when considering precipitation, the VL model saves on computation by only tracking the relevant
trajectories. The VL model has the added advantage of being easily parallelizable. Each particle can be scat-
tered independently, and the time sample when precipitation is measured can be computed in parallel.
The VL method is limited by how well the grid is sampled in phase space. However, convergence can easily
be determined by simply increasing the number of grid points and verifying that the results are no longer
changing (within some tolerance).
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Figure 6. Percent of particles trapped (in gyrophase) as a function of final (v, aeq) coordinates for three different wave
amplitudes (60 pT,140 pT, and 200 pT). As shown, the percentage of particles trapped increases with wave amplitude. As
shown, the percentage of particles trapped is high for v close t0 v,¢5(Zeq) and falls off at higher value of v|; the larger
amplitudes allow trapping over a larger portion of phase space. This is precisely because S(z) is small close to the equa-
tor and the size of the trap is large; therefore, particles that come into resonance close to the equator have a higher
probability of being trapped.

4, Simulation Results

In the following subsections, we address two primary aspects of precipitation induced by coherent waves:
(1) The effect of phase trapping on precipitation. (2) Comparison of simulated precipitated flux to linear
scattering theory for different initial particle distributions (over 0 < B,, < 200 pT). The last subsection will
demonstrate the ability of the VL model to compute the precipitated particle flux as a function of time for
short-duration input pulses.

4.1. Effect of Phase Trapping

As discussed in section 2, resonant particles with certain gyrophase angles can be phase trapped by the
wave for multiple trapping periods. The VL model is used to quantify the probability of trapping and the net
scattering of phase-trapped particles. A grid is created in phase space (v, a, ¢) at the exit of the interaction
region, and the characteristics are then traced backward in time. The trajectories of the resonant particles
are then categorized as either phase trapped or untrapped. As a search criterion, a trajectory is consid-
ered trapped based on the number of crossings of v through resonance. That is, untrapped electrons will
intersect the resonance curve exactly twice while trapped particles will cross resonance more than twice.
Particles with v close to v,(z,,) will come into resonance close to the equator; since S(z) is smallest near
the equator, the likelihood of being phase trapped is high for these particles. Particles with v > v, (Zeq) will
come into resonance away from the equator, and the likelihood of trapping decreases (since S(z) is larger).
Figure 3 illustrates this concept. Figure 3 (top) shows 12 particles at a lower v such that they come into
resonance close to the equator (1800 km). As shown, all the particles are phase trapped. Figure 3 (middle)
shows particles that come into resonance farther down the field line (+2500 km); as shown, about half the
particles are phase trapped and half untrapped. Figure 3 (bottom) shows particles that come into resonance
even farther down from the equator (+3200 km); in this case, none of the particles are phase trapped and
all are untrapped. This clearly illustrates the dependence of the likelihood of trapping on final (v, @). From
Figure 3, it is expected to see a high percentage of trapped particles for velocities close to v,.(z,,) and a
decrease at higher values of v;. Figure 4 shows instantaneous pitch angle trajectories of the same particles
as Figure 3.
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Using the trapping criterion described,
the percent of particles that become
trapped (in gyrophase) can be com-
puted as a function of (v, a). Figure 6
shows the percent of particles trapped
as a function of (v, ay,) for three differ-
ent wave amplitudes (60 pT, 140 pT, and
200 pT). As shown, the percentage of
trapped particles is higher for v, close
10 Vye5(Zeq) and falls off at larger parallel
velocities for all three wave amplitudes.
For the 60 pT case, very few particles
are trapped in a small range of parallel
velocities around v, (Zeq)- For the 140 pT
case, a larger percentage of the particle
population is trapped with 100% being
trapped around v,.(Z.4). For 200 pT,

an even larger number of particles are
trapped with a 100% likelihood of trap-
ping over a significant portion of phase

_ 1 space. Figure 6 demonstrates how very
_ \ large amplitude waves can trap a larger

0 = . : number of phase space trajectories; how-
-15 -10 -5 0 5  ever, the more practical question is how

A 0t [deg] much of the total precipitation is due

Figure 7. The probability distributions over Aaq for three wave ampli- to trapped particles an.d how. much is
tudes. At 60 pT, precipitation is completely dominated by untrapped due to untrapped particles. Since the tra-
particles. At 140 pT and 200 pT, there is a visible contribution due to the  jectories of precipitated particles have

trapped population. As shown, the effect of phase trapping becomes been computed over a large number of
increasingly important as the wave amplitude is increased and can no initial (or rather final) conditions, a prob-

longer be considered negligible for evaluating precipitation. - o . .
9 99 9 precip ability distribution over equatorial pitch

angle change, p(Aa,,), can also be com-
puted (using kernel density estimation). That is, if the variables (v, ¢) are not considered and only the pitch
angle change is measured, the quantity Ae,, can be treated as a random variable. Here the quantity A,
is computed by subtracting the equatorial pitch angle at the entrance from the equatorial pitch angle at
the exit.

Probability
o

—

The quantity p(Aa,,) can be compared to the distributions for trapped and untrapped particles (p(Aagq N
trapped) and p(Aa.q N untrapped)) to see which particle population dominates. Since the untrapped and
trapped particle populations are mutually exclusive, p(Aa,q) = p(Aa.qN trapped) + p(Aa.,N untrapped).

Figure 7 shows a comparison of the different probabilities for three different wave amplitudes (60 pT, 140 pT,
and 200 pT). As shown, for the 60 pT case, p(Aag,N untrapped) and p(Aa,,) are almost identical indicating
that the net scattering is effectively due to the untrapped population. At 140 pT, p(Ae,,N trapped) becomes
more important, and at 200 pT, there is a comparable contribution from both the trapped and untrapped
population; scattering due to trapping is no longer negligible at such large amplitudes. The results suggest
that for large wave amplitudes (greater than 100 pT), phase trapping is an important effect when consider-
ing precipitation. Note that all particles in the probability distributions are in the loss cone at the exit of the
interaction region. The positive values of Aa,, then correspond to trajectories that were already in the loss
cone and simply got pushed to a higher pitch angle that is still in the loss cone. These trajectories will not
contribute to the precipitated flux for an initial distribution with an empty loss cone.

4.2. Comparison to Linear Theory

For a constant amplitude wave filling the simulation space (CW wave), the precipitated energy flux can
be computed. The VL model only requires the computation of one pass through the interaction region
for a constant wave field. That is, the particles begin at the exit of the interaction region and are scattered
backward in time until they reach the entrance. Due to the spatial symmetry of a constant wave field, the
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x 10° scattering only needs to be computed once; every
6 ass through the interaction region (with initial con-
— VL model Pass 1049 egion (With Ir
_ _ Linear Theor ditions over a phase space grid) will result in the
4 y same particle trajectories. The distribution function is
assumed to be unperturbed at the entrance, and Liou-
B=0 = ville’s theorem is used to determine the precipitated
2
- = distribution at the exit. The fixed entrance bound-
ary condition is a simplifying assumption used in this
% 00 200 model but can be improved upon in future work.
B,, [PT]
w

Flux [el/sec/m?]

By computing the precipitated flux as a function
x 107 of amplitude, the results of the model can be com-
¢ pared to linear scattering theory. Linear theory is a
perturbative model of the wave-particle interaction
phenomenon and is derived under the assumption
7 of “small” wave amplitude. The derivation of expres-
sions for the precipitated flux due to linear theory is
% presented in the appendix. Since the precipitated flux
depends on the particle distribution, we compute the
b o 00 precipitated flux as a function of wave amplitude for
B, [PT] different initial distributions (described in section 4).
Figure 8 shows the precipitated flux for three dif-
15X 108 ferent bi-Maxwellian parameters ( =0, g = .45,
and g = .95). Additionally, the precipitated flux due
’ to linear scattering theory is shown for compari-
> son in each panel. As shown, linear theory is valid
B =0.95 s for low amplitudes and then deviates from the VL
\ model at large amplitudes as expected. An interest-
ing aspect is that how well linear theory matches
the nonlinear model depends on the initial parti-
0 100 200 cle distribution function (value of g). That is, the
Bu IPT] error due to the linear theory approximation can be
Figure 8. The dependence of precipitated flux “damped out” depending on the shape of the initial
on wave amplitude for three different val- distirbution function. The same comparison can be
ues of § (bi-Maxwellian loss cone parameter). done for the sin-alpha distribution; this is shown in

The comparison to linear scattering theory is shown as . . .
P 9 y Figure 9. In this particular case, we use m = 2 and vary

dashed red curves. As shown, the fluxes due to linear o )
theory and the VL model are similar for small amplitudes; 7s (rs=1,7,=3,7,=10). As shown in Figure 9, linear

however, as the wave amplitude is increased, the fluxes ~ theory matches the VL model for low amplitudes
due linear theory deviate from the full nonlinear model.  just as with the bi-Maxwellian distribution. Addition-
As shown, the amplitude at which this deviation occurs 51y the range of validity of linear theory once again
depends on the initial particle distribution function e .
(parameterized by f). depends on the initial distribution function (value

of y,). A general behavior across all the initial distribu-
tions is that starting at low amplitudes, the precipitated flux increases with amplitude until a local maximum
is reached around 130-140 pT. The flux subsequently decreases for larger amplitudes. Since phase trapping
becomes more important at these large amplitudes (as described in the previous section), the decrease in
precipitated flux is likely due to the nonlinear contribution of phase-trapped particles. The strength of the
VL model is that only the characteristics are tracked; therefore, the initial particle distribution can be arbi-
trarily specified after the simulation is run. That is, the VL model creates a database of mappings from the
exit phase space grid to the initial phase space coordinates. The precipitated flux due to different particle
distributions is computed a posteriori. As the results show, the precipitated flux depends strongly on the ini-
tial particle distribution. Thus, easily determining the effects of arbitrary particle distributions is an essential
aspect of a numerical model of precipitation (specifically for coherent waves).
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4.3. Time Evolution of Precipitated Flux
Another aspect of coherent wave-particle interactions that is not often considered is the precipitated flux
induced by short pulses. As mentioned previously, Inan et al. [1982] and Chang et al. [1983] used
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Figure 9. The dependence of precipitated flux on
wave amplitude for three different values of y,
(sin-alpha distribution parameter). The parameter

m for the sin-alpha distribution is set to m = 2.

The comparison to linear scattering theory is shown as
dashed red curves. As with the bi-Maxwellian distribu-
tions, the fluxes due to linear theory and the VL model
are similar for small amplitudes. Once again, the accu-
racy of linear theory in calculating the precipitated flux
depends on the shape of the initial particle distribution
(parameterized by y;).

a semi-Vlasov model to compute the precipitated
fluxes for short pulses. However, their method saved
on computational effort by assuming a perturbed
distribution function that is uniformly distributed

in gyrophase. The VL model used in the present
study solves the Vlasov equation and retains the
gyrophase dependence.

In the previous sections, only the case of a constant
wave amplitude filling the space (CW signal) was
discussed. The VL model can also be used to calcu-
late the precipitated flux as a function of time due
to short pulses. Specifically, one side of the inter-
action region is illuminated with the input signal
(boundary condition), and the wave then propagates
through the interaction region. For each time step,
the VL model can be used to trace the system back
to time zero and subsequently evaluate the precip-
itated flux. As mentioned in section 3, the entrance
of the interaction region is specified with a fixed
boundary condition for the phase space particle dis-
tribution. This basically assumes that fresh particles
continuously stream into the interaction region. This
assumption is valid over time scales for which the
initial distribution function is not perturbed signif-
icantly. Future iterations of the model can include

a time-varying boundary condition to capture the
long-term evolution of the particle distribution
function; however, that is beyond the scope of the
present study. The VL model can accurately be used to
model precipitation due to short pulses since the
aforementioned assumptions will be valid.

To demonstrate the ability of the VL model to com-
pute the time-dependent precipitated flux, we
consider 0.5 s input wave pulses. Additionally, differ-
ent frequency-time sweep rates (fallers and risers)
are considered to resemble signal formats used dur-
ing the Siple Station wave injection experiment.
Rising and falling tones can also closely resemble
free-running triggered emissions and discrete chorus
elements. The precipitated flux due to short pulses
can be complicated since the finite sized wave packet
fills only part of the interaction region. Therefore, only
a limited range of resonant velocities are available to

interact with the wave at any given time. Figure 10 shows the spatial profile of the wave at three different
times as well as the range of resonance velocities available for interaction (shown in red). As shown, at t =
0.399 s, the wave has partially filled the interaction region; however, since the resonance velocity curve is
much steeper away from the equator, a significant range of resonance velocities can interact with the wave.
Att = 0.799 s, the entire wave packet is within the interaction region and is located near the equator. Close
to the equator, the resonance velocity curve is flatter since the inhomogeneity of the background geomag-
netic field is small. Consequently, a much smaller range of resonance velocities are available for interaction
near the equator. At t = 1.0667 s, the wave starts to leave the simulation space and once again has a larger

range of resonance velocities available for interaction.

This pattern of a large range of available resonance velocities followed by a small range and then large again
is reflected in Figure 11. Figure 11 (bottom) shows the normalized input wave signal as a function of
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Figure 10. Range of resonance velocities interacting with the wave
for N, = 400 el/cm3 as well as the spatial profile of the wave packet
at three different times. Away from the equator, the wave packet
can interact with a large range of resonance velocities while only

a small range of resonance velocities are available for interaction
near the equator. As shown, this effect is due to the shape of the
resonance curve.
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Figure 11. Precipitated energy flux as a function of time due to

a 0.5 s pulse for Noq = 400 el/cm? (over a range of wave ampli-
tudes). Although the input wave pulse lasts 0.5 s, the response of
the precipitated energy flux lasts approximately 1.8 s. This extended
response time is due to the spread of velocities that can interact
with the wave as well as the size of the wave packet within the
interaction region (which depends on the input pulse length and
group velocity).

time (0.5 s pulse). Figure 11 (top) shows

the precipitated energy flux as a function
of time due to the pulse for five different
wave amplitudes. As shown, there are two
peaks in the precipitate energy flux pro-

file (the first at around 0.5 s and the second
at approximately 1.4 s). This is due to the
different ranges of resonance velocities
available for interaction at different times, as
discussed earlier. Additionally, the precipi-
tated flux responds for approximately 1.8 s
even though the wave pulse was only 0.5 s
long. After the particle interacts with the
wave, there is a finite time delay before the
particle reaches the exit of the simulation
space (where precipitation is measured).
For instance, a particle in resonance velocity
curve at high values of v, inherently has a
higher v than a particle that intersects the
resonance velocity curve close to the equa-
tor. As shown in Figure 10, the maximum
and minimum resonance velocities in the
simulation space differ by a factor of 2. Thus,
the two different particles will the reach the
exit of the interaction region at different
times. This adds to the extended response
time of the precipitated flux and illustrates
the added complexity of the problem.

Figures 10 and 11 have only considered

a high cold plasma density (400 el /cm3).
At high cold plasma densities, the wave
group velocity is small which makes the
length of the wave packet much smaller;
thus, the wave never completely fills the
simulation space. At lower cold plasma den-
sities, the group velocity is higher, and the
wave packet will simultaneously fill a larger
physical region for the same 0.5 s dura-
tion input pulse. This is demonstrated in
Figure 12. In this lower cold plasma den-
sity case (50 el/cm?3), the group velocity

is higher and the wave packet can fill the
entire simulation space (t = 0.4 s). Unlike
the high density case, the largest range of
resonance velocities are available for inter-
action once the wave has filled the entire
simulation space.

In the low-density case, two peaks in the
precipitated energy flux are not expected
to happe,n and only one maximum should
occur when the wave fills the space. This is
evident in Figure 13. Figure 13 (top) shows
the precipitated energy flux as a function of
time due to the 0.5 s input pulse for five
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Figure 12. Range of resonance velocities interacting with the
wave for N, = 50 el/cm? as well as the spatial profile of the

wave packet at three different times. At this cold plasma density,

the group velocity is large enough that the wave packet can

fill the entire simulation space (t = 0.4 s) unlike the case of the

higher plasma density.
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Figure 13. Precipitated energy flux as a function of time due to
a 0.5 s pulse for Neq =50 el/cm3 (over a range of wave ampli-
tudes). Although the input wave pulse lasts 0.5 s, the response
of the precipitated energy flux lasts approximately 1.05 s. This
extended response time is due to the spread of velocities that
can interact with the wave as well as the size of the wave packet
within the interaction region (which depends on the input pulse

length and group velocity).

different wave amplitudes (N, = 50 el/cm?).
As expected, there is only one maximum in the
precipitated energy flux profile which occurs
ataround t = 0.55 s. Additionally, the flux
response lasts for approximately 1.05 s. This

is less than the high-density case for multiple
reasons. Since the wave frequency was kept
the same as the high-density case, the reso-
nance velocities are much higher for the low
cold plasma density case as shown in Figure 12.
Thus, the particles cross the interaction region
much faster than in the high-density case
which decreases the time delay. The higher
group velocity means that the wave will cross
the interaction region much faster which

also decreases the response time of the
precipitated flux.

These results demonstrate the complex nature
of the problem when considering precipita-
tion induced by short pulses. As shown, the VL
model is well suited to simulate the physics of
wave-particle interactions and can be extended
to input pulses with a time-varying frequency
(specifically rising and falling tones). That is, we
consider signals with format f(t)=f, +a,t where
f, is the initial wave frequency and g, is the
frequency sweep rate in Hz/s (angular accel-
eration). All simulations use f, = 4.5 kHz while
a, varies from —2 to 2 kHz/s. Figure 14a shows
the precipitated energy flux for falling tones
(=2 kHz/s). Figure 14b shows monochromatic
pulses while Figure 14c shows the energy flux
for rising tones (+2 kHz/s). All three cases use
N.=400 el/cm3. As shown, the qualitative tem-
poral profiles are similar for all three cases. The
value of the precipitated energy flux is highest
for the falling frequency case since the falling
tone is composed of the lowest frequencies
and consequently interacts with higher reso-
nant energies. The purpose of Figure 14 is to
demonstrate the ability of the VL model to sim-
ulate precipitation induced by coherent waves
of changing frequency. Note that an additional
equation (apart from equation (11)) is required
to propagate the changing frequency signal.
For the present study, we used the following
approximate wave equation:

da)_ ow

L _vZ=o 18
ot 90z (18
Equation (18) has only been used for com-

putational simplicity and can be replaced by
Maxwell’s equations if necessary.
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<10° N,,= 400 ellemt 5. Summary and Discussion
E 2 ' ' —1pT In this report we have addressed multiple
= —20.75pT questions regarding precipitation by coherent
u‘é_ 11 :23:25,);1’ signals using a novel Vlasov-Liouville numeri-
~ ——80pT cal model. We considered the effect of phase
E a) Fallers: -2 kHz/sec trapping on precipitation. Using the VL model,
w 00 ] 2 3 4 we computed the probability distribution over
t [sec] pitch angle change for precipitated particles.
The results show that phase trapping becomes
x 10" an important effect as the wave ampli-
c\E 6 ' ' ' tude is increased to large values (>100 pT).
s The precipitated flux predicted by linear
g 4 scattering theory was compared to the
E 5 b) 0 kHz/sec | VL model as a function of wave amplitude
g (for various hot plasma distributions). Linear
A 0 ) ) scattering theory was shown to be valid
0 1 2 3 4 for small wave amplitudes (<40-60 pT);
t[sec] however, the point of deviation of linear
7 theory from the nonlinear model (when com-
& 6X 10 . . . puting the precipitated flux) depends strongly
§ on the initial hot plasma distribution function.
g 4 Finally, the ability of the VL model to sim-
"'_; of C) Risers: +2 kHz/sec | ulate precipitation induced by 0.5 s pulses
g with changing frequency was demonstrated.
] 0 1 5 . ) The complicated temporal response of the
t[sec] precipitated flux suggests that maximizing
precipitation may require a nontrivial input
Figure 14. Precipitated energy flux as a function of time due wave format. Formally, finding the ideal input
to a 0.5 s pulses with different frequency sweep rates (Neq = wave format would require a solution to a

3 .
409 eI/cm ) The temporal proﬁle?s of all three cases are.quall PDE-constrained optimization problem. That
tatively similar. As shown, the falling tone induces the highest . L X
precipitated energy flux since the lower frequency components is, the probller.n would be to .maXImlze the inte-
interact with higher resonant energies. grated precipitated flux subject to the Vlasov

equation, wave equations, and any other prac-

tical constraints (such as amplitude limit and
sweep rate limit). The optimum wave format can be selected by using the appropriate optimization meth-
ods. For known cold plasma parameters and a known background field, the general optimization problem is
difficult but is likely solvable with modern computational tools. The theoretical and numerical analysis pre-
sented in this report can be used as a stepping stone toward optimizing controlled particle precipitation
and analyzing nonlinear wave-particle interactions.

Appendix A: Linear Scattering Theory

Linear scattering theory involves expanding the equations of motion around the adiabatic particle
trajectories. In particular, the equations of motion can be written as

— =F,+F, (A1)

Where the quantities p, .7-'0, and T-'W represent the particle state, the “force” due to adiabatic motion, and the
force due to the wave respectively. In particular, they are given by

Py
Py
s |

z
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HARID ET AL. ©2014. American Geophysical Union. All Rights Reserved. 15



@AG U Journal of Geophysical Research: Space Physics 10.1002/2014JA019809

gB,v, sin¢
2 sin ¢(B,,v, + E,)
=
0
0

Pl oo

2yo.m 0z
N PLP| dwc

Fa = 2yo.m 0z N
k(Vyes — v”)
Yi

Additionally, the state vector can be written as p = p, + Ap, where p, is the adiabatic motion of the particle
state (when no wave is present) and Ap is the wave-induced perturbation to the particle state. So far, the
only approximation has been neglecting the additional wave force term on the phase variation which is
very small for magnetospheric parameters. The linearization step is introduced by expanding the forces in a
power series around adiabatic motion.

dp, dap

. oF,
dr ' dt

I - -
=F,(By) + Fo(B,) + == (AP) + —==(AP) + O(Ap?) (A2)
ap ap

a a

Where % is the 4 X 4 Jacobian matrix evaluated at p,. Linear scattering theory involves only taking the
a

lowest order terms in Ap which involves only the zero-order terms in this case. Additionally, ddit” = .7-'0 by
definition. The perturbation due to linear theory is then given by

dAp -
= =Fulo) (A3)
In component form, linear theory is given by
dap, :
T = qBWVLa Sin ¢a (A4)
dAp, )
5 = —q(B, vy, +E,) sin ¢, (A5)

All terms with the subscript “a” correspond to adiabatic motion. For the case where a constant amplitude
monochromatic wave is filling the entire simulation space (CW signal), the linearized equations of motion
can be parameterized by position instead of time. In this case, linear theory is given by

dAp 3 qB,v., sin ¢,
dz Vi

(A6)

dAp, _ =qB,, (v, +V,)sin ¢, A7)
dz Vi,

These equations can be integrated to obtain Ap, and Ap, as a function of position along the field line.
These can be obtained numerically or in some cases analytically [Inan, 1987]. However, in the spirit of the VL
model, the scattering can be calculated for one pass through the interaction region. For “final” coordinates
at the exit (+z,) of the interaction region, the “initial” perturbations at the entrance (-z,) are given by

z gB,v, sin qbad

Ap(~2,) = Apy(z) — / z (A8)

-z Vila

2 —gB (v”a +v,)sing
APL(~2) = Bp,(z) - / R L
-z ||a
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To specify the boundary conditions, we choose p(z,) = P,(z,) + Ap(z,) = P,(z,) so that Ap = 0. Note that
this is not an approximation; since there are two free parameters (p,(z,) and Ap(z))), it is simply a convenient
choice that states that perturbations are chosen relative to the final particle coordinates. Nonzero values

of Ap(z,) will be reflected as a different value of p,(z,). Therefore, the scattering of one pass through the
interaction region predicted by linear theory for a constant amplitude monochromatic wave is given by

Zqv, sin¢,
Apy(~z) = =B, / e 4z (A10)

Vv
-2 ”a

2 q(v”a + V,) sin ¢, dz

Ap,(-z) = BW/ (A17)

-z Vila

Next, using Liouville’s theorem, the distribution function at the exit can be computed in terms of the initial
distribution function at the entrance,

flpy (2D, pL(2), $(2)),2) = f—zL (py(=2D),p.(-2) (A12)

Here p(-z,) = p,(—z,) + AB(—z,). However, for a model that is symmetric around the geomagnetic equator
(as used in this study), p,(—z,) = P,(z,). And as stated, earlier, the boundary conditions enforce p,(z,)=p(z,).
Therefore, equation (A12) can be rewritten as

fpy @), p.(2), d(z),2) =, (P“(ZL) +Apy(=2zp),p.(z) + APJ_(_ZL)) (A13)

Dropping all the (z,) terms (since it is implied) and explicitly including the perturbations gives

zqv, sin¢, 2z q(vy +v,)sin ¢,
f(py P $.2,) = fo <p| —BW/ = dzp, +Bw/ Mdz) (A14)

Z lla Z Vila

The subscript “—z,” has been replaced by the subscript “0” to indicate an initially unperturbed distribution.
Once the distribution is computed, the precipitated flux can then be calculated by integrating over phase
space as shown in equations (16) and (17).
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