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Abstract

The purpose of radio remote sensing is to learn more about the environment by ob-

serving how the environment interacts with radio waves. Radio remote sensing can

be seen as three generic steps: measurement, processing, and interpretation. In this

thesis, we discuss methods to address the latter components of radio remote sensing as

they pertain to electromagnetic subsurface imaging. We describe a signal processing

technique, known as sparse separation, that allows us to decompose the observed data

into components that are of scientific value and those that are considered interference.

We formulate electromagnetic subsurface imaging as an optimization problem con-

strained by a set of partial differential equations (PDEs), specifically Maxwell’s equa-

tions, which govern electromagnetic wave propagation. Algorithms for approximating

the solution to these optimization problems are presented and tested numerically.

We image conductivities underground with natural sources of electromagnetic ra-

dio waves. In the VLF (Very Low Frequency, 3-30kHz) band there are many types of

naturally occurring electromagnetic waves. We are primarily interested in a class of

electromagnetic waves known as radio atmospherics, or sferics for short. Sferics are

short-duration, broadband radio bursts produced by lightning discharges worldwide.

Sferics provide three basic advantages for electromagnetic subsurface imaging. First

sferics are plentiful; lightning occurs at a rate of 45 discharges per second. Second,

because of the global distribution of lightning discharges, we are able to observe sfer-

ics incident from multiple different directions of arrival. Each independent incident

direction provides more information about the subsurface conductivities. Third, sfer-

ics are broadband in nature. Each sferic contains information at multiple frequencies,

further augmenting the information we have collected about the subsurface area of
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interest. The techniques developed in this thesis are designed to take advantage of

these three basic properties.

To better understand the data, we introduce and develop the technique of sparse

separation in an overcomplete dictionary. By solving for a sparse, higher dimensional

representation of our data we are able to partition the data into components that are

scientifically valuable and components that are considered interference. We develop

methods based on soft thresholding, the proximal operator for the sparsity promoting

ℓ1 bound. These first order methods scale well, thus permitting the processing of large

datasets.

Electromagnetic subsurface imaging is formulated as a nonlinear, non-convex,

PDE-constrained optimization problem. Using the finite difference frequency do-

main (FDFD) method for modeling Maxwell’s equations on a discrete grid, we can

predict the electromagnetic fields everywhere within a computational domain for any

wave illumination and any set of scattering conductivities underground. The goal of

electromagnetic subsurface imaging is to find an optimal set of conductivities within

our model of Maxwell’s equations that predict electromagnetic fields that closely

match a set of electromagnetic field observations. Many techniques exist for ap-

proximating the solution to non-convex optimization problems including sequential

linear approximation, alternating projections, and semidefinite relaxations and em-

beddings. Adaptations of the alternating directions method of multipliers (ADMM)

to this non-convex problem have shown the best performance for obtaining the best

accuracy and incorporating the multiple frequency and multiple direction of arrival

information from sferics in a distributed and scalable manner.

Development of these algorithms leads to computational experiments to discover

the real-world performance bounds. Adding more information to the problem in-

creases estimation accuracy of subsurface conductivities. We investigate performance

as a function of background conductivity and sensor noise. Varying these parameters

allows us to predict the influence of basic physics principles and test the algorithms

in a variety of possible real-world scenarios. Furthermore, we explore the relation-

ship between the number of sensor measurements necessary and the accuracy we can

obtain for determining the subsurface conductivity parameters. Numerical testing
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leads to a subsampling principle which gives a relationship between accuracy and the

number of radio observations.
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Chapter 1

Introduction

Electromagnetic subsurface imaging is the process of estimating and mapping ma-

terial properties under the surface of the Earth using radio observations. Electro-

magnetic subsurface imaging is a specific application of radio remote sensing. Radio

remote sensing techniques have been used for many years to measure and determine

geophysical and astronomical properties including terrestrial ionospheric studies [32],

measurement of distant atmospheres [139], and snow accumulation [114], [124], [60].

In this thesis, we are concerned with the use of radio remote sensing as a way to

image valuable resources underground. Specifically, we investigate the use of natural

sources of radio waves at VLF (3-30 kHz) to image conductivity structures under-

ground. Remote sensing is a diverse field incorporating aspects of physics, applied

mathematics, and computer science. The work of this thesis incorporates all three

aspects, but focuses mostly on the applied mathematics issues of radio remote sens-

ing. We are faced with challenges for collecting data, storing data, processing data,

and building models to explain and understand the data. Electromagnetic subsur-

face imaging combines all of these aspects. In this thesis, we focus on the latter two

aspects, i.e., processing the data to determine and extract interesting content and

building models to explain and understand what we have observed.

The work of this thesis began with a series of field campaigns to directly mea-

sure the electromagnetic perturbations near active gold mines including the Rawhide

Mine near Fallon, NV, and the Edgar Mine near Idaho Springs, CO. Armed with the
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CHAPTER 1. INTRODUCTION 3

background expertise and hardware development for studying VLF radio wave prop-

agation a project to investigate local environmental imaging, specifically subsurface

mineral imaging using a network of the low noise VLF receivers developed at the

Stanford VLF Group, we set out to map subsurface conductivity parameters.

Ultimately, more work was necessary in order to understand and interpret the

data that were collected during these field campaigns. Without any analytic work

backing our subsurface imaging idea and without taking much more time to design

a really robust data acquisition system, we were unable to formulate experiments

and collect data in the field that would explore questions related to electromagnetic

subsurface imaging.

The key insights for the development of the work presented in this thesis came

after a concerted effort was made to disconnect the logistics of collecting data and the

difficulties of a noisy data set from the theoretical and mathematical ideals necessary

for electromagnetic subsurface imaging. A framework based on linear algebra, opti-

mization, and computational electromagnetics was formulated and explored based on

the supposition of an ideal data set. This numerical and computationally intensive

approach was developed so that we could explicitly develop a technique for producing

images of the conductivity distribution of subsurface materials.

Along the way, we developed methods for filtering the data and separating the

interesting features of the data from interference. In conjunction with data processing

tasks necessary for a side project on hypervelocity dust impacts [93], we developed the

method of sparse separation presented in Part II. The research related to these tools

helped develop fundamental and necessary insights into numerical optimization and

ill-posed problems that were influential in formulating and developing the algorithms

and numerical results for electromagnetic subsurface imaging.

As the details of the numerical problem became more apparent, it was clear that

the data sets previously collected would be insufficient to provide the quality of data

necessary for electromagnetic subsurface imaging. Furthermore, the details of solving

the electromagnetic subsurface imaging problem made us realize that a full three di-

mensional model of the subsurface electromagnetics necessary for working with real
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data was computationally infeasible. Therefore, the focus of the work on electromag-

netic subsurface imaging in this thesis is on the numerical machinery necessary for

transforming a set of data, in our case artificial data produced by computational mod-

els, into the best estimate of subsurface conductivity. The realization of algorithms

that can incorporate the unique aspects of the natural sources of VLF radio waves

that we can collect and assessment of their performance is the main contribution of

this thesis.

The methods developed here rely on optimality principles. We wish to find the

best estimate of the separation of our data signals and the best estimate of the

subsurface conductivity parameters. These “best” parameters are mathematically

expressed as the solution to a numerical optimization problem in which we want

to find the optimal parameters in a model of VLF propagation that closely match

field observations. We design an algorithm that can choose the best conductivity

image from the set of possible conductivity maps that best explains our observations.

The structure of these subsurface conductivity maps is arbitrary; we have very little

information about the structure and magnitude of subsurface conductivities. Due

to this fact, we must resort to numerical techniques in order to compute a possible

subsurface conductivity map from the infinite space of possible conductivity maps.

The details of these methods are explained in Part III.

In the rest of this chapter we set the stage for the later developments of the the-

sis. In Section 1.1 we review many of the basic concepts of VLF radio propagation,

a field of study and expertise of the Stanford VLF research group, representing the

accumulated knowledge of decades of research. Both sparse separation and electro-

magnetic subsurface imaging are ill-posed optimization problems; we briefly introduce

the basics of numerical optimization necessary to understand the development of both

sparse separation and electromagnetic subsurface imaging in Section 1.2.

In this thesis, we pursue numerical optimization strategies due to the data-driven

nature of the work. For many data driven problems, a formula or a set of computations

can be described that will ultimately lead to the correct or optimal answer; it is then

up to a computer to execute these computations in order to complete the learning

process.
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The main contributions of this thesis require the combination of these two aca-

demic disciplines; we apply optimization routines to the well developed observation

and modeling of VLF radio propagation. By investigating optimal principles of VLF

radio wave propagation, we can directly use the observed data to learn and image

specific aspects of the local environment. However simple explanation of the VLF

subsurface imaging problem is not enough; we develop and implement tools for dis-

tributed, scalable algorithms of recent interest in computing and numerical optimiza-

tion. With recent trends toward introducing computing power as a simple utility

available to everyone, we are motivated to investigate these resources and develop

code that is adaptable to these new computing paradigms.

1.1 VLF Radio Propagation

The propagation of Very Low Frequency (VLF, 3-30 kHz) radio waves has been an

active area of research for many years and has led to the discovery of many geophysical

phenomenon, [28], [8], [77], including the development of a global lightning detection

networks [123], observation of particle precipitation [89], and observation of trans-

ionospheric propagation [95], [133]. There are numerous sources of electromagnetic

radiation in the VLF frequency band (VLF - Very Low Frequency, 3-30 kHz) including

radio atmospherics, man-made transmitters, and geophysical phenomenon such as

chorus, whistlers, and hiss [67].

Radio signals at VLF frequencies are easily observed with a magnetic field loop

antenna. The Atmospheric Weather Electromagnetic System for Observation Model-

ing and Education (AWESOME) developed by the Stanford University VLF Group

has enabled global observation of VLF phenomenon [42]. Adaptations of this receiver

have enabled three-axis measurements of the magnetic field using orthogonal loop

antennas. Further adaptations have enabled field observation in very remote settings

by constructing weatherproofed versions of these receivers that operate on battery

power. The AWESOME receiver directly digitizes signals produced by oscillating

magnetic fields. By digitizing at a rate of 100 kHz, we are able to resolve frequency

content up to 50 kHz thus encompassing the entire VLF band. Deployment of these
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Figure 1.1: Typical VLF spectrogram recorded in Northern Idaho on August 27, 2009.
Color maps the intensity of the observed magnetic field at a particular point in time-
frequency space. Two distinct classes of signal can be seen, transmitters (horizontal
lines) and sferics (vertical lines). Signal from the north-south facing antenna is shown.

receivers has led to the recording of hundreds of terabytes of data over the last few

decades.

A typical example of VLF observation data is shown in Figure 1.1. This spectro-

gram representation of the data shows the evolution of the signals in time-frequency

space. It is formed by plotting the amplitude of the Fourier coefficients of overlapping

short-time segments of the data. Color corresponds to the intensity of the observed

signal at a particular point on the time-frequency plane.

Two distinct classes of signals can be seen in this particular spectrogram. The

first class of signals are constant in time and narrow in frequency. These signals are
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typically man-made sources including VLF transmitters such as NAA (24 kHz) and

NWC (19.8 kHz), and interference from power lines (60 Hz and harmonics). These

steady tone signals are valuable for certain remote-sensing applications [44], [117].

The power line harmonics are often considered undesirable interference. The second

distinct class of signal that we can identify in the data are signals that are short in

time, but broad in frequency. These signals correspond to radio atmospherics, or

sferics for short. Sferics are the VLF component of radiation produced by distant

lightning discharges. Each discharge radiates across a broad spectrum, but the bulk

of the energy is radiated in the VLF band between 5 kHz and 10 kHz [119].

Transmitter signals and sferics propagate for thousands of kilometers in the Earth-

ionosphere waveguide [8]. An illustration of Earth-ionosphere waveguide propagation

is shown in Figure 1.2. Propagation in the Earth-ionosphere waveguide can be ap-

proximated to first order as a parallel plate waveguide where the lower boundary is

formed by the conductive Earth and the upper boundary is formed by the ionosphere

[78]. The ionosphere lies between 70 km and 120 km and is marked by dramatic

increases in plasma and ionized gas content. At VLF frequencies these plasmas are

reflective and can refract radio waves. Due to the curvature of the Earth and the

anisotropic conductivities of the boundaries, true models of wave propagation in the

Earth-ionosphere waveguide can be complicated. It is, however, important that the

boundaries are not perfect conductors for the sake of electromagnetic subsurface imag-

ing, the topic of this thesis, which relies on wave propagation to a finite depth in the

lower boundary, the Earth’s surface. Ray tracing models [94], waveguide approxima-

tions [24], and discrete simulation models [96], [34], [64], have all been developed to

model radio wave propagation in the Earth-ionosphere waveguide. Once key feature

that we can see even in the spectrogram shown in Figure 1.1 is the existence of a

cutoff frequency for TM mode propagation near 1.8 kHz. The null of signals between

500 Hz and 1.8 kHz is direct evidence of waveguide propagation.

We are interested in sferics as an illumination source for electromagnetic subsur-

face imaging for three reasons. Firstly, sferics are widely available in the data. The

global rate of lightning discharges is estimated to be 45 discharges per second [40].

Each of these lightning discharges has the potential to produce a sferic. Due to the
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Figure 1.2: Propagation in the Earth-ionosphere waveguide. Lightning discharges
radiate in the VLF band. These radio waves, known as sferics, propagate for thou-
sands of kilometers in the Earth-ionosphere waveguide bounded by the surface of the
semi-conductive Earth and anisotropic plasma in the ionosphere.

global propagation effects, and propagation in the Earth-ionosphere waveguide, we

can observe sferics from lightning discharges thousands of kilometers away.

Secondly, sferics arrive from multiple different directions of arrival. Since sferics

are a global phenomenon, it is possible to observe sferics that arrive from many loca-

tions, propagating in different directions in the Earth-ionosphere waveguide. We can

estimate the direction of arrival of these sferics based on the simultaneous recordings

of the stations and can compare these estimated directions of arrival with respect to

the known locations of sferic discharges from national databases such as the Global

Lightning Detection Network (GLD-360) and the National Lightning Detection Net-

work (NLDN). The polarization of these electromagnetic waves is primarily transverse

magnetic (TM), that is H is largely parallel to the surface of the Earth, however there

is a known transverse electric component (TE) as well [123]. For both polarizations,

both magnetic and electric components of the incident wave are known to penetrate

into the subsurface and interact with subsurface conductivity anomalies [127], [45],

[145].
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Lastly, sferics are broadband in nature. They contain considerable energy in two

distinct bands, the extremely low frequency band (ELF 3-300 Hz) and the VLF band

(3-30 kHz). The ELF component, often described in the literature as the ELF slow

tail [99], is the result of TEM mode propagation in the Earth-ionosphere waveguide.

This component of the sferic gives the lowest frequency contributions which can help

subsequent electromagnetic techniques to determine conductivities underground at

greater depth. Higher modes of propagation in the Earth-ionosphere waveguide are

present in the VLF band. These are primarily in transverse magnetic modes (TM).

The broadband frequency content of each individual sferic gives additional informa-

tion to the electromagnetic subsurface imaging problem.

1.2 Optimization

The two problems discussed in this thesis can be formulated as ill-posed, numerical

optimization problems. We begin this section by describing the basics of optimiza-

tion problems in general and then develop what we mean by ill-posed optimization

problems. The techniques and strategies for finding solutions to sparse separation

and electromagnetic subsurface imaging problems begin in a very similar place, but

diverge due to the specific details of the problems themselves.

1.2.1 Numerical Optimization

The general goal of a numerical optimization problem is to find the minimum value

and corresponding argument x, of an objective function f0(x). The variables x may be

constrained by a set of inequalities and equalities, fi(x) and hi(x) respectively. All of

f(x), h(x) map the complex vector space to a single real value, fi(x), hi(x) : C
n 7→ R.

We generally state optimization problems in the form given in (1.1).

minimize f0(x)

subject to fi(x) ≤ 0

hi(x) = 0

(1.1)
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The optimization problem is considered convex if the functions f, h are convex, that

is they satisfy Jenson’s inequality [18].

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (1.2)

Some common convex functions include affine and linear transformations, f(x) =

Ax− b, norms, f(x) = ‖x‖22, f(x) = ‖x‖1, and negative logarithm, f(x) = − log(x).

Many methods exist for obtaining the optimal solution to an optimization problem

[18], [111]. Convex optimization problems have the added advantage that a unique

optimum can be found using known polynomial-time algorithms, especially interior-

point methods, which have been developed over the past decade. The ability to

express an optimization problem as a convex optimization problem is thus computa-

tionally and theoretically attractive. Of course, not every problem is convex. For non

convex optimization problems, the best we can achieve in a reasonable computational

time is a local optimum, which may or may not be the global optimum of the problem.

Adding additional constraints to the optimization problem can increase the difficulty

of finding a feasible, optimal solution. The incorporation of non-smooth functions in

optimization problems can cause both theoretical and computational difficulties.

Many methods have been developed for solving constrained and unconstrained op-

timization problems, and with the introduction of interior point methods, arbitrary

convex optimization problems that include non-smooth constraints can be solved. In-

terior point methods replace non-smooth constraints with a tunable approximation

that can be adjusted through iterations of the algorithm to be a better and bet-

ter approximation until the desired numerical tolerance is reached. Other strategies

involving projection methods have garnered increased research [20], [86], [92].

As data and problem sizes grow, there has been increasing interest in optimiza-

tion problems and optimization routines that are distributed; that is the algorithm

has components that can be run in parallel across multiple computers. Optimization

strategies tailored to this specific, large dimensional challenge have received increasing

attention in the literature including [20] and [116]. First order methods have typi-

cally been popular for distributed optimization because they are often able to achieve
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tolerable accuracy with less computational effort. Gradient descent methods for un-

constrained and constrained environments have been analyzed for multiple agents

operating in a distributed environment [108], [107]. Gossip algorithms, or algorithms

that reach consensus via repeated pair-wise interaction have also been analyzed for

optimization routines [19]. Many other resources describing distributed optimization

methods that extend these works [115], [13].

1.2.2 Ill-posed problems

We focus on ill-posed problems in this thesis; both electromagnetic subsurface imaging

and sparse separation are in this difficult class of computational and mathematical

problems. An ill posed problem can be identified if it violates one of the principles of

a well posed problem which we define with three criterion:

1. The solution exists.

2. The solution is unique.

3. The estimates of the algorithm are a smooth function of the inputs.

An ill posed problem is an optimization problem that violates one or more of the

principles of a well-posed problem [39]. For the optimization problems of interest

in this thesis, it is the latter two points that are typically violated. We are not

guaranteed that there is a unique solution; the systems of equations involved have

a non-trivial null space. Furthermore many of the operators are poorly conditioned

leading to the possibility that small changes in the inputs can yield dramatic changes

in the output. For example, take the system of equations y = Ax, the basic linear

system of equations. In the case that y ∈ R
m, x ∈ R

n, A ∈ R
m×n, m < n, finding

the solution x ∈ Rn is classically ill-posed; we have an underdetermined system of

equations. There are a non-trivial number of vectors, v : Av = 0, in the nullspace

of the matrix A. Therefore, we can always add a scaled version of a vector v to any

solution x to achieve a new solution to this system of equations.

The last condition for well-posed problems can be summarized by stating that

the solutions are highly sensitive to the input data. Small changes in the input
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can lead to a large changes in the output. A very large condition number for the

matrix A implies that at least some of the equations in the system are numerically

linearly dependent. By “numerically” dependent, we mean that on a finite precision

computing machine, the equations are linearly dependent within numerical precision.

We define the condition number, κ, of a matrix A as the ratio of the largest singular

value of the matrix A to the smallest singular value of A,

κ =
σmax(A)

σmin(A)
. (1.3)

[68]. If the condition number is large, small changes in the right hand side, y can lead

to large changes in the solution x.

Ill-posed problems are typically treated with regularization methods to alleviate

the “ill-posed” aspects of the problems. Adding regularization can make solution of

a poorly conditioned system more stable; regularization can reduce the variability in

solutions given small changes to the input. Regularization can also be seen as incor-

porating prior knowledge into the problem in order to prefer solutions with certain

attributes or exclude solutions that may be numerically possible but are meaningless

in the larger context of the problem. Many forms of regularization exist to promote

certain characteristics of the solution. For example, preference for solutions with

numerically small values is equivalent to adding an ℓ2-norm regularization term to

the objective function. Adding a total variation norm brings the additional knowl-

edge that we expect the solution to favor constant values [22], [143], [122]. In sparse

separation, we use regularization to select for solutions that are sparse, meaning the

number of nonzero entries in the solution vector is at a minimum. In electromagnetic

subsurface imaging, we regularize using a combination of constraining the solutions to

feasible sets and mild ℓ2 regularization. With ℓ2 regularization we modify the system

of equations such that we are solving (A + ρI)−1. Indeed, as ρ increases, the rela-

tive influence of the matrix A decreases and the system approaches a scaled identity

matrix. The combination of these regularization terms gives us reasonable solutions

that are also feasible in many circumstances [39].
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1.3 Contributions

The contributions of this thesis are stated as follows:

1. Derived, implemented, and compared 7 methods for the non-convex, non-linear

subsurface electromagnetic inverse problem so that these methods can incorpo-

rate information from multiple frequencies and directions of arrival as given by

sferic illuminations. The 7 methods are:

• Sequential Linear Approximation

• Artificial Source

• Split Field

• Split-σ

• Phase Split

• Bi-Projection

• Semidefinite Relaxation

2. Established relationship between the attributes of our model of Maxwell’s equa-

tions and the accuracy to which we can estimate subsurface conductivities. We

explore model parameters that are representative of real-world models.

3. Established subsampling principle for accurate conductivity recovery.

4. Developed sparse separation technique for time series filtering of morphologi-

cally distinct signals in electromagnetic waveform data.

1.4 Outline of Thesis

This thesis is divided into four basic parts, introduction, sparse separation, elec-

tromagnetic subsurface imaging, and discussion. The two main parts of the thesis,

sparse separation and electromagnetic subsurface imaging are independent and self-

sufficient. As described in this section, however, both of these parts draw on the

principles of ill-posed optimization problems and electromagnetic wave propagation.
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We present sparse separation, a method for decomposing data, such as VLF data

into its morphologically distinct components in Part II. This decomposition is framed

as an application of under-determined optimization and relaxation to a convex prob-

lem in order to do the decomposition. Sparse separation is a linear inverse problem

and a clear description of this ill-posed problem sets the stage for the more compli-

cated non-linear ill-posed problem of electromagnetic subsurface imaging discussed in

Part III. The relationship between sparse separation and the specific data we have

collected is described in detail in Chapter 2. Algorithms for achieving and solving the

optimization problem for sparse separation are developed in Chapter 3. Numerical

results are presented for these algorithms in Chapter 4.

Electromagnetic subsurface imaging is discussed in Part III. Electromagnetic sub-

surface imaging is developed as an optimization problem constrained by a set of partial

differential equations (PDE-constrained optimization problem) in Chapter 6. Linear

algebra and algorithms for solving the electromagnetic subsurface imaging problem

are given in Chapter 7. Numerical results for electromagnetic subsurface imaging are

given in Chapter 8, including overall performance of the algorithms and performance

of the algorithms as various aspects of the model, background conductivity, and noise

level, are varied. A subsampling principle which relates the number of measurements

to the number of unknowns that can successfully be estimated is also discussed.

The final part of this thesis is discussion of the results and a brief outline of further

work and extensions of the methods presented and developed in this thesis.

1.5 Notation

In this thesis, vectors are represented as lower case letters, such as the vector u.

Matrices are represented as capital letters, such as the matrix A. Notationally, we

use the transpose operation of a vector and a matrix to be both the transpose and

the complex-hermitian transpose. These operations are often denoted as AT and A∗

respectively. In this work, we take AT to mean both. We use the vector notation x∗

to indicate the optimal, desired, or truth solution to various problems through the

text.



CHAPTER 1. INTRODUCTION 15

The space of real numbers is R, the space of complex numbers is C, and the space

of positive semidefinite matrices is S+. We use the standard definitions of p norms as

‖x‖p =
(

∑

i

xp
i

)
1

p

.

From this definition, it is clear that the 1-norm is the sum of the absolute values of

the vector x and the ∞-norm is the maximum absolute value of the entries in x.

Some characters are used to represent static, physical constants, such as ǫ for

electrical permittivity, σ for electrical conductivity, µ for magnetic permeability, ω

for frequency dependence (ω = 2πf). We use SI units and fix ǫ0 ≃ 8.854×10−12(F/m)

and µ0 = 4π × 10−7(H/m). We use e−iωt time dependence where i =
√
−1.

We make frequent use of the indicator function, Ix∈C(x) which is a function that

indicates set membership to the set C.

Ix∈C(x) =







0 x ∈ C
∞ x /∈ C

(1.4)
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Chapter 2

Morphological Decomposition

Broadband observations of the VLF magnetic field at global field sites contain a

mixture of diverse electromagnetic processes. Sferics and transmitters are the two

main classes of signal in VLF data and are the focus of the data decomposition

technique of sparse separation. Our decomposition of the data allows us to clearly

and cleanly separate these two classes of signal solely based on the specific shape of the

data; we use very little prior information about the exact content of the observed data.

We solve for a sparse combination of basis vectors from the combination of the Fourier

and wavelet dictionaries where wavelet components are used to efficiently represent

sferics and Fourier components are used to efficiently represent transmitters. Methods

for the clean and accurate identification of these signal types has been previously

studied in many contexts [42], [67].

2.1 Representation of VLF Data

VLF data can be characterized by three types of content. All of these signals are

directly digitized fluctuations of the electromagnetic field and are thus oscillatory in

nature. The first type of signals are impulsive sferics which are short in time and,

broad in frequency [42]. The second class of signals are those that are persistent in

time and narrow in frequency. These signals are typically of man-made origin. Both

transmitters such as NAA (24.0 kHz) and 60 Hz power line signals and associated

17
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harmonics fall into this category. On occasion, a third class of geophysical emissions

naturally generated in the Earth’s high altitude plasma environment, e.g., chorus,

hiss, and whistlers, can be seen in VLF data [67].

The separation of these signals specifically in VLF data has many applications

including the identification of the location of lightning discharges [123] and the isola-

tion of transmitter signals to investigate disturbances in propagation conditions [117].

In [123], the exact structure of the sferic is used in order to estimate the propaga-

tion distance in the Earth-ionosphere waveguide. Sferic identification is done through

cross-correlation with a predefined waveform bank derived from the data themselves.

Isolation of sferics from interference is fundamental to the success of this method. In

[123], linear bandpass filters are used to isolate the sferics. The focus of the work in

[117] is to identify amplitude and phase perturbations in VLF transmitter propaga-

tion. Phase and amplitude of transmitter signals are estimated from a linearly filtered

version of the data. Extracting the phase and amplitude is subject to interference

specifically from sferics. Accuracy could be improved using a method that separates

these disparate types of signal [82].

Prior attempts to isolate these signals assume specific knowledge about the exact

frequency and modulation of these signals. Linear filters have been applied in addition

to adaptive filters [41]. Neither of these methods specifically models the effect of the

sferics in the data and thus these linear filter methods can often fail when strong sferics

are present. The method of sparse separation is a nonlinear method for estimating

the optimal separation between these disparate types of content in the data.

Sparse separation is a preprocessing step in order to understand the constituent

components of the data. This separation allows us to isolate the interesting portions of

the signal from the non-interesting portions of the data, potentially providing a means

to excise other sources of interference, i.e., noise from local power lines. Methods

have been developed that track the amplitude and phase of the transmitter signals,

a process that has encountered difficulty in the past due to the presence of many

sferics in the data [41]. Methods for excising the sferics based on linear predictive

models have also been used, but these methods can introduce new data artifacts

[67]. Furthermore, characterization of average sferic waveforms is made difficult by
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transmitters. Allowing for this explicit data decomposition based on morphological

form, we are able to explicitly identify these components. The methods described in

this Part were developed for separating different types of events in directly digitized

electromagnetic data at, but not limited to, radio frequencies (f < 300GHz) based

on sparse separation in redundant dictionaries.

2.2 Sparsity

The number of sferics observed in any appreciable segment of data (longer than

5 seconds) is sparse. On average, lightning discharges occur globally at a rate of

45 lightning discharges per second. Compared to the 100 kHz data rate used for

digitizing VLF signals, the set of discharges is sparse.

Sferics are not assumed to be exactly sparse; that is, a single sferic is not known to

have an exactly sparse representation in a pre-defined dictionary. Sferics are, however,

approximately sparse. The majority of the energy of a sferic can be represented using

a small number of wavelet coefficients. The sparsity we are primarily interested

in, however, is that the number of sferic events in any window of time is sparse

with respect to the quantity of sampled data. Even in a 10-second segment of data

sferics are sparse. Due to the short time duration of each sferic they can be closely

approximated by a small number of wavelets. We search for a sparse separation in the

combination of the Fourier matrix and the wavelet matrix that explains the data. The

sparse coefficients recovered in the wavelet transform well represent the sferics while

the sparse collection of coefficients recovered in the Fourier transform well represent

the transmitter signals and other steady state interference such as 60 Hz harmonics.

2.3 Wavelets and Fourier Series

The discrete wavelet transform projects a given signal onto a hierarchical family of

orthogonal multi-scale atoms with specific time-frequency profiles [48], [101]. Sparse

separation seeks to discriminate between events that have compact support in the

time domain from events that have compact support in frequency domain. We used
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the Daubechies family of discrete wavelets because they offer compact support in the

time domain, bounded support in the frequency domain, and the Daubechies wavelet

transform can be calculated in O(n) time [48], [101]. Furthermore, the Daubechies-10

wavelets have a resemblance of the time domain sferics observed in our data.

The wavelet transform can be described as the convolution of an input data vec-

tor with a set of orthogonal prototype wave forms. A hierarchical decomposition

involves projecting the data onto a collection of wavelets that have the same shape

but are dilated and translated in time. This projection can be conceptualized as a

matrix-vector operation, multiplying a data vector against the orthogonal wavelet

projection matrix. The fast wavelet transform is an algorithm that accomplishes

this matrix-vector operation in O(n) time as opposed to the standard O(n2) time for

matrix-vector multiplication. This time reduction is accomplished by convolving the

same wavelet with successively down-sampled versions of the input data. Therefore

only a few convolve and downsample operations are necessary to accomplish the or-

thogonal wavelet decomposition. More details on the fast wavelet transform can be

found in [101]. The wavelet decomposition is best at capturing and representing local

information in a dataset. The periodized dyadic wavelet transform is a one-to-one

orthogonal projection.

The discrete Fourier transform projects an input signal onto the set of complex,

orthogonal sinusoids (2.1). In this thesis, we use the Fourier transform in order to

find a representation of our data in the frequency domain. Raw time-series data

representing the sequential behavior of a signal in time can be transformed to a

frequency domain representation using the Fourier transform.

x̂j =
N
∑

k=1

e−i2πjk/Nxk (2.1)

The Fourier transform is a unique representation of the data that captures the har-

monic content of the time series. Each Fourier term captures information about the

entire input data vector; each Fourier component is non-local in time. Discrete, short

time events will require a dense representation in the Fourier domain, while steady
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sinusoidal signals in the time domain have a simple, sometimes single point, repre-

sentation in the frequency domain. The classic example of this localization trade-off

can be seen with the Dirac delta function. A delta function in the time domain is a

short-time event that is represented by a single point in the time series. The Fourier

transform of this simple time-domain signal is dense; the constant function in which

every Fourier coefficient has a non zero value. To represent this short time event,

combination of all possible orthogonal sinusoids is necessary. More details about the

Fourier transform and associated transforms can be found in [21].

Like the wavelet transform, the discrete Fourier transform can be seen as explicit

matrix-vector multiplication, however the Fast-Fourier Transform (FFT) algorithms

are able to achieve this projection step in far less computational time (O(n logn)) as

opposed to naive dense matrix-vector multiplication (O(n2)).

2.4 Prior Work in Sparse Separation

The literature in signal decomposition can be split into two general components:

global denoising and content recognition. The method of sparse separation combines

aspects of both. We are able to accurately estimate noise-reduced versions of the

observed signals, but we accomplish these estimates based on modeling the content

and identifying the constituent components of the data. Our approach to content

separation is similar to previously published work [147].

Wavelet denoising has been an active area of research, and perhaps one of the

first places where the idea of sparsity and ℓ1 norms began to show value and promise.

The early work on soft and hard wavelet thresholding opened new avenues for signal

processing and denoising [54] [50]. Wavelet soft thresholding was later extended to

combining multiple types of waveform “atoms” [33]. Continued work has led to the

related idea of compressed sensing in which random dictionaries and random projec-

tions are used instead of highly structured dictionaries like wavelets and Fourier series

[55]. These solutions may make us uneasy; we are able to recover more information,

a unique higher dimensional representation, by solving for more unknowns than true

equations. The theoretical implications of this discovery are still being explored [53],
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[49], [31].

Compressed sensing has also led to decompositions known as Morphological Com-

ponent Analysis (MCA) [17], [131], [23], [63]. The method of sparse separation is

similar to MCA. Morphological separation rests on the heuristic that a particular

data vector may not be sparse in one basis set but might have a sparse representation

in a combination of basis sets. For 2D images, combinations of curvelets, discrete co-

sine transforms, and wavelets have all been used to separate differing types of image

content [132], [130]. Applications to 1D time-series data such as those in this work

have received less attention in the literature than 2D imaging processing.

Alternative methods for decomposing a set of signals into their constituent compo-

nents include principal component analysis (PCA) [59] and independent component

analysis (ICA) [76]. Principal component analysis discovers a rotation of the data

into directions with maximal variance. Independent component analysis separates a

set of vectors into components that have minimal mutual information. In contrast to

PCA and ICA, which typically seek to find a lower dimensional space to represent the

data, MCA separates signals into their constituent components within a redundant

or overcomplete dictionary.

Data driven methods for learning sparse dictionaries such as K-SVD [6] pose

computational difficulties for the size of the data used in this thesis. Methods such

as K-SVD, PCA, and ICA are all difficult to apply to datasets like the VLF data set

because of dimensionality and stationarity issues. In the data set, we have a collection

of events with unique and disparate characteristic time scales. The sferics and other

geophysical events are relatively short in time, thousands of sequential time-series

points. The transmitters, in contrast, are persistent throughout the data set. The

decomposition of the data must be able to capture the combination of this global and

local behavior. Finite-dimension projections like PCA and ICA must break the data

down into windowed segments and thus put a limit on the maximum length event

that can be easily represented simply through the choice of the window length. Some

data sets naturally have a partitioned structure of reasonable size and lend themselves

naturally to this type of decomposition. No such reasonable partitioning of the data

exists in our VLF datasets. Furthermore windowing methods like K-SVD, PCA, and



CHAPTER 2. MORPHOLOGICAL DECOMPOSITION 23

ICA, suffer in that they are not robust to translational variability in the dataset.

For representing sferics, there is equal likelihood that a sferic will occur at any place

within the windowed segment. Representation of this translation invariance would

require a much larger, non-orthogonal dictionary of translated prototypes, which is

not supported by these methods.



Chapter 3

Algorithms

The method of sparse separation searches for a parsimonious representation of our

data by solving a linear ill-posed optimization problem. The method of sparse sep-

aration is a nonlinear method for estimating the optimal separation between these

disparate types of content in the data. In this chapter we present the explicit mathe-

matical description of the problem and several algorithms that allow us to efficiently

compute the solution to this optimization problem.

3.1 Signal Model

We model each observed signal, y ∈ Rn, using a noise corrupted linear model. The

entries of the vector x ∈ CN rescale the column vectors φi ∈ Cn, i = 1, . . . , N . Taken

together, these column vectors form the dictionary or the matrix Φ ∈ Cn×N . Additive

Gaussian noise, ν, with variance σ2 corrupts our observations. We can express this

succinctly as

y =
N
∑

i=1

xiφi + ν, y = Φx+ ν, (3.1)

ν ∼ N (0, σ2). (3.2)

In this technique, our dictionary is overcomplete, meaning the number of columns

exceeds the number of rows, n < N in the matrix Φ. Therefore, the matrix Φ

24
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has a non-trivial nullspace and a unique x : y = Φx does not exist. To constrain

the solution, we are interested in finding the sparsest x, i.e., the x with minimum

cardinality or number of non-zero entries. We define the cardinality function card(x)

to be the count of non-zero entries in a vector x and a k-sparse vector to be one for

which card(x) = k. In the case that y does not contain noise, we wish to solve to

obtain an optimal estimate for x, denoted x̂:

x̂ = argmin
x

card(x)

subject to y = Φx.
(3.3)

Obtaining a solution to this problem is NP-hard. It has been shown [57] that under

suitable dictionary and sparsity constraints, the minimum cardinality solution can be

recovered by minimizing the ℓ1 norm which is the convex relaxation of the cardinality

function [33]:

x̂ = argmin
x

‖x‖1
subject to y = Φx.

(3.4)

Given that our measurements contain Gaussian noise, we need not force equality of

the data and dictionary description but enforce that the log likelihood of the error be

contained by the standard deviation of the noise, σ, as stated in (3.2) [141] [142].

x̂ = argmin
x

‖x‖1
subject to ‖y − Φx‖2 ≤ σ.

(3.5)

Problem (3.5) is difficult to solve exactly as well given that the true noise level σ is

either unknown or hard to estimate. Therefore, a different form of (3.5) is solved that

yields the same results for the appropriate choice of penalty parameter, λ, [56]:

x̂ = argmin
x
‖x‖1 + λ‖y − Φx‖22. (3.6)

There are many algorithms for solving the problems (3.3), (3.4), and (3.6) in-

cluding orthogonal matching pursuit (OMP) [137], iterative weighted least squares
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(IWLS) [27], interior point cone solvers [88], alternating direction method of multipli-

ers (ADMM) [20], fast iterative shrinking and thresholding (FISTA) [9], and approx-

imate message passing [51]. Each of these algorithms has its particular advantages

and disadvantages, e.g.OMP is best if the sparsity is fixed and known while interior

point cone solvers converge quadratically.

In the method of sparse separation, we choose a dictionary that is composed

of morphologically distinct components. In this particular instance, we choose the

concatenation of the orthogonal wavelet basis given by the Daubechies wavelets and

the Fourier basis. Therefore, the dictionary Φ can be expressed as

Φ =
[

F T W T
]

where F corresponds to the orthogonal Fourier basis and W corresponds to the or-

thogonal, periodic wavelet basis.

After a solution to (3.6) has been found, we can separate the components of the

solution, x, into the components that correspond to the Fourier basis vectors and the

components that correspond to the wavelet basis vectors, i.e., x =
[

xFourier xwavelet

]T

.

From this, we get

y = Φx+ ν

= FxFourier +Wxwavelet + ν

= yFourier + ywavelet + ν.

(3.7)

The separation of these two components of the data is the method of sparse separation

and allows us to decompose the data in a parsimonious way based on morphologically

distinct components.

Furthermore, we introduce a truncation of the wavelet expansion. The wavelet

expansion of a signal is a hierarchical representation, therefore, it contains a mixture

of both local and global information about the input signal. The lowest order wavelet

coefficients represent trends in the data that are long in time and low in frequency.

For completeness, these representations must exist in the full orthogonal dictionary.

However, due to the signals of interest in our data, we know that lower frequency, long-

time duration signals will be better represented by the Fourier components than by the
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wavelet components. Therefore, we exclude the lowest frequency, lowest order wavelet

coefficients from the wavelet representation. For example, if the wavelet transform

contains P levels, we may only use the levels 3, 4, . . . , P which correspond to the

higher frequency, shorter time wavelet expansion coefficients. With this reduction,

we minimize interaction and ambiguity between the two dictionaries at the lowest,

broadest scales. These reduced wavelet transforms are referred to as the p−truncated
wavelet transform, where we use the higher order wavelet coefficients down to the pth

level.

3.2 Iterative Soft Thresholding

The FISTA algorithm is a first order optimization algorithm for solving the convex

optimization Problem 3.6. It is an accelerated version of the simple iterative soft

thresholding algorithm. We leave discussion of the acceleration steps to its original

source, [9]. In the Iterative Soft Thresholding Algorithm (ISTA), new estimates of x

are obtained by applying the proximal operator of the ℓ1 norm, the soft thresholding

operator, η(x, λ), to the residuals in the transform domain,

xk+1 = η

(

xk +
1

c

(

ΦT (y − Φxk)
)

, λ

)

. (3.8)

In this algorithm, c is a constant that depends on the largest eigenvalue of the matrix

Φ, and we define the soft threshold operator η as:

η(x, λ) = (x)(max{1− λ/|x|, 0}). (3.9)

The thresholding parameter, λk, is chosen at each iteration as the best estimate of

the standard deviation of the residual. By keeping only the outliers, i.e., the points

outside 2.5σ, we highlight and select the coefficients that stand out from the noise

which supports the heuristic that we are separating content into two morphologically

distinct dictionaries - what appears structured in one dictionary appears as noise in

the other dictionary. To estimate the thresholding parameter λ at each iteration k, we
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use the robust, unbiased estimator for the standard deviation based on the median:

λk = median{Φ(y − ΦTxk)}/0.6745. (3.10)

3.3 ADMM Algorithms

We can alternatively solve the minimum ℓ1 problem using the alternating direc-

tions method of multipliers (ADMM). With the proper choice of internal parameters,

ADMM algorithms can have similar speed performance to iterative soft thresholding

methods. Problem 3.6 is expressed in ADMM form by introducing a new variable, x̃

such that at optimality, x = x̃. We rewrite the problem as

minimize ‖y − Φx‖22 + γ‖x̃‖1
subject to x = x̃.

(3.11)

We then can apply the alternating directions method of multipliers directly as outlined

in [20]. The ADMMmethod for solving the minimum ℓ1 problem is split between three

steps, a projection step, a thresholding step, and a calculation of the residuals. These

three steps can often be evaluated quickly and efficiently. We discuss an efficient way

to implement these operators for large problems in the next section.

3.4 Implementation

For both of these optimization methods, we must look at the action of the fat matrix,

Φ, where

Φ =
[

F T W T
]

.

Some numerical solvers such as CVX and SeDuMi require explicit matrices in memory

[70], [69], [135]. Explicitly forming these matrices is memory intensive when the

vectors y or x are large, i.e., larger than 210. The optimization methods described

in Sections 3.2 and 3.3 do not require explicit matrices. We can solve optimization

problems with large dimensions by using pipelined operators. Rather than explicitly
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compute the entries of the matrices F,W , the symbols representing these objects

are overloaded with methods that accomplish the Fourier transform and the wavelet

transform respectively. Overloading the operators, however means that we can no

longer perform direct factorizations of the matrix ΦΦT . Instead, inversions of this

matrix must be accomplished using pipelined iterative methods. Since we are working

with ΦΦT , we are guaranteed that the matrix is positive semidefinite and we can use

conjugate gradients to invert this matrix. For conjugate gradients, we only need the

functional ability to perform matrix-vector operations which can be done in this case

using fast transform methods [84].



Chapter 4

Numerical Results

In Chapter 3, we formulated sparse separation as the solution to the convex relaxation

of the minimum cardinality problem. We search for a sparse solution in the combined

Fourier and wavelet dictionary that adequately represents the data. In the first part

of this chapter, we establish a relationship through computational experiments that

solving for the optimum of the convex problem (3.6) gives the solution for the non-

convex optimization problem (3.3) when the descriptor vector, x, is less than 20%

sparse, i.e., fewer than 20% of the coefficients are non-zero. In the second part of the

chapter, the results from applying the method of sparse separation directly to data

are presented.

4.1 Subsampling

Recovery of an unknown high dimensional vector x from a lower dimensional pro-

jection, y : y = Φx, is mathematically equivalent to compressed sensing, a method

for uniquely solving underdetermined systems of equations under an assumption of

sparsity [55]. Discovering the problem parameters (k, n,N) for which solving (3.4)

recovers the k-sparse model vector x from a projection of of the n × N matrix Φ

taken from an ensemble of matrices has been an active area of research [57], [55], [56],

[137], [144], [150], [138], [25], [26], [23], [52], [65]. In most cases, analytical bounds

have failed to adequately predict the location of observed phase transitions in the
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performance of these algorithms [53].

The relationship between the probability of successful recovery and the tuple

(k, n,N) is related to high-dimensional geometry, specifically the face counts of the

projections of high-dimensional polytopes [49], [53]. Results from computational ex-

periments support this hypothesis for several matrix collections including random

normal Gaussian matrices and partial Fourier matrices [53].

As described in Section 3.1, we are concerned with discovering a high dimensional

mixture of atoms with particular morphological shape that well represent observed

data. To demonstrate that solving (3.4) recovers the exact, unique, sparse vector

x∗, we run computational experiments similar to those proposed in [52] over the

truncated-wavelet and Fourier dictionary used in this thesis and described below.

We focus on the dictionary Φ constructed from the concatenation of the discrete

Fourier transform (DFT) and the discrete periodized wavelet transform (DWT), Φ =
[

F T W T
]

. We truncate the discrete wavelet transform to minimize overlap between

the wavelet and Fourier domains. The discrete wavelet transform is a dyadic transform

that produces 2p wavelet coefficients for each level p, 0 ≤ p ≤ P = log2(n) − 1. For

small values of p, i.e., p = 0, 1, 2, coarse scale wavelets are obtained. These coarse

wavelets have long time duration and low frequency content. Heuristically, these

wavelet levels are similar in character to low frequency components of the Fourier

transform. For higher values of p, i.e., p ≃ log2(n), fine scale wavelets are obtained;

these wavelets have short time duration and higher frequency content. Given the

datasets of interest, we are interested in separating our data into events with sparse

support in the time domain well represented by fine-scale wavelets and events with

sparse support in the frequency domain represented by the Fourier matrix. Elimi-

nating the coarser wavelet levels gives a matrix with a lower redundancy ratio. For a

lower redundancy ratio, we predict the phase transition will occur for higher sparsity

levels. By combining the full Fourier matrix and wavelet decomposition truncated

below the pth level we obtain a family of matrices that range from a square n × n

matrix that consists only of the Fourier matrix to an n × 2n matrix that consists of

the full Fourier and full wavelet matrices. By decomposing down to the pth level,

our matrices have dimensions fixed at n × (n +
∑J

j=p 2
j). Thus we cannot explore
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the entire range of (k, n,N), only a fixed set as dictated by the dyadic nature of the

wavelet transform.

4.2 Testing

For each choice of matrix Φ from the ensemble, we ran 70 Monte Carlo simulations to

verify that solving (3.4) recovers the sparsest descriptor. In each of the Monte Carlo

trials, a test vector, x∗ is generated that has k values of ±1. Test data, y = Φx∗ is

generated and problem (3.4) is solved, to obtain an estimate, x̂. We use a solver based

on the alternating directions method of multipliers (ADMM) [20] to solve problem

(3.4) to high tolerance. If the mean squared error, MSE = 1
N

∑N
i=1(x̂i − x∗

i )
2, is less

than our error threshold, 1 × 10−4, our solution to the problem is deemed a success.

In Figure 4.1, we present the results from these experiments. Matrices were chosen

such that the number of rows remained constant at n = 512. The number of columns

in these matrices varied depending on the number of wavelet levels included in the

dictionary. At each choice of dictionary, we chose 30 equally spaced values for k, the

sparsity of the true solution x∗.

The probability of success for each triplet (k, n,N) estimated from 70 Monte Carlo

trials is a unique point on the relative cardinality, k/n, vs redundancy, N/n, grid. Red

dots indicate a high probability of recovering the true vector x∗ via solving (3.4) for

that triplet. The figure indicates that once wavelets are added to the dictionary, the

probability of recovering vectors with less than n/2 non-zero entries is high. As more

wavelet levels are added to the dictionary, i.e., the dimension of the dictionary N ,

this relative sparsity value separating success from failure remains relatively constant.

Therefore, these computational experiments indicate that if a sparse vector, x, with

approximately n/2 non-zero entries is recovered by solving (3.4), we have uniquely

obtained the sparsest solution with high probability. In practice, relative sparsity

ratios, k/n < 0.1 are observed in the datasets described in Section 2.1 and presented

in Section 4.3.

The numerical subsampling tests provide confidence that we have recovered the

sparsest solution if we have recovered a solution with sparsity less than 0.2. In other
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Figure 4.1: Probability that solving (3.4) given measurements y uniquely recovers the
true sparse vector x∗ for different choices of dictionary size, N , and sparsity k, with
dictionary Φ taken from the truncated wavelet-Fourier combination as described in
Section 4.2. Each dot represents the probability that the mean squared error over
70 Monte Carlo trials is less than 10−4. High probability (red dots) mean the sparse
vector can be uniquely found, low probability indicates that the sparse vector cannot
be found by solving (3.4).
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words, if we solve the sparse separation problem using real data, and we recover a

solution with sparsity less than 0.2, we have, with high probability, recovered the

sparsest solution to the optimization problem. The minimum cardinality problem

and the ℓ1 approximation give the same result in these cases.

4.3 Data Results

Stanford University operates VLF radio receivers at field sites around the globe,

each with a varying degree of man-made interference such as power line harmonics

and harmonics from various electro-mechanical systems. Mitigating this unwanted

interference is often necessary before scientific analysis can proceed and is particularly

important for maintaining the integrity of long-term datasets. Even though much of

the data obtained during the course of this thesis were recorded using autonomous,

battery powered systems, interference from nearby power systems is not negligible.

These low frequency sources have the potential to obfuscate low frequency components

of sferics commonly called the ELF tail. In the subsequent data, coarser wavelets are

included so as to represent this low-frequency but sparse behavior. The finest 12

levels of the wavelet transform are used, i.e.levels j = 9, 10, . . . 20. We separate the

VLF data into short impulsive bursts, i.e.sferics, and steady tones, i.e.transmitters,

power-lines, and strong interference using a dictionary composed of the Fourier basis

and a truncated Daubechies-10 wavelet basis. Data vectors of length 220 are used.

Figure 4.2 shows an example of sparse decomposition in VLF data recorded in

Northern Idaho on August 27, 2009, at 03:20 UT. Spectrograms of the raw data,

wavelet components, ywavelets, and the Fourier components, yFourier, are shown in the

top, middle, and bottom panels respectively. To illustrate and highlight the effec-

tiveness of the separation, a shorter clip from the spectrograms is shown in the time

domain in Figure 4.3. Again, the raw data, wavelet, and Fourier reconstructions are

shown in the top, middle, and bottom panels respectively. The algorithm separates

the sferics and the tones with minimal distortion to the underlying waveforms.
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Figure 4.2: Separation of sample data from Northern Idaho, August 27, 2009. At
the top is the spectrogram representation of the components of the data sparsely
represented by wavelets. At the bottom is the spectrogram representation of the
components of the data sparsely represented by Fourier series. Color indicates the
amplitude of the signals in time-frequency space.
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Figure 4.3: Separation of sample data from Northern Idaho, August 27, 2009. At the
top is a clip of the calibrated time domain representation of the data. In the middle is
the time domain representation of the recovered wavelet components. At the bottom
is the time domain representation of the Fourier components.
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Chapter 5

Background

The third part of this thesis describes electromagnetic subsurface imaging. In this

chapter, we present background information on wave imaging methods and describe

the advantages for using VLF radio waves for subsurface conductivity imaging.

5.1 Noninvasive Wave Imaging

Techniques for imaging material structures by non invasive means have seen remark-

able progress over the last few decades. Non invasive methods have been developed

across the entire spectrum and use many different physics principles. Methods as

diverse as X-Ray tomography and seismic prospecting can be seen as applications

of non-invasive imaging methods. The topic is too broad to be summarized by any

single source. More information on a large number of these topics can be found in

sources [100], [83], [151], [106].

Geophysical exploration is a branch of remote sensing where measurements near

the surface are used to determine the subsurface parameters in a non-destructive, non-

invasive way. Geophysical exploration specifically refers to finding valuable resources

underground such as mineral deposits and hydrocarbon deposits. These methods have

been investigated and explored for many years hand have achieved a wide variety of

results and yielded many computational challenges. While geophysical exploration is

important in its own right, the methods of electromagnetic subsurface imaging have
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applications in fields beyond geophysical exploration, and often literature in these

other areas is general enough to be applied to geophysical exploration. We describe

a few of the different aspects of electromagnetic imaging problems below.

5.2 Electromagnetic Inverse Problems

Electromagnetic methods are often split into different methods depending on the

frequency of illumination. Table 5.1 shows a comparison of these various techniques

based on frequency. A trade-off relationship exists between the frequency used for

imaging, the depth of penetration of the method, and the resolution that can be

obtained.

The skin depth, δ, of a material is given as the depth that the wave amplitude has

decayed by a factor of e. The skin depth is a function of the frequency of the waves, ω,

the conductivity of the material, σ (assumed to be homogenous), and the magnetic

permeability, µ (also assumed to be homogenous and constant). The definition of

skin depth, given in (5.1), shows the inverse relationship between the conductivity

and skin depth and frequency and skin depth. Lowering the frequency increases the

skin depth, while increasing the conductivity reduces the skin depth.

Electrical impedance tomography is a method that measures DC resistivity across

a network of sensors in order to determine the resistivity of an object. Electrical

impedance tomography has found applications both in medicine and geophysical ex-

ploration. These imaging problems are known to be severely ill-posed and often result

in difficult systems of equations.

For the lowest frequencies, great penetration depths can be achieved. Indeed

magnetotelluric methods have been used to image resources at depths of greater than

1 kilometer. In contrast, these methods cannot typically resolve objects smaller than

half a kilometer in size. These methods have been very successful for understanding

geologic processes [85].

Many ground penetrating radar techniques rely on knowledge of wave propagation

in the subsurface. Echograms, or plots of the amplitude of the reflected waves as a

function of depth, can be valuable for imaging the location of scatterers in a media.
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Method Frequency Range
Electrical Impedance Tomography DC

Magnetotellurics < 1 Hz
Audio Frequency Magnetotellurics 1− 50kHz

Electromagnetic Subsurface Imaging (this work) 3− 30 kHz
Ground Penetrating Radar 3− 3000 MHz

Microwave Imaging 1− 3GHz
Optical Coherence Tomography optical frequencies

Table 5.1: Table of electromagnetic methods for non-invasive imaging and applica-
tions.

Ground penetrating radar techniques, in contrast, are able to image small, centimeter

sized objects, but are constrained to imaging the first few meters of the surface of the

Earth.

Electromagnetic wave inversion has also found application at microwave frequen-

cies. Microwave methods (300 MHz-300 GHz) have also been developed. Much of the

mathematical formality developed in subsequent chapters parallels the work at higher

frequencies. Microwave imaging has been developed for medical imaging purposes and

is designed to resolve structures on the order of millimeters, but only within a few

centimeters of the skin surface [146, 125]. Using a linear absorption model of propa-

gation, attenuation of microwave links has also been used for tomography specifically

for rain detection [104].

At optical frequencies the same principle used for imaging has been applied to

design. Nanophotonic components are increasingly difficult to design efficiently es-

pecially given space and material constraints. The electromagnetic photonics design

problem seeks to find a realizable structure that matches electromagnetic fields mod-

eled to the electromagnetic fields desired for the device. Rather than work with true

observations, the optimization matches design criterion. Two dimensional and 2.5D

structures have been the focus of much recent work [97], [66], [98].
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5.3 VLF Imaging

Electromagnetic wave propagation in a conductive media is primarily characterized

by loss. The skin depth is a common parameter that describes the depth in a homoge-

neous conductive medium at which a plane wave of frequency ω decays in amplitude

by a factor of e ∼ 2.718 and is given in equation 5.1.

δskin depth =

√

2

µσω
(5.1)

For σ = 0.0018 S/m and f = 1 kHz, the skin depth is 370 meters. At 13 kHz, the

skin depth is 100 meters. These skin depths give an estimate of the depth at which

we can accurately image underground. The exact depth is dictated by signal to noise

ratios, the exact geometry of the subsurface materials, and the method for parameter

inference.

The skin depth is derived from approximating the real component of the square

root of the propagation constant,

k =
√

ω2µǫ+ iωµσ. (5.2)

By analyzing the propagation constant, k, over a variety of frequencies and conduc-

tivities, we can establish two distinct regimes. First is a regime where the term,

ω2µǫ, dominates and electromagnetic propagation is wave-like. Second is a regime

where the term, iωµσ, dominates which leads to exponential decay and diffusion-like

behavior for the electromagnetic waves.

At VLF frequencies and conductivities representative of the surface of the Earth,

propagation is mostly diffusive. The diffusive characteristic means that our ability

to image objects at depth is greatly influenced by the loss of information imposed by

attenuation. At some depth, radio waves are attenuated to a level below our minimum

detection threshold and information from those depths is not available.

The split between diffusion and wave propagation can clearly be seen if we plot

the real portion of the propagation constant as a function of both conductivity and

frequency. A plot of this variation is shown in Figure 5.1.
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Figure 5.1: Real component of the wave propagation coefficient, k =
√

ω2µǫ− iωµσ.
The division between propagation regimes and diffusion regimes can be seen as a
function of both frequency and background conductivity.



Chapter 6

PDE Constrained Optimization

Electromagnetic subsurface imaging is an application of PDE constrained optimiza-

tion. We search for a set of parameters in a set of partial differential equations such

that the solution to the PDE system closely matches observations. In electromagnetic

subsurface imaging, the parameters are subsurface electrical conductivities and the

PDEs are Maxwell’s equations which govern electromagnetic wave propagation.

PDE constrained optimization problems are typically split into two components,

the forward solver and the inversion method. The forward solver is a routine that

calculates the state of the PDE system given a fixed set of parameters. In this case,

the forward solver is a solver for Maxwell’s equations given a particular frequency,

incident wave, and set of subsurface conductivities. The inverse problem, is the pro-

cess of finding the unknown model parameters, i.e., the conductivities. We set up our

inverse problem as an optimization problem; we look for the optimal set of conduc-

tivity parameters in a model of Maxwell’s equations such that the predictions of our

model match observations. We explicitly incorporate two pieces of prior knowledge on

the magnitude and shape of the conductivity parameters; the unknown conductivity

parameters are restricted to lie in a known, bounded region in the subsurface and the

values of the conductivity parameters are bounded, i.e., we know the maximum and

minimum values of conductivity perturbations.

An illustration of the PDE constrained optimization domain is given in Figure 6.1.

We will refer to the variables in this diagram consistently throughout our development
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uscattered

σanomalous

ureflected

uincident

utransmitted

Ωd

Figure 6.1: An illustration of electromagnetic subsurface imaging. Below the surface
of the conductive Earth, σbackground, is a conductivity anomaly, σanomalous. Incident
waves, uincident, reflect off the surface, ureflected, and penetrate into the subsurface,
utransmitted. The transmitted wave interacts with the anomalous material and produces
the scattered wave uscattered. Measurement of the electromagnetic waves at the surface
provides the input for electromagnetic subsurface imaging algorithms which seek to
estimate the magnitude and distribution of σanomalous.

of electromagnetic subsurface imaging.

We approximate the solution to Maxwell’s equations in a bounded, finite domain,

Ω, chosen to represent the space illustrated in Figure 6.1. The lower half of the space

represents the conductive Earth; we assume a uniform background conductivity and

homogeneous electromagnetic permittivity ǫ0. While we have chosen a uniform back-

ground model, the finite difference frequency domain formulation is expressive enough

to include any arbitrary background model that might include multiple subsurface

layers and variable terrain. Given a set of anomalous conductivities underground,

σanomalous, a governing frequency, ω, and a known incident wave, uincident, we can

calculate the electromagnetic fields everywhere with the model, specifically, the com-

bination of ureflected, utransmitted, and uscattered. In PDE constrained optimization, we

search for the conductivities σanomalous in the model that predict measurements made

at the surface û. The anomalous conductivities are restricted to a known reconstruc-

tion domain, σanomalous ∈ Ωd, Ωd ⊂ Ω. The operator Md is defined to be a linear
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operator that maps from Ω to Ωd.

The modeling domain is illuminated by a sequence of plane waves that we use

as a first order approximation of sferics. Each sferic comes from a unique direction

of arrival and contains broadband frequency content. We take the observation of

a single sferic in the time domain to represent steady-state wave propagation. The

spatial scales of this work are small with respect to the free-space wavelength of

the illumination. Given that the model space is approximately 1
12

of a wavelength,

we assume that the steady state behavior is established quickly. We split each of

the broadband sferic illuminations into its frequency components via the Fourier

transform. We index the different frequency components and directions of arrival

jointly by a single index, j. Each of the J incident conditions represents illumination

by a plane wave from a specific incident direction and frequency. Each of these

illumination conditions leads to an independent model of the complex electromagnetic

field over the entire domain, uj ∈ CΩ. Furthermore, we assume that each of the

frequency components is independent and there are no non-linear interactions in the

physics model between frequencies and in the materials themselves.

Measurements of the field are taken at a set of R locations disjoint from the sub-

surface materials Ωr ⊂ Ω,Ωr∩Ωd = ∅. The operatorMr is defined as a linear operator

that maps the full domain Ω to the receiver set Ωr. We confine these observational

locations to the surface of the conductive half space in our model. From each illu-

mination condition, j, we make K independent, noise corrupted observations of the

electromagnetic field, ûjk ∈ CΩr. We assume an additive Gaussian noise model:

ûjk =Mrujk + ν, ν ∼ N (0,Σ2). (6.1)

6.1 The Discrete Model

There are many methods for solving or approximating the solution to Maxwell’s

equations for inhomogeneous environments. Two distinct classes exist for modeling

electromagnetic fields. Time domain methods find the solution to Maxwell’s equa-

tions as a direct function of time and include methods such as the finite diference time
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domain method (FDTD) [136], [79], finite volume (FV) methods [75], and discontinu-

ous Galerkin methods [64]. Frequency domain methods solve Maxwell’s equations for

a steady-state configuration at a single frequency and include Green’s functions [36],

finite difference frequency domain (FDFD) [30], finite element methods [148], and

multi-pole methods [129]. These frequency domain methods involve solving typically

large systems of linear equations in order to predict the electromagnetic waves at a

particular set of locations given a specific incident wave and material configuration.

All of these methods have been applied to model electromagnetic processes at VLF

wavelengths in conductive media [64], [34], [102], [30].

We select FDFD methods for approximating the solution to Maxwell’s equations

for two reasons: (1) the systems of equations for finite difference frequency domain

methods are simple to set up allowing us to focus on aspects of the inverse problem and

(2) FDFD methods are more flexible than Green’s function methods for incorporating

arbitrary inhomogenous media.

6.1.1 Maxwell’s Equations

We discretize the domain, Ω, in a regular grid and use the FDFD method to approxi-

mate the solution to Maxwell’s equations (6.5). After substituting in the constituent

relationships D = ǫE and µH = B, we solve Maxwell’s equations on a regular, charge

free (ρ = 0) grid.

∇ · E =
ρ

ǫ
(6.2)

∇ ·H = 0 (6.3)

∇× E = −µ∂H
∂t

+Ms (6.4)

∇×H = Js + σE +
∂ǫE

∂t
(6.5)
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We transform the last two equations to the frequency domain by taking their Fourier

transform, with e−iωt time dependence:

∇× E = iωµH +Ms (6.6)

∇×H = σE + iωǫE + Js. (6.7)

On a regular grid, and in charge-free simulations, it can be shown that the divergence

equations are satisfied in the solution of Maxwell’s curl equations [136].

Using the FDFD method, we discretize in space using a simple finite difference

stencil:
∂u

∂x
≃ ui − ui+1

∆x
(6.8)

In one dimension, we can represent this operator as a matrix-vector operation. We

represent the operator ∇ with a matrix:

∇x =
1

∆x

























−1 0 0 0 . . .

1 −1 0 0 . . .

0 1 −1 0 . . .
...

. . .

1 −1
0 1

























(6.9)

Dirichlet boundary conditions have been implemented; the boundary values of the

operand are set to zero.

6.1.2 Boundary Conditions

To truncate the simulation domain, we use the perfectly matched layer (PML) tech-

nique [10]. The original formulation of the PML introduces a special material at the

boundary of the domain to absorb outgoing waves and is commonly known as the

uniaxial PML. For the FDFD models in this work, the stretched coordinate PML

was used instead [126]. For the stretched coordinate PML, we modify the derivative
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Figure 6.2: At the top, a plot of the space stretching parameter α as a function of lo-
cation in the right half of the simulation domain. Only the right half of the simulation
domain is shown; the left half is a mirror image. At the bottom, a comparison of the
analytic Green’s function solution and the FDFD solution of the 1D electromagnetic
field from a point source is plotted. The affect of adding the space-dependent param-
eter α can be seen in the solution of the FDFD method near the domain boundary.

operator [113], [38]. We define the stretched coordinate derivative operator as

∇̃ =
1

1 + iα(x)

∂

∂x
+

1

1 + iα(y)

∂

∂y
+

1

1 + iα(z)

∂

∂z
. (6.10)

Adding this additional term to the derivative has the effect of introducing an attenua-

tion term that decreases the wave amplitude near the boundary of the computational

domain. If the loss term is chosen correctly, the wave is attenuated to zero at the

boundary and Dirichlet boundary conditions can be enforced with no reflections.

An example 1D simulation that compares the analytical Green’s function solution
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for an outgoing plane wave to the outgoing wave computed using the FDFD tech-

nique with a PML absorbing boundary condition is shown in Figure 6.2. The FDFD

solution closely matches the analytic solution given by the Green’s function. Near the

boundary, the absorbing layer attenuates the outgoing wave so that the amplitude is

zero at the boundary and there are no reflections.

The PML parameter α increases linearly at a fixed rate and is chosen via a brute

force search. The rate of increase is a strong function of both the frequency of

simulation ω, and the grid size ∆x. A database of these parameters was computed

and kept for reuse between simulations.

6.1.3 Extension to Multiple Dimensions

The discussion of finite difference operators has been restricted to one dimensional

models thus far. Extending the model to 2D, and even 3D can be done in a straight-

forward manner, however with each increase in dimension, the size of the system

increases exponentially.

To reach more dimensions, we use simple matrix operators. Conceptually it is

easy to think of the 2D grid of electromagnetic field values as a doubly-indexed array,

x[i,j]. Unwrapping this 2D array, i.e., stacking all of the columns of the array,

gives us a single 1D vector representing a 2D field. In other words, we represent the

electromagnetic fields on our grid as an n2 × 1 vector rather than an n × n array.

We express the derivative operators then as a matrix operation acting on this vector

representation of the grid.

∇xy = In ⊗∇x +∇y ⊗ In (6.11)

With these operations, it is simple to build large matrices for representing Maxwell’s

two curl equations. The PML described previously can be incorporated into the

1D operators and thus extended to two dimensions in a straightforward manner.

Constructing this gradient operator produces a large, sparse, asymmetric matrix.
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6.1.4 Plane Wave Excitation

We model sferics as a superposition of incident plane waves at multiple frequencies. A

coordinated set of sources can be introduced to the domain as Js and Ms as given in

equation 6.7. The total field, scattered field technique (TF/SF), [136], [79], provides a

method for introducing a known source field, a plane wave in this case, to the interior

of the simulation space. The TF/SF method also subtracts the field from the exterior

of the scattering domain to minimize reflections and interactions with the boundary

layers. Arbitrarily directed waves can be introduced of either transverse electric (TE)

or transverse magnetic (TM) polarization using this method.

6.1.5 Abstract Model

The FDFD model results in a linear system of equations for any given choice of

ω, ǫ, σ, µ, wave polarization, and incident direction. Explicitly, the model is a matrix

equation:
[

iωǫ+ σ ∇×
∇× iωµ

][

E

H

]

=

[

Js

Ms

]

. (6.12)

It is easier to represent this complicated set of terms as an abstract model parameter-

ized by the conductivities σ and indexed by the frequency and incident wave direction,

j:

Aj(σ)uj = sj. (6.13)

We combine the representation of the electric and magnetic fields into a single term

that represents both, u. The collection of sources used to describe an incident plane

wave collapses into a single term s, and the matrix relationship involving spatial

derivatives and material properties is simply represented by a matrix A.

6.1.6 Scattered Fields

The parameter σ is only partially known in these systems of equations. The goal of

subsurface electromagnetic imaging is to recover the proper values. If the matrix A
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incorporates the background, known model of the space, then we can add a conduc-

tivity perturbation with a diagonal matrix. We simplify this equation as shown in

Equation 6.14
[

A+ diag

([

σ

0

])]

u = s

Au+ σ ◦ u = s

(6.14)

The solution to this equation is an electromagnetic field that we describe as the

superposition of two fields, the background field, ub and the scattered field, us, where

ub satisfies the relationship of Equation 6.15. The circle (◦) represents the Hadamard

product or entry-wise multiplication between two vectors.

Aub = s. (6.15)

By combining (6.14) and (6.15) and our definition of the background and scattered

fields, we obtain Equation 6.16:

Asu+ σ ◦ us = 0. (6.16)

By Equation 6.16, we have rearranged and simplified the linear algebra to the point

that very few terms are involved so that we can highlight the key mathematical form

of the constraints imposed by Maxwell’s equations.

6.2 Optimization

In order to solve the subsurface imaging problem, we are after the optimal parameters

σ that match the observations û to the predictions of the model u. These relationships

must be satisfied for a host of models at different frequencies and incident directions of

arrival which are jointly indexed by j. Equation 6.17 gives electromagnetic subsurface
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imaging as an optimization problem in standard form.

argmin
σ

J
∑

j

‖ûj −Mruj‖22
subject to Ajuj + (MT

dσ) ◦ uj = 0 ∀j = 1, . . . , J

(6.17)

This optimization problem is not convex because of the σ ◦ u term in the constraint

equation. Since we do not have a guarantee on the sign of both σ and u, the set

described by this equation is not convex as can be easily seen by evaluating the

Hessian of the equation to reveal a indefinite matrix. Due to the non-convexity of

the problem, we cannot demonstrate in polynomial time that a unique optimum has

been obtained. Equation 6.17 is an optimization problem, specifically a least squares

problem, constrained by a set of PDEs that describe Maxwell’s equations.

6.3 Prior Work

Algorithms for approximating the solution to the electromagnetic inverse problem are

not new. PDE constrained optimization problems have been studied in many con-

texts from optimal control of fluids to airplane design. The topic of PDE constrained

optimization is too vast to review in great depth here, but we give an introduction

to the key concepts and general trends specifically as they apply to electromagnetic

subsurface imaging. Many aspects of large PDE constrained optimization problems

are covered in [14]. Further reviews of electromagnetic inverse problems can be found

in [3], while [61] provides a more detailed look at the frameworks necessary for elec-

tromagnetic inversion, data aggregation, the forward solver, and the inverse method.

A mathematical review of inverse problems and regularization can be found in [81].

The main challenges of PDE constrained optimization problems are that they

often result in large, poorly-conditioned systems of equations. As mentioned before,

these methods must estimate the parameters describing the system in addition to the

state of the system. In inverse problems such as electromagnetic subsurface imaging

and design problems, both the electromagnetic field in the simulation space must

be estimated in addition to the material parameters of interest. In optimal control
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problems, the driving sources must be determined in addition to the subsequent state

of the optimization problem. Furthermore, multiple criterion, multiple aspects of

the model may be of importance including frequency and or time dependence which

requires that the state of the PDE must be expanded to include the full frequency or

full time domain of interest which often leads to large spaces of unknown variables.

6.3.1 Model Selection

One of the crucial aspects of the electromagnetic inverse problem is the computational

model of the physics and the model of the Earth. The simplest model of the Earth is

a layered 1D model. This model has been used for magnetotelluric inverse problems

for many years [106]. Despite its simplicity, the 1D model provides many reasonable

computational advantages and continue to be used and developed [121], [118], [43].

The electromagnetics of a 1D model are simple compared to the more complicated 2D

and 3D models and the electromagnetic fields can be computed analytically. If the

number of layers is known ahead of time, these models can be solved with relatively

low computational complexity. However, determining the number of subsurface layers

in addition to the conductivities and depths is computationally difficult.

Pixel based models are a class of models where the model parameters at each

spatial point in the computational domain are modeled independently. These points

could be grid points in a finite difference method, polygons in a finite element method,

or grid points in a Green’s function method. These models offer the most flexibility

in terms of specifying the geometry of subsurface materials. As described in Section

6.1, we opt for a pixel based model.

The majority of pixel based methods are frequency domain methods; the forward

solvers operate at a single frequency and a single excitation. Time domain physics

models have also been considered and developed for electromagnetic inverse imaging

[75]. Time domain methods are difficult because they lead to very large systems

of coupled equations that change at every iteration. While these matrices often

have favorable block structure, the size of the systems may still be computationally

prohibitive. Many of these difficulties are addressed by using limited memory methods
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such as L-BFGS [75], [111].

6.3.2 Born Approximation

Scattering and perturbation problems have long been associated with approximate

methods. In electromagnetics, in cases where the magnitude of the scattering pertur-

bation is small, the Born approximation is often used to approximate the solution to

the electromagnetics [36]. The Born approximation is a linearization of the non-linear

interaction term between the material parameters and the electromagnetic field. It

is typically used in situations where approximate solutions are desired quickly [71].

Pre-computed solutions of the Born approximation can also be used in reduced order

methods to compress the set of equations necessary for electromagnetic imaging [29].

The Born approximation is often expanded with respect to the Green’s function

integral equation approach to electromagnetic modeling, but we can easily apply the

same concept to our implicit finite difference model of Maxwell’s equations.

Au+ σ ◦ u = b (6.18)

We expand our generalized form of Maxwell’s equations (6.18) about a perturbation

δσ, δu:

A(u+ δu) + (θ + δσ) ◦ (u+ δu) = b

Au+ Aδu + σ ◦ u+ σ ◦ δu + δσ ◦ u+ δσ ◦ δu = b.
(6.19)

Assuming that both the magnitude of the field perturbation δu and the parameter

perturbation δσ are small, we can ignore the influence of the second order term, δσ◦δu.
Without this term, the equation is linear in δσ, δu. We restate the Born approximation

concisely:

Au+ Aδu + σ ◦ u+ σ ◦ δu + u ◦ δσ ≃ b. (6.20)

Three variants of the Born approximation have been used for electromagnetic

subsurface imaging, specifically the Born Approximation (BA), Born Iterative Method

(BIM), and Distorted Born Iterative Method (DBIM) [47], [35]. These three methods

rely on the Green’s function formulation of Maxwell’s equations. A full description of
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Green’s functions in electromagnetics is beyond the scope of this thesis; more details

can be found in [36]. The Born approximation (BA) method refers to solving the

inverse problem once; to simply use the linear model to predict the scatterers. The

Born Iterative method solves the linear problem multiple times in order to get the

best approximation for the scatterers. The Distorted Born Iterative Method solves for

small perturbation iteratively and updates the model equations between iterations.

This method is more computationally difficult than the other two, but is known to

produce better results [46], [72].

6.3.3 Newton Based Methods

General non-linear optimization techniques have also been applied to the electromag-

netic inverse problem. These methods form a non-linear set of equations that define

the optimal point of the optimization problem and proceed by using Newton’s method

or an approximate Newton’s method in order to solve the non-linear equations.

Electromagnetic subsurface techniques involving Newton methods fall into two

generic categories: unconstrained and constrained optimization problems. In uncon-

strained optimization problems, the system of equations that governs electromagnetic

radio propagation are folded into the objective function. The optimization problem

then becomes a non-linear least squares problem which can be approached using

Gauss-Newton methods. A minimum is reached by taking steps in the negative gra-

dient direction of the objective function [61]. The function relating the conductivities

to the field measurements is often stiff and its derivatives which are necessary for

Gauss-Newton methods, both the Jacobian and the Hessian, are costly to evaluate

computationally [109], [110], [152], [120], [2], [128]. Methods for calculating the gra-

dients using adjoint operators have also been developed [58].

The model can also remain as part of the constraint set leading to constrained opti-

mization methods [73, 74, 15, 1, 87, 140]. A wide variety of numerical techniques have

been applied to both constrained and unconstrained problems including non-linear

conjugate gradients [120], Gauss-Newton iterations [2], and augmented Lagrangians

[1]. [73] develops many techniques for preconditioning the system of equations solved



CHAPTER 6. PDE CONSTRAINED OPTIMIZATION 56

at each iteration based on previous factorizations and Hessian approximations. These

preconditioning methods were explored in great detail for application to the methods

we develop in Section 7.3.2 but were ultimately unsuccessful for numerical reasons.

[86] adapted Gauss-Newton to include box-constraint sets similar to the constraint

sets explained in Section 7.1. [92] introduce a method that combines the simplicity of

proximal functions for non-smooth constraints and the efficiency and fast-convergence

properties of a Newton method. Full discussion and development of these techniques

is beyond the scope of this thesis.

Methods with increasing sophistication have also been developed such as the paral-

lel Lagrange-Newton-Krylov-Schur method for PDE constrained optimization [16, 15].

This method has only been applied to flow control problems, estimating the proper

inputs to a PDE constrained system, not finding internal parameters of the system.

The method is general and parallel, but does not explicitly exploit problem structure

in its parallelism. These methods have been extended to parameter estimation in

time domain wave inverse problems as well [7]. Again, these methods do not exploit

problem structure for parallel decomposability.

6.3.4 Contrast Source Method

The contrast source method is an extension of the unconstrained techniques [11].

The contrast source technique introduces a new term, the contrast-source term, χ,

that represents the scaled local product of the subsurface fields, u, and the subsur-

face material properties, σ and ǫ. The objective function is split into two terms, one

governing the state of the PDE, the other governing the state of the contrast source.

Minimization of the objective function proceeds by alternately updating u and χ

using conjugate gradients. Gradient vectors are computed by solving the adjoint

electromagnetics system. The contrast source inversion technique has been extended

to include finite difference methods [4], finite element methods [125], and multiplica-

tive regularization costs [149]. The contrast source method has been adapted for

low-frequency subsurface imaging applications as well [5].
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6.3.5 ADMM in PDE-Constrained Optimization

Many of the techniques that we develop in Section 7.3.2 use the Alternating Direc-

tion Method of Multipliers, a convergent technique for solving convex optimization

problems [20]. ADMM methods have been adapted to optimal control problems

that require non-smooth constraints in an elegant way [112]. These techniques offer

decomposability and parallelization based on the structure of the problem. ADMM

techniques have been applied to parameter estimation problems in diffusion equations

[80], [22] and optical diffusion equations [1].



Chapter 7

Algorithms

In the last chapter, we motivated electromagnetic subsurface imaging as a PDE con-

strained optimization problem. In this chapter, we will analyze the form of the op-

timization problem and describe several algorithms that can be used to approximate

the solution to this optimization problem. Finding the subsurface parameters requires

jointly estimating the material parameters σ ∈ R
Ωd and the full state, u ∈ C

Ω. We

state the optimization problem again for convenience.

argmin
σ

J
∑

j

‖ûj −Mruj‖22

subject to Ajuj + (MT
dσ) ◦ uj = 0 ∀j = 1, . . . , J

(7.1)

7.1 Noise and Regularization

For each of the J illumination conditions, many independent, noisy measurements

are made (6.1), ûjk, where j indexes the illumination condition and k indexes the

acquisition number. Minimizing the least squares distance between the observations

û and the model predictions u, can also be interpreted as minimizing the negative

expected log-likelihood of the error. We define the objective function as:

f(uj) = E
k

[

‖Mruj − ûjk‖22
]

. (7.2)

58
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This expression simplifies; incorporating information from k different independent ob-

servations of the same illumination can be handled by simple averaging. Therefore,

random noise associated with the measurement process is reduced as more indepen-

dent observations are made. Henceforth, we let û generally represent the mean of

many observations made at a particular incident wave condition.

It is important to note that a single set of conductivities, σ, is common to all of

the J electromagnetic models. All of the different frequencies and illuminations agree

on one set of frequency-independent parameters, σ, for the subsurface materials. As

stated, this problem is ill posed, meaning there may not be a unique set of parameters

σ that will satisfy this equation. It is typical to include a regularization penalty in the

objective function. Quadratic regularization or ℓ2-norm regularization is typical, but

total variation norms and ℓ1 norms have also been considered, [4], [146]. Our form

of regularization takes the restriction that σ is uniformly distributed in a bounded

region, σ ∼ U [0, γ], a non-linear, non-quadratic constraint.

σopt = argmin
σ∈R

∑

k ‖Mruj − ûj‖22
subject to Ajuj + (MT

dσ) ◦ uj = sj ∀ j = 1, . . . , J

0 ≤ σ ≤ σmax

(7.3)

The optimization problem given in (7.3) is the most complete form of electromagnetic

subsurface imaging. All subsequent algorithms directly address this optimization

problem.

7.2 Analysis of Optimization Problem

The electromagnetic subsurface imaging problem is difficult for two reasons: first, it

is not convex, second, it is large and poorly conditioned.

This optimization problem (7.3) is not convex since the model constraint is not

jointly convex in the model parameters, σ, and the model state, u. If we represent

this linear equation as a function, g(u, σ) = Au + σ ◦ u, we can derive the Hessian

with respect to u and σ. The Hessian of this function is indefinite which means it

has both positive, negative, and complex eigenvalues which ensures that it is not a
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convex constraint.

∇2g(u, σ) =

[

∂2g
∂u2

∂2g
∂u∂σ

∂2g
∂σ∂u

∂2g
∂σ2

]

=

[

0 MT
d

Md 0

]

(7.4)

Therefore, we cannot provide a guarantee that a local optimizer is a global optimizer

without finding each of the local optima.

7.2.1 Reduction

Equation 7.1 can be reduced to an even simpler form, allowing us to focus on the

salient features of the structure of the problem. Elimination clarifies the problem, but

in many practical implementations of the problem, such elimination is not efficient

and leads to longer solve times and increased memory requirements.

Maxwell’s equations are incorporated into the problem as constraint equation,

Au+ (Mdσ) ◦ u = s.

The operator Md maps the parameters σ to their proper locations in the full dis-

cretization grid, Ω. The number of parameters, d, is typically less than the number

of variables that describe the field solutions of the PDE, u. We can separate u into

two components, locations where there are parameters to estimate, u, and locations

where the parameters are fixed ū,

A

[

u

ū

]

+

[

σ ◦ u
0

]

=

[

s

s̄

]

.

Partitioning Maxwell’s equations in to four components, we get

[

A B

C D

][

u

ū

]

+

[

σ ◦ u
0

]

=

[

s

s̄

]

. (7.5)

Via the Schur complement, we can solve for ū in terms of u and eliminate the sampling
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operator from the problem,

(A− BD−1C)u+ σ ◦ u = s−BD−1s̄

ū = D−1(s̄− Cu)
(7.6)

Given any subset of conductivities, σ, that does not span the full space, Ω, we can

rearrange the equations to obtain a set of equations that removes the dependency of

the reconstruction domain sampling operator, Md. Taken together, we obtain the

reduced form of the optimization problem:

minimize ‖û−MrD
−1(s̄− Cu)‖22

subject to (A− BD−1C)u+ σ ◦ u = s

0 ≤ σ ≤ σmax

(7.7)

We can finally abstract (7.7) to the most generic form of the problem, where we can

incorporate D−1s into û and define the measurement operator,M =MrD
−1C

minimize ‖û−Mu‖22
subject to Au+ σ ◦ u = s

0 ≤ σ ≤ σmax

(7.8)

In the cases of interest, the imaging domain and the measurement domain are disjoint;

we do not directly measure the fields in the grid locations we are imaging. Therefore,

the measurement matrixM is not equivalent to the identity matrix, and is frequently

a dense matrix. This analysis makes the relationship between the unknown model

parameters, σ and the fields, u very clear; furthermore it allows us to rewrite any of

the imaging problems in general form. In the implementation of many solvers, it is

not necessary to explicitly take this elimination step. Evaluating D−1C gives rise to

a dense matrix which can be less efficient to work with than the sparse matrices A.
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7.2.2 Signs

As mentioned, in the general form of the problem (7.3) is not convex, however in

the reduced form, (7.8) we can see that if the sign of u is known, then the problem

becomes convex. If both u and σ are positive, the constraint Au + u ◦ σ = s is

equivalent to the linear-fractional family of functions which are known to be convex

[18].

At this point, we make the distinction between two families of problems, those

that exist entirely on the real plane, where u,A, σ ∈ R and those problems that exist

on the complex plane, where u,A ∈ C, σ ∈ R. In the real-only case, knowing the

sign of u allows us to rewrite the problem as a convex problem. In the complex

case, knowing the phase angle, arg(u), allows us to rewrite the problem as a convex

problem.

In the real-only case, we introduce the new variable, xk ∈ R, xk = ukσk so that

we have Au+ x = s. Given uk > 0, we can see that 0 ≤ xk/uk = σk ≤ σmax. Finally,

this can be split into two affine relations:

0 ≤ xk xk ≤ σmaxuk.

As is necessary, if the sign of uk is known to be negative, the relations become

0 ≥ xk xk ≥ σmaxuk.

Incorporation of this knowledge gives us a convex problem. Of course if the number

of unknowns exceeds the number of measurements, the optimal solution, but the

optimal value of the objective function does have a unique value.

In the complex case, we need to know the phase of u, i.e.arg(u) to make the

problem convex. We let φ = arg(u) and introduce rk ∈ R

rk = σk|uk| = σkℜ(uke
−iφk). (7.9)
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Then, using complex phases, we have that

0 ≤ e−iφkrk/|uk| ≤ σmax,

which can be split into two inequalities

0 ≤ r, r ≤ ℜ(eiφ ◦ u)σmax.

By incorporating these inequalities, we have convex constraints in the subsurface

electromagnetic problem and therefore can solve for a unique optimal value of the

problem.

7.2.3 Uniqueness

Even if the phase is determined in the imaging domain, we are still not guaranteed

to obtain a unique solution. Proper sampling of the field u is necessary in order to

uniquely determine the parameters σ. In the real-only case, each unknown σ needs to

be matched with a measurement. In the complex case, each complex measurement û

matches with two real-only values of σ. Even when the linear bounds are imposed on

the parameter σ, these subsampling ratios are required. If the number of observations

is less than the number of model parameters, we can identify a polytope of feasible

solutions that yield identical objective functions. In other words, we can identify a

feasible null space of the measurement operator.

Imagine the case where the number of observations matches the number of un-

known model parameters, m = n, and the measurement operator,M is full-rank and

invertible. In this case, we can chose u = M−1û to obtain the minimal objective

function value of zero. The unknown parameters σ can be found directly after sub-

stitution back into the set of constraint equations. Provided the observations come

from a strictly feasible solution, an optimal and unique set of parameters σ can be

obtained.

If more observations than unknowns are available, m < n, then we can obtain all

of u via a least squares projection: uopt = (MTM)−1MT û, which we assume to be
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full rank, therefore, there are no vectors unull such that Munull = 0 other than the

trivial vector, u = 0.

In the case that there are fewer observations than parameters, the measurement

operatorM contains a non-trivial null space that contains feasible solutions. In this

case, M is not invertible, but it has a pseudo inverse, M†. Still, there are vectors

ν :Mν = 0, ν 6= 0. If we choose u =M†û, we have a family of solutions, u+ ν that

give an equivalent objective function. For any of these solutions, we can find a set of

parameters σ that satisfy the following relationships:

0 ≤ θi = bi −
aTiM†û+ aTi ν

(M†û)i + νi
≤ γ

We obtain a feasible, bounded region for equivalent solutions that solve the optimiza-

tion problem.

7.2.4 Quadratically Constrained Quadratic Programming

Further analysis of the problem allows us to represent the problem in a different form

which opens up more solver possibilities. The analysis begins with the constraint

relationship:

σ ◦ u = w.

This relationship can equivalently be written in quadratic form,

[

u

σ

]T [

0 1
2

1
2

0

][

u

σ

]

− w = 0. (7.10)

The optimization problem given by Equation 7.1 can be rewritten as an indefinite

quadratically constrained quadratic program. Indefinite QCQP’s are known to come

from a family of NP-hard problems. Thus the true difficulty of solving the electromag-

netic subsurface imaging problem is clear; at best we can only hope to approximate

the solution in polynomial time.

The constraint equation representing Maxwell’s equations, Au+σ ◦u = s, can be
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re-expressed as a sequence of quadratic constraints over the joint space
[

u σ
]T

:

aTk u+

[

uk

σk

]T [

0 1/2

1/2 0

][

uk

σk

]

= sk.

The matrix, Q =

[

0 1/2

1/2 0

]

is a indefinite matrix; it has eigenvalues {1/2,−1/2}.

Identifying these constraint equations as quadratic constraints allows us to develop

this problem in the context of quadratically constrained quadratic programs (QCQP).

The subsurface imaging problem can then be rewritten using these indefinite

quadratic constraints.

minimize ‖û−Mu‖22

subject to

[

u

σ

]T [

0 1/2k

1/2k 0

][

u

σ

]

+ aku− sk = 0 k = 1, . . . , K

0 ≤ σ ≤ σmax

(7.11)

The row vectors ak correspond to the kth rows of the matrix A. The matrices used

for the quadratic constraint are described using a shortened notation; the matrices

are of full size, and the 1/2k terms are in the appropriate location to multiply uk and

σk and 0 are zero matrices of appropriate size.

As stated, (7.11) is a non-convex optimization problem which is clear from the

indefinite quadratic constraints, as such, it is an NP-complete problem for which

polynomial time algorithms with optimality guarantees have not been discovered.

7.3 Solution Techniques

In this section we describe seven solution techniques that can be used to approximate

the solution to optimization problems with identical mathematical form as the non-

convex subsurface electromagnetic imaging problem given in (7.3). These methods

include the sequential linear approximation, artificial source, split field, split-σ, phase
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split, bi-projection, and semidefinite relaxation methods. The artificial source, split

field, phase split, and bi-projection methods are all based on the alternating directions

method of multipliers, a technique for solving convex optimization problems [20].

The sequential linear approximation and semidefinite relaxation methods are other

techniques for approximating the solution to non-convex optimization problems.

7.3.1 Sequential Linear Approximation

In the sequential linear approximation, we solve a sequence of convex problems in

which linear approximation of the non-convex constraint Au+σ◦u = s is substituted.

Incremental updates for u and σ are found by solving the optimization problem with

linear, convex constraints; the linear model is updated after each iteration.

We implicitly define the constraint equation as a function:

g(u, σ) = Au+ (MT
dσ) ◦ u = s. (7.12)

The first order Taylor expansion of g(u, σ) is given as:

g(u+ δu, σ + δσ) ≃ g(u, σ) +∇ug(u, σ)
Tδu +∇σg(u, σ)

T δσ. (7.13)

More explicitly:

g(u+δu, σ+δσ) ≃
(

A+ diag(MT
dσ)
)

u+(A+diag(MT
dσ))δu+diag(MT

d δσ)u (7.14)

For the Helmholtz wave equation, this linearization is often called the Born approx-

imation [35] and gives small error if the magnitude of the perturbation, δσ, and the

ratio between the scattered wave and the background wave, δu
u
, are small. It is convex

in the incremental update terms δσ and δu. More discussion of the Born approxima-

tion and related methods is given in Section 6.3.2.

In each iteration, an update to the subsurface materials, δσ, is found for each of

the J illumination conditions. Each of these updates is aggregated, averaged, and

added to the current estimate of the conductivity parameters, σm. Updates to the
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fields, δu, are not added to the model. Instead, we compute new background fields

at each iteration based on the current set of parameters σ. To ensure that the Born

Approximation is not violated, δσ is restricted to a trust region, enforced by an ℓ∞

ball, ‖δσ‖∞ ≤ γ. The update δσ is scaled by the parameter α and added to the current

estimate of the subsurface materials σ. The full algorithm is given in Algorithm 7.3.1.

The algorithm iterates over the data several times to reach a stable estimate of the

subsurface materials.

Algorithm 7.3.1 Sequential Linear Approximation (SLA)

Require: σ1 ← 0
1: for m = 1, 2, . . . do

2: um
j ←

[

Aj + diag(MT
dσ

m)
]−1

sj

3:

[

δuj
, δσj

]

← argmin ‖ûj −Mr

(

um
j + δuj

)

‖22
subject to (Aj + diag(MT

dσ
m))(um

j + δuj
)

+diag(um
j )
(

MT
d δσj

)

= 0
0 ≤ σm + δσj

≤ σmax

‖δσj
‖∞ ≤ γ

4: σm+1 = σm + α 1
J

∑J
j=1 δσj

5: end for

A custom solver was written for the internal convex optimization problem that

appears in step 3 of Algorithm 7.3.1 using ADMM techniques. A convex solver based

on these techniques permits accurate solution of the optimization problem with fewer

matrix factorizations than an interior point solver. The ADMM solver developed

for Algorithm 7.3.1 differs from the ADMM algorithms discussed in the next section.

Each step of the sequential linear approximation is convex, therefore each subproblem

will converge to its optimal solution. In general, the sequential linear approximation

method is not guaranteed to converge to the global optimizer; at best it will find a

local optimum.
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7.3.2 ADMM Methods

The alternating directions method of multipliers is a convergent technique for solving

convex optimization problems [20]. Optimization problems with decomposable struc-

ture are well suited for ADMM solvers. The ADMM algorithm blends augmented

Lagrangians and dual ascent methods yielding convergent solvers that often have

components that can be solved in parallel. Compared to an interior point solver,

each iteration in the ADMM algorithm can be computationally cheaper, but more

iterations are typically needed to obtain satisfactory error.

The subsurface imaging problem is not convex, but ADMM algorithms have been

applied to non-convex optimization problems that are similar in form to the sub-

surface imaging problem, namely, non-negative matrix factorization [90], which has

applications in medical image registration and computer vision [12, 62].

Since ADMM solvers can exploit decomposable structure, it is often necessary

and beneficial to introduce new variables that do not change the optimal solution but

change the decomposability of the problem. That is, by introducing new constraints

that ultimately yield the same optimization problem, we can produce a solver that

requires fewer matrix factorizations. Such reduction of computational complexity per

iteration is attractive. If a method requires solving a new N ×N matrix equation at

each step, then it requires O(mN3) operations for m iterations. If an algorithm can

reuse the factorization, then for m iterations the cost is O(N3 + mN2) operations.

While this is generally not considered a change in big-O notation, it can still yield

substantial computational savings.

In this section, we explore five different ways of applying ADMM to the subsurface

imaging problem. The non-convex nature poses new challenges and requires careful

structuring to develop an efficient method.

While the subsurface imaging problem is not convex, it is “biconvex.” In the non-

convex constraint function, g(u, σ), when u is held constant, the function is linear in

σ and if σ is held constant, the function is linear in u. ADMM has been applied to

similar “biconvex” problems by splitting the optimization into two parts to exploit

this property. Three of the subsequent techniques split the optimization problem into

two general steps: first, σ is held constant while an optimal u is found, next u is held
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constant while an optimal σ is found.

Artificial Source

The artificial source method is named for the “artificial source” term introduced to

the constraint equations. We introduce a new variable, w ∈ CΩd :

wj = σ ◦ (Mduj). (7.15)

The new variable wj behaves as a source function in the subsurface domain, Ωd. With

this new variable, wj , our optimization problem can be stated as:

σopt = argmin
σ∈R

∑

j ‖Mruj − ûj‖22
subject to Ajuj +MT

dwj = sj

wj − σ ◦ (Mduj) = 0

0 ≤ σ ≤ σmax.

(7.16)

This problem is mathematically equivalent to the original optimization problem, but

lends itself to different algorithmic structure. The constraints are such that the prob-

lem is convex in u and w if σ is held constant, and convex in σ if u and w are held

constant.

Introducing the variable w allows us to find a true solution of Maxwell’s equation

at each iteration. The term w can be interpreted as a set of complex sources in the

subsurface domain Ωd. By the principle of reciprocity, we can always find a set of com-

plex sources that will reproduce the measurements observed at the surface. Through

the course of the optimization problem, we enforce that these complex sources can

be described as the local product of the electromagnetic field and a positive, real

conductivity, σ. The introduction of this term is very similar to the contrast source

method [4, 11]. Our ADMM algorithm is different from the contrast source method

in that it finds the optimum by solving a sequence of optimization problems, while

in the contrast source method, the objective function is typically minimized using

gradient or projected gradient techniques.
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To solve this optimization problem with ADMM requires solving a sequence of two

optimization problems, each with an analytic solution obtained by solving a single

linear system of equations. First, an update for u and w is calculated such that

Maxwell’s equations with the artificial sources w are satisfied. A penalty is added to

the objective function for violation of the definition of w with respect to u and σ.

Next, a new value of σ is computed so that it matches the current estimates of u and

w and is in the constraint set, C:

{σ ∈ C|0 ≤ σ ≤ σmax, σ ∈ R} (7.17)

Finding a solution for σ in the bounded, real, constraint set is done by applying the

saturation function, sat0,σmax
, defined in (7.18).

sata,b(x) =



















b x ≥ b

a x ≤ a

x otherwise

(7.18)

Finding a single σ enforces consensus among the J illumination conditions. Last, the

dual variable for the materials constraint, λ, is updated. The full algorithm is given

in Algorithm 7.3.2.

Algorithm 7.3.2 Artificial Source

Require: σ1 ← 0, λ1 ← 0
1: for m = 1, 2, . . . do

2:
[um+1

j , wm+1
j ]← argmin

u,w

1
2
‖Mruj − ûj‖22 + ρ

2
‖w − σm ◦ (Mdu) + λm

j ‖22
subject to Aju+MT

dw = sj
3: σm+1 ← argmin

σ
IC(σ) +

ρ
2

∑

j ‖wm+1
j − σ ◦ (Mdu

m+1
j ) + λm

j ‖22
4: λm+1

j ← λm
j + wm+1

j − σm+1 ◦ (Mdu
m+1
j )

5: end for

Algorithm 7.3.2 has two favorable properties: the update steps for uj, wj, and λj

can be performed in parallel and we can obtain the solution to each of the optimization

steps by solving a system of linear equations. The optimization problem in line 3 can
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be solved by first solving the unrestricted least squares problem, then projecting into

the convex set C, which can be done by simple thresholding. The downside of this

algorithm is that in each iteration, m, a matrix factorization is required to solve the

optimization problem of line 2.

Split σ

We can improve the performance of the artificial source method by enforcing con-

sensus at a different location in the algorithm. In the formulation given above, it

is possible that each illumination condition will produce a different estimate of the

optimal conductivity parameter, σ, outside the constraint set. When consensus is es-

tablished, one illumination condition that has an outlier estimate could substantially

skew the global estimate of the conductivity parameter σ. Since the consensus step

happens before the thresholding step, it is possible that values significantly outside

the constraint set can skew the estimate. Therefore, we introduce the split-σ method

as a method that enforces consensus after thresholding.

We introduce a new global variable, σ̃, that will enforce consensus after thresh-

olding on the local, model dependent estimates of the conductivity, σj . The split-σ

method has shown improved accuracy with respect to other methods.

Algorithm 7.3.3 Split σ

Require: σ̃1 ← 0, σ1
j ← 0, λ1 ← 0

1: for m = 1, 2, . . . do

2:
[um+1

j , wm+1
j ]← argmin

u,w

1
2
‖Mruj − ûj‖22 + ρ

2
‖w − σm

j ◦ (Mdu) + λm
j ‖22

subject to Aju+MT
dw = sj

3: σm+1
j ← argmin

σ
IC(σ)+

ρ
2

∑

j ‖wm+1
j −σ ◦ (Mdu

m+1
j )+λm

j ‖22+ ξ
2
‖σ− σ̃+ θmj ‖22

4: σ̃ = 1
J

∑

j(σj − θj)

5: θm+1
j ← θmj + σj − σ̃

6: λm+1
j ← λm

j + wm+1
j − σm+1 ◦ (Mdu

m+1
j )

7: end for



CHAPTER 7. ALGORITHMS 72

Split Field

If we introduce a new variable, vj ∈ CΩ, we can eliminate the necessity to factor

a large matrix at every iteration. At the optimal point, we will enforce that u =

v. Introducing an additional estimate of the electromagnetic field, v, allows us to

rearrange the algebra so that at each iteration changes in the material parameter σ

show up as changes in a diagonal matrix which is simple to solve. We introduce the

variable v into Maxwell’s constraint equation:

Ajuj + vj ◦ (Mdσ) = sj . (7.19)

We rewrite the optimization problem as:

σopt = argmin
σ

∑

j ‖Mduj − ûj‖22
subject to Ajuj + vj ◦ (Mdσ) = sj , ∀ j

vj − uj = 0

σ ∈ C.

(7.20)

We can apply ADMM to obtain Algorithm 7.3.4. This algorithm is similar to Algo-

rithm 7.3.2, except an additional update step is added for the surrogate field term,

v. The purpose of this reformulation is to save on computational cost associated

with factoring perturbations of the matrix A. To solve the update of line 3, we build

and compute the LU factorization of the matrix (MT
rMr + ρAT

j Aj + ξI) in the first

iteration and solve the system in subsequent iterations by reusing the pre-computed

factorization. Updates to u can be found in each iteration by solving the system for

different right hand sides which can be done in O(n2) time.

Updates for v (line 4) require factoring a matrix at every iteration since the value

of σ changes at every iteration, but the matrix is diagonal and can therefore be solved

in O(n) time. For this algorithm to work, we have to introduce a new dual variable

θ for our enforcement equation v − u = 0.

In this algorithm, the internal scaling parameters, ρ, ξ are not the same for the

two augmented Lagrangian terms. Selection of the parameters ξ and ρ is discussed
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Algorithm 7.3.4 Split Field

Require: ρ, û
Ensure: u, σ
1: u← 0, v ← 0, σ ← 0, λ← 0, θ ← 0
2: for m = 1 . . .M do

3:

um+1
j ← argmin

u
‖Mru− ûj‖22+
ρ
2
‖vmj − u+ λm

j ‖22+
ξ
2
‖Aju+ vm ◦ (MT

dσ
m)− sj + λm

j ‖22

4:
vm+1
j ← argmin

v

ρ
2
‖v − um+1

j + θm‖22+
ξ
2
‖Aju

m+1
j + v ◦ (MT

dσ
m)− sj + λm

j ‖22
5: σm+1 ← argmin

σ
IC(σ) +

ρ
2

∑

j ‖Aju
m+1
j + vm+1 ◦ (MT

dσ)− sj + λm
j ‖22

6: λm+1
j = λm

j + Aju
m+1
j + vm+1

j ◦ (MT
dσ

m+1)− sj
7: θm+1

j = θmj + vm+1
j − um+1

j

8: end for

in Chapter 8.

Phase Split

The phase split method takes advantage of the property that if the sign or phase of the

electromagnetics is known, then the optimization problem is convex. Since generally,

the phase is unknown, the convex problem is solved iteratively and the estimate of

the phase is updated from iteration to iteration. At a single frequency, the phase

split method can be developed so that only a single matrix factorization is necessary

at the beginning of the algorithm. Unfortunately, in the problems of interest where

we wish to incorporate information from multiple models, a matrix factorization for

each model must be calculated at each iteration.

For simplicity, we consider the reduced form of the reals-only imaging problem,

(7.8), where we have the real-only term, x ∈ R, x = u ◦ σ. The true solution can be

found in the well-determined case if the sign of u is known in addition to the sign of
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σ.
minimize ‖u− û‖22
subject to Au+ x = s

x = u ◦ σ
0 ≤ σ ≤ σmax

If we know the sign of u, we can then eliminate σ from the equations and obtain a

set of equations with linear inequality bounds. For example, if u ≤ 0, then:

minimize ‖u− û‖22
subject to Au+ x = s

0 ≥ x ≥ uσmax

which is a convex program. The solution is not unique as described in Section 7.2.3. If

we can accurately guess the sign of u, then the problem can be solved efficiently. The

solution is unique if the number of measurements is equal to the number of unknowns.

In the complex case, this can be generalized to guessing the proper phase angle

of u. We use the variable r ∈ R defined in Equation 7.9. Furthermore, we let φ be

the phase angle of the electromagnetic field, u, φ = arg(u). The complex form of the

reduced electromagnetic subsurface imaging problem can be expressed in a form that

highlights the phase dependence:

minimize ‖u− û‖22
subject to Au+ r ◦ eiφ = b

0 ≥ r ≥ ℜ(e−iφ ◦ u)σmax

φ = arg(u).

(7.21)

If there is a good way to estimate φ, this problem can be solved efficiently in a small

number of iterations. The solution is unique provided the number of measurements

exceeds the number of model parameters. If the phase is not known, we can derive

a method that updates the phase in between iterations. The convergence of this

method cannot be proven, but it exhibits suitable performance in practice.

The phase split method does not generalize gracefully to multiple illuminations.
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Since the multiple models achieve consensus on a single conductivity parameter, σ,

we must reintroduce this variable to the problem in order to coordinate multiple

models. Once a consensus variable across models, σ, is introduced, reapplying the

same factorization of the projection matrix at every iteration is no longer possible.

Indefinite Projection

Alternatively, we can view the problem as one in which we are trying to find a

collection of variables that lie at the intersection of two sets. We analyze the real-

only case first and take the collection of variables, x, u, σ ∈ R, as described in Section

7.2.2. The first constraint set is that the variables fit Maxwell’s equations and are in

our regularized set, the standard constraints for the problem:

Au+ x = s, 0 ≤ σ ≤ σmax (7.22)

Second, we want the three variables to belong to the set defined by the indefinite

quadratic constraint,

x = σ ◦ u. (7.23)

We use ADMM to find a set of variables that lies at the intersection of these two sets:

minimize ‖Mu− û‖22 +
∑

k Ix=uσ(x̃k, ũk, σ̃k)

subject to Au+ x = b

x = x̃, u = ũ, σ = σ̃

0 ≤ σ ≤ σmax.

(7.24)

Finding u, x, σ that belong to set described in 7.22 has been discussed in the

context of other methods. It consists of linear projection and application of the

thresholding function. Finding x̃, σ̃, ũ that belong to the set defined in 7.23 can also

be done exactly using a method from control theory. As discussed in Section 7.2.4

we can rewrite the constraint, u ◦ σ = x in quadratic form as given in Equation 7.10.

The solution to a quadratically constrained quadratic program can be solved even if
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the matrices involved, Ai in (7.25), are not positive semidefinite.

minimize zTA0z + 2bT0 z + c0

subject to zTA1z + 2bT1 z + c1 ≤ 0
(7.25)

The S-Lemma guarantees that there exists a z ∈ Rn that satisfies:

zTA0z + 2bT0 z + c0 < 0, zTA1z + 2bT1 z + c1 ≤ 0

if and only if there exists no λ ≥ 0 such that:

[

A0 b0

bT0 c0

]

+ λ

[

A1 b1

bT1 c1

]

� 0.

These alternatives guarantee that if a solution exists, it is unique and strong duality

holds between the dual problem and the primal problem. Once we have found the

optimal dual variables, the optimal primal variables can be found with a simple linear

equation as a consequence of the first-order KKT optimality conditions:

(A0 + λA1)z = −(2b0 + λ2b1)

Solving this equation for z is guaranteed to return the optimal solution for z. A

simple algorithm to find the solution can be constructed using bisection. We search

for a λ : 0 ≤ λ ≤ 2 by bisection and verifying the constraint equation.

Using this projection method, we can describe an ADMM algorithm that involves

projection over the indefinite cone. This algorithm is described in Algorithm 7.3.5.

In this algorithm, there are two key features. First, all of the steps can be solved

and evaluated exactly. The first step, the update for (u, x) is a linearly constrained

quadratic program which can be solved efficiently with a single matrix equation. Sec-

ond, only the right-hand side of the equation, s, changes from iteration to iteration,

therefore a cached copy of the factorization or a recycled Krylov subspace technique

could be used to efficiently solve these equations with minimal computational over-

head.



CHAPTER 7. ALGORITHMS 77

Algorithm 7.3.5 Indefinite Projection

1: ũ← 0, w̃ ← 0, σ̃ ← 0, λu ← 0, λw ← 0, λσ ← 0
2: for m = 1, 2, . . . do

3:
(um+1, wm+1)← argmin

u,w
‖Mru− û‖22 + ρ

2
(‖u− ũ+ λu‖22 + ‖w − w̃ + λx‖22)

subject to Au+ w = b

4:
(σm+1)← argmin

σ
‖σ − σ̃ + λσ‖22

subject to 0 ≤ σ ≤ σmax

5:

(ũm+1
k , w̃m+1

k , σ̃m+1
k )← argmin

ũ,w̃,σ̃
‖um+1

k − ũk + λm
uk
‖22+

‖wm+1
k − w̃k + λm

wk
‖22+

‖σm+1
k − σ̃k + λm

σk
‖22

subject to w̃k =

[

uk

σ̃

]T [
0 1/2
1/2 0

] [

ũk

σ̃k

]

6: λm+1
u ← λm

u + um+1 − ũm+1

7: λm+1
w ← λm

w + wm+1 − w̃m+1

8: λm+1
σ ← λσ + σm+1 − σ̃m+1

9: end for

Complex Indefinite Projection

The above strategy for projection into the set uσ = x is guaranteed for x, σ, u ∈ R.

In subsurface imaging, we are concerned with the case where w, u ∈ C, σ ∈ R. To

incorporate this constraint, we optimize over R5 and have two indefinite quadratic

constraints.

We form the variable z =
[

ℜ(u) ℑ(u) ℜ(w) ℑ(w) σ
]T

∈ R5. We can then

express the optimization problem as:

minimize zTA0z + 2bT0 z + c0

subject to zTAℜz + 2bTℜz + cℜ ≤ 0

zTAℑz + 2bℑz + cℑ ≤ 0.

In these equations, A0 is the identity matrix and the matrices Aℜ and Aℑ are given
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as:

Aℜ =



















0 0 0 0 1/2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1/2 0 0 0 0



















Aℑ =



















0 0 0 0 0

0 0 0 0 1/2

0 0 0 0 0

0 0 0 0 0

0 1/2 0 0 0



















and b0 = −z + λz. We use the fixed versions of u, w, σ to form z and the appropriate

dual variables for λz. The vectors bℜ and bℑ are fixed as bℜ =
[

0 0 1
2

0 0
]

,

bℑ =
[

0 0 0 1
2

0
]

. Lastly, cℜ = cℑ = 0 and c0 = bT0 b0.

Solution of this problem can be found efficiently using a cutting -plane ellipsoid

method or an interior point method. There are several circumstances in which this

particular projection fails to find the correct answer. This method is often slower due

to the number of projection sub-problems that must be solved.

7.3.3 Semidefinite Relaxation

Developing electromagnetic subsurface imaging as a quadratically constrained quadratic

program allows us to use a semidefinite embedding in order to approximate the so-

lution. To express electromagnetic subsurface imaging as a semidefinite program

(SDP), we introduce the variable z =
[

u σ
]T

to simplify notation. We can express

the quadratic form, zTPz, a scalar quantity, as Tr(zTPz) = Tr(PzzT ). At this point,

we substitue a variable Z = zzT so that the quadratic constraints become Tr(PjZ).

We can equivalently rewrite the quadratic objective function as

Tr(

[

MTM 0

0 0

]

X) +

[

2ûTMT

0

]

x.
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With these variable transformations, we can rewrite our problem in standard SDP

form:

minimize Tr(

[

MTM 0

0 0

]

Z) +

[

2ûTMT

0

]

z

subject to Tr(PkZ) +

[

ak

0

]T

Z − bk = 0 k = 1, . . . , K

0 ≤ σ ≤ σmax

zzT = Z.

(7.26)

The constraint zzT = Z is not convex, but we can replace this constraint with its

semidefinite relaxation in order to obtain a convex problem:

[

Z z

zT 1

]

� 0.

Solution of the semidefinite relaxation is not guaranteed to give the exact solution
[

u θ
]T

. If the matrix, Z, obtained after solving the semidefinite relaxation has rank

1, then the semidefinite relaxation is tight and the optimal solution has been found for

the original QCQP. In the case that there is only one quadratic constraint equation,

the relaxation is known to be tight as guaranteed by the S-Lemma, but in the case of

multiple constraint equations, the relaxation is not guaranteed to be tight. Numerical

solutions to these SDP problems were obtained using CVX [70, 69] and SeDuMi [135].



Chapter 8

Numerical Results

The seven solvers described in Chapter 7 were implemented and tested in both Matlab

and Python and in sequential and distributed environments. A sequence of small tests

were developed to explore the performance and speed of these algorithms and establish

a subsampling principle. The best performing algorithms in these tests were further

developed and tested in electromagnetic subsurface imaging problems. We present

the subsampling results in Section 8.3. General electromagnetic subsurface imaging

results for the four best-performing solvers from Section 8.3 are presented in Section

8.1.

8.1 General Performance

The four solvers developed for electromagnetic subsurface imaging, sequential linear

approximation, artificial source, split field, and split-σ, were compared directly using a

sequence of 1000 Monte Carlo trials over randomly generated subsurface conductivity

profiles.

An example of a true conductivity profile and the conductivity profiles recov-

ered using each of the four algorithms, sequential linear approximation, artificial

source, split field, and split-σ, are shown in Figure 8.1. The true conductivities are

at the top; a clear block structure can be seen in this randomly-generated profile.

80
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The profile was embedded in a homogeneous Earth model with background conduc-

tivity of 0.001(S/m). For each of these reconstructions 16 illumination conditions

were used, 4 frequencies (1 kHz, 3kHz, 13 kHz, 50 kHz) and 4 angles of incidence

(75◦, 45◦,−45◦,−75◦).
In each of these reconstructions, several common features can be seen. Each of the

reconstruction methods accurately image the small, shallow conductivity void near

the surface around 150 in the lateral direction. Furthermore each of the methods

reveal a general sense of lower conductivity in the left one-third of the profile with

stronger conductivities in the right two-thirds of the profile. As is typical, the se-

quential linear approximation gives results that are smoother, i.e., transitions from

one material to another are generally smooth. The artificial source method has a

blotchy characteristic, a typical feature of these reconstructions. The split-σ gives

the reconstruction with the best accuracy for this particular profile. Inspecting the

results from a single profile give us a heuristic understanding of how the algorithms

perform, but a more rigorous, randomized testing procedure is necessary to directly

compare the algorithms.

8.1.1 Random Profile Generation

Random profiles were generated using a simple idea. The material structures of

interest for imaging are typically made of discrete values. Construction of the random

profiles is a four step process. We generate a square block structured profile by taking

the inverse Haar transform of a square domain where the lowest Haar coefficients are

given random values. The large block-structure profile is rotated by an arbitrary angle

and truncated to the size of the reconstruction domain. An interpolation to match the

grid points is then implemented using a simple nearest-neighbor interpolation scheme.

The unique conductivity values are then replaced with conductivity values obtained

from the uniform distribution U [0, σmax]. The histogram of conductivity values across

the 1000 profiles from a randomly selected pixel is shown in Figure 8.2. The Kullback-

Leibler divergence for each pixel with respect to the uniform distribution is calculated

and also shown in Figure 8.2. The plotted Kullback-Leibler divergences are very low
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Figure 8.2: Statistics of conductivity profiles. On the left is a histogram showing
the probability distribution of the conductivity values for a single pixel in the im-
age domain. On the right is the Kulback-Leibler divergence between the observed
distribution of the pixels and the ideal uniform distribution.

indicating that the distribution of conductivity values is close to the ideal uniform

distribution.

8.1.2 Relative Entropy Metric

To evaluate the performance of the algorithms, we evaluate the Kullback-Leibler

divergence between the distribution of the errors and the distribution of the errors

under the worst case scenario. We define the worst case scenario as the case in which

our model produces nothing but random numbers. That is, in the worst case,

σestimated ∼ U [0, σmax].

Subsequently, the distribution of the error between this worst case and the true con-

ductivity is given by the triangle distribution, which is the difference between two
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variables identically drawn from the uniform distribution. That is, we have

Q(σworst case − σtrue) ∼ T [−σmax, σmax].

Using histogram techniques, we can estimate the probability distribution of the

error P (σestimated−σtrue). We then evaluate the accuracy of our method by computing

the distance between these two probability distributions using the Kullback-Leibler

divergence, DKL, where

DKL(P ||Q) =
∑

i

log

(

P (i)

Q(i)

)

P (i).

The error distribution is estimated using 1000 Monte Carlo trials over 1000 different

randomly-generated conductivity profiles.

The Kullback-Leibler divergence can be computed for the error distribution over

each pixel in the subsurface reconstruction domain. The higher the Kullback-Leibler

divergence, the greater the distance between the distributions and the higher the

accuracy. A Kullback-Leibler divergence of 0 means the distributions are identical,

and the algorithm performs no better than a random number generator.

Numerical results showing the accuracy for each pixel in the reconstruction do-

main for each of the four methods fully developed for electromagnetic subsurface

imaging are shown in Figure 8.3. In this plot, the artificial source method (upper

right plot) provides the best accuracy for estimating the subsurface conductivity near

the surface, up to a depth of 60 meters. The split-σ method gives the highest accuracy

throughout the reconstruction domain, which is clear evidence that rejection filtering

of the intermediate conductivities yields more optimal results. The sequential linear

approximation and the split field methods exhibit similar performance; both methods

allow better estimation of the conductivities closer to the surface than those at depth.

In addition to the detailed pixel-by-pixel comparison, we can compute the average

residual ‖σestimated − σtrue‖2 across the entire reconstruction domain. In Figure 8.4,

the average residual is plotted as a function of execution time for each of the four

algorithms. We can compare the runtime and performance of each of the algorithms.



CHAPTER 8. NUMERICAL RESULTS 85

 

 

DKL

Split-σ

Meters

Split Field

D
ep
th

(m
)

Meters

Artificial SourceSequential Linear Approximation

D
ep
th

(m
)

100 200 300 400100 200 300 400

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

50

100

150

50

100

150

Figure 8.3: Comparison of relative entropies from each of 4 methods. The relative
entropy metric indicates the average accuracy for each pixel of the reconstruction
domain using each algorithm. Low Kullback-Leibler divergence means the error of
the algorithm is distributed according to the worst case, a random number generator.
Low Kullback-Leibler divergence implies low accuracy, while high Kullback-Leibler
divergence implies high accuracy. Each of the methods is most accurate near the
surface. The split-σ method gives the best performance throughout the reconstruction
domain.
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The artificial source and sequential linear approximation methods provide similar final

residuals in the same runtime. The split field method allows 1000 iterations in much

less time, about an order of magnitude less, than the other methods. The split-σ

method provides the lowest final residual on average, and still runs about twice as

fast as either the sequential linear approximation or the artificial source method.

8.2 Model Parameters

In the previous section, we established the accuracy of the algorithms under a single

set of conditions. In this section, we explore the accuracy as certain model parameters

vary.

8.2.1 Background Conductivity

The assumed background conductivity of the Earth can dramatically affect the perfor-

mance of the algorithms. As mentioned previously, the skin depth of electromagnetic

waves in the Earth is inversely proportional to the square root of the background con-

ductivity, σbackground. As the conductivity increases, so does the rate of attenuation

while the depth of penetration decreases. For high conductivities, it is difficult to get

any information about the subsurface conductivity parameters, therefore estimating

subsurface conductivity is often inaccurate.

In Figure 8.5 the average accuracy as a function of depth is shown as the back-

ground conductivity varies over five orders of magnitude, from σbackground = 0.0001

S/m to σbackground = 1 S/m. We see that for low conductivities, i.e., σbackground < 0.1,

our ability to estimate subsurface conductivity remains unchanged. There is an in-

teresting effect between σ = 0.001 S/m and ∼ σ = 0.08 S/m, namely a weakening

of our ability to estimate subsurface conductivities. This effect can be explained

by the varying relationships between the skin depths and the exact frequencies used

in the inversion and in addition demonstrates the ill-posed nature of the problem;

determining the ideal solution is sensitive to the parameter inputs.
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8.2.2 Noise

Real-world measurements are often corrupted by noise. In this section, we explore

the effect of decreasing the signal to noise ratio of the observations used as inputs

into the algorithms.

û =Mu+ ν, ν ∼ N (0, σnoise).

Signal to noise ratio (SNR) is simply defined as the logarithm of the ratio of the norm

of the signal to the norm of the noise:

SNR = 20 log10

(‖M(u)‖2
‖ν‖2

)

.

To control the signal to noise ratio, a set of random numbers is generated and scaled

in order to properly control the signal to noise ratio exactly. For each conductivity

profile, the true electromagnetic fields are calculated using the full model of Maxwell’s

equations. Then, a random noise vector is generated and scaled to ensure the proper

SNR. The SNR set to be constant across all frequencies and directions of arrival. One

set of noisy measurements is produced for each SNR and each conductivity profile.

The noise performance for each of the algorithms is surveyed in Figure 8.6. In

each of these subplots, the average accuracy as measured by the Kullback-Leibler

divergence is shown as a function of depth and background conductivity. It is clear

that in these plots the performance of the algorithms dramatically decreases as the

signal to noise ratio drops. Noisy measurements mean worse performance.

For the sequential linear approximation, the performance stays relatively uniform

through signal to noise ratios of 50 dB. Below 50 dB, the ability of the algorithms

to determine the conductivity parameters underground is significantly compromised.

With such high noise levels, the probability that the underground conductivity can

be accurately determined using these noisy measurements is unclear. Numerical noise

leads to some spurious results and apparent accuracy at lower signal to noise ratios,

but those are suspect.

Noise is present in these measurements in two forms. First, noise of the system

contributes to noisy measurements of any of the sferics themselves. Each individual
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sferic has a signal to noise ratio of around 40 dB. The noise here comes from back-

ground atmospheric processes and receiver noise. Averaging over more sferics will

improve the signal to noise ratio in this regard. Nominally, the noise decreases with

the square root of the number of measurements that are included. Thus if each sferic

observation is at 40 dB SNR, then averaging over a million sferics will increase the

SNR by 60 dB, giving us a 100 dB SNR.

The second source of noise with respect to measurement is alignment error. When

the VLF antennas are set up in the field, we typically align them such that one axis

of the antenna is in the north south direction. The sensitivity of the measurements

with respect to this dimension is unknown.

8.3 Subsampling

As discussed in Section 7.2.3, the solution to the electromagnetic subsurface imag-

ing problem cannot be uniquely determined if fewer measurements are made than

conductivity unknowns to estimate. We wish to establish a subsampling principle

that governes the relationship between the numer of sensors and measurements nec-

essary at or near the surface and the number of estimable conductivity parameters

underground. The space of possibilities is large for true electromagnetic subsurface

imaging problems. For this reason, we develop a set of surrogate problems of smaller

dimension, but similar mathematical form in order to test the algorithms developed

in Chapter 7. Only the best performing algorithms were later used and applied to

the full electromagnetic subsurface imaging problem.

With the insight gained from general problems, we also turn our attention to the

feasible solvers and assess the performance as the amount of input information is

varied in the problem.

8.3.1 Global Testing Procedure

The key change for these testing procedures is that the total number of unknowns

was greatly reduced. Rather than use a 199 × 199 2D space to represent the grid of
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Figure 8.6: Noise performance of four electromagnetic subsurface imaging algorithms.
Average accuracy is given as a function of depth and background conductivity,
σbackground, using the Kullback-Leibler divergence metric given in Section 8.1.2. The
sequential linear approximation and the split field method show the best performance
with respect to noise. Both of these algorithms are able to image accurately down to
SNR of 45 dB. The split-σ and artificial source methods are very sensitive to noise
and for signal to noise ratios less than 90 dB, these methods perform poorly.
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u, we developed models both for u ∈ R20 and u ∈ C20. In Chapter 7, algorithms for

both the Real-only plane and complex plane were developed. We test in the real-only

and complex domains accordingly and chose random, sparse matrices A ∈ R20×20,

A ∈ C20×20, respectively. A domain sampling operatorMd

For each algorithm, 200 sparse random matrices for A ∈ Rn×n, u∗ ∈ Rn, σ∗ ∈ Rm

are generated. Random sampling matrices, Mr and Md for û and σ respectively,

are chosen such that the sets of r, d are random and non-overlapping in the case that

|r|+ |d| < n. In the case that |r|+ |d| > n some of the measurement points overlap

with the material domain points.

8.3.2 Global Results

To test these algorithms, a sequence of test problems was run in order to establish

baseline performance. Random matrices with the proper structure were created,

measurements taken, and algorithms applied.

We report the average relative error for the field term, u, ‖u−u∗‖
‖u∗‖

and the average

relative error for the parameter term, σ, ‖σ−σ∗‖
‖σ∗‖

for the problems over all combinations

of number of measurements, |s|, and number of parameters |d|. Results for problems

solved in the real-only regime and complex only regime are presented in Figure 8.7

and Figure 8.8 respectively. Timing results are shown in Figure 8.9 and Figure 8.10

for the real and complex solvers respectively.

These numerical results demonstrate that each of the algorithms is able to obtain

the fundamental 1 to 1 subsampling ratio. That is, each of the algorithms can recover

the proper conductivity results with very high accuracy if the number of measure-

ments is greater than or equal to the number of unknowns. In both Figures 8.7 and

8.8 a white line indicates the proposed critical subsampling ratio.

In the complex case, a general 1 to 2 subsampling principle is observed. The ap-

parent improvement in subsampling ratio is primarily due to the change in parameter

spaces; we are estimating real-only parameters from complex measurements. If we

treat the real and imaginary components as independent measurements, then a 1 to

1 subsampling ratio holds.
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Figure 8.7: Results from 200 Monte Carlo iterations of the algorithms developed for
optimization over the real plane. The 1 : 1 line is plotted to indicate the transition
between over-sampling and under sampling to highlight the change in performance of
these algorithms. It is noteworthy that the SDP relaxation method performs poorly
when the entire problem is incorporated, but using the elimination method described
in Section 7.2.1 SDP relaxation performance improves dramatically.
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Several of the algorithms demonstrate high accuracy even when the subsampling

principle is violated. That is, even when there are fewer measurements than un-

knowns, the algorithm is able to obtain a proper estimate of the unknowns. The

seeded methods, both sign split seeded and phase split seeded demonstrate the high-

est accuracy away from the boundary. This accuracy is largely due to the fact that

prior information is given to these solvers, namely the signs and phases respectively

of the artificial sources. This additional information directly yields better perfor-

mance. Other solvers, specifically the ADMM based solvers incorporate a mild self-

regularization. The proximal operator provides mild regularization during the initial

iterates of the algorithm, which translates to apparent improvements in performance.

The exact nature of these subsampling transitions is still open to further explo-

ration. Results from high dimensional statistics indicate that as the problem size

grows, determining the transitions between success and failure of the algorithm, es-

pecially subsampling algorithms improves. Extending the results to higher dimensions

could lead to interesting results in inverse problem design. Furthermore, the random

nature of the creation of these problems ensures that the measurements are truly

independent measurements of the state of the PDE. In the electromagnetic imaging

problems, the measurements are not truly independent, measurements along the sur-

face are often highly correlated. The effects of these correlations are seen in Section

8.3.3.

Last we comment about the timing of these algorithms. The SDP problems are

all solved using CVX and SeDuMi. The computational cost of these algorithms largely

depends on the square of the problem dimensions and on the conditioning of the

systems. Poorly conditioned systems require more internal iterations and thus more

time. The projection methods generally perform slowly because projection into the

indefinite and complex sets defined in Sections 7.3.2 and 7.3.2 is costly computa-

tionally. Projection into the indefinite set can be done using a simple and efficient

bisection procedure, but the algorithm must be run for each parameter triplet sepa-

rately. Projection into the complex indefinite set is not unique and requires setting up

an interior point solver to approximate the solution. Running multiple interior point

solvers at each iteration is computationally costly. Custom solvers were implemented
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in Matlab, but it is possible that further optimization including custom compiled code

yield significant improvements. One possibility is to use a tool like CVXGEN [103].

Unfortunately SDP is not currently supported. Due to the timing of these indefinite

projection methods, they were not further developed for electromagnetic subsurface

imaging. The SDP solvers also present difficulties when trying to scale to the problem

sizes reasonable for electromagnetic subsurface imaging.

8.3.3 Electromagnetic Results

To investigate the effect of sampling on the results with respect to electromagnet-

ics, we ran three tests to investigate the improvement as more information is added

to the electromagnetic subsurface imaging problem. We investigated adding more

information by varying the number of frequencies, the number of incident wave direc-

tions, and the number of sensors used near the surface in experiments with transverse

electric illumination.

Two series of experiments were run. In the first, we jointly vary the number of

incident directions and the number of frequencies. In the second, we vary the number

of frequencies and the number of sensors at the surface.

Frequencies and Angles of Incidence

Results are computed and displayed for both the artificial source method (Figure

8.11) and the split field method (Figure 8.12). We take these results to be indicative

for all of the solvers.

Two general trends can be observed in these plots. Firstly, as the number of

illumination angles increases, the general accuracy of subsurface imaging does not

increase. As information from different angles of incidence are added, the accuracy of

the algorithm does not improve. We can further verify this trend by computing the

covariance between different illumination angles. Waves incident from different direc-

tions of arrival are strongly correlated, therefore more observations in this dimension

does not add much unique information to the electromagnetic imaging process. A

small increase can be seen from one to two angles of incidence, but the improvement
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to 6 angles of incidence is negligible. Secondly, as more frequencies are added to

the computation, the general accuracy as a function of depth increases. As more fre-

quency information is added to the electromagnetic inverse problem, more information

is incorporated and our ability to estimate the subsurface conductivity parameters

increases. These results are generally mirrored between the artificial source and split

field methods, however the split field method shows a more dramatic improvement in

depth imaging as more frequencies are added.

Frequencies and Number of Sensors

Results are compared for the split-σ method (Figure 8.14) and the artificial source

method (Figure 8.13). These plots demonstrate that adding more sensors to the set

of surface measurements only makes minute improvements after a point. A significant

improvement in performance can be observed between 1 and 11 sensor measurements,

but the improvement between 11 sensors and 21 sensors is not as pronounced. Adding

up to 71 sensors does not dramatically improve the performance. However, adding

more frequencies to the optimization problem does make a significant difference to

the performance of the algorithm. The average performance of the artificial source

method of Figure 8.13 is similar to the performance of Figure 8.11. The performance

of the split-σ method shows dramatic improvement with very high accuracy for re-

covering the subsurface parameters once 6 frequencies have been added to the scope

of the optimization problem.

Oversampling in Frequency

Given the trend demonstrating that adding more frequencies to the optimization

problem improves the accuracy of the optimization problem more than any other di-

mension, we ran a test to determine the accuracy for a situation when there are more

measurements than unknowns. We achieve this oversampling scenario by adding ob-

servations at enough frequencies to over determine the problem. Figure 8.15 shows

the relative entropy of the error and shows that even in this over determined case,

when there are more observations than unknowns in the problem, we are still not able
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Figure 8.11: Subsampling profiles for artificial source method as a function of number
of frequencies and number of incident angles. Greater improvement is seen as more
illumination frequencies are added to the problem than when more angles of incidence
are added to the problem.
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Figure 8.12: Subsampling profiles for split field method as a function of number of
frequencies and number of incident angles. Greater improvement is observed as more
illumination frequencies are added to the problem than when more angles of incidence
are added. The split field method reconstructs with higher accuracy at greater depth
than the artificial source method.
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Figure 8.13: Subsampling profiles for artificial source method as a function of the
number of frequencies and sampling sites at the surface of the Earth. A clear im-
provement is made when more than 1 sensor is used for imaging. With 11 or more
sensors, adding more frequencies to the imaging problem makes a greater improve-
ment than adding more sensors.
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Figure 8.14: Subsampling profiles for split σ method as a function of the number of
frequencies and sampling sites at the surface of the model Earth. A clear improvement
is visible when more than 1 sensor is used for imaging. With 11 or more sensors,
adding more frequencies to the imaging problem makes a greater improvement than
adding more sensors. The split-σ method obtains substantially better performance
at depth than the artificial source method.
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Figure 8.15: Relative entropy across 100 Monte Carlo iterations of the split-σ algo-
rithm where observations at 100 frequencies evenly spaced between 100hz and 50kHz
are incorporated. The accuracy of this algorithm is high, but not perfect. Error is
still present in the reconstructed results.

to achieve perfect reconstruction in the electromagnetic subsurface imaging problem.

Despite over sampling in the frequency space, the samples are not completely inde-

pendent; adding more frequencies does not continue to add new, unique information

to the problem. The ill-posed nature of the problem is once again apparent as it

becomes clear that the systems of equations governing different frequencies of propa-

gation are not completely independent. Despite regularization, the problem is poorly

conditioned, and unique results cannot be obtained.

Distributed Optimization

In Chapter 7, distributed algorithms for electromagnetic subsurface imaging were

described. Timing information about these electromagnetic subsurface imaging al-

gorithms was collected through the course of these Monte Carlo trials. Using these

timing results we are able to establish a weak scaling law for the algorithm, which
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shows that as we expand the size of the problem and distribute it across more com-

puters, the average execution time does not appreciably change. The weak scaling

law gives the average execution time as the work per processor remains constant. For

our algorithm, we are able to distribute more incident wave conditions across more

computers in roughly constant time as shown in Figure 8.16. Slow down in the algo-

rithms can be observed as more incident wave conditions are added. The algorithm

is built such that it has bulk-synchronous structure; all independent processes must

wait for completion of all the other independent processes before moving on. There-

fore, if one particular node takes more time, the entire algorithm slows down. Since

solving Maxwell’s equations at different frequencies can take different lengths of time

due to numerical precision issues, adding more frequencies to the problem can slow

down the algorithm in addition to increased communications overhead.
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Figure 8.16: Weak scaling laws for the artificial source and split field methods. Shown
are the projected time for sequential programs (red line) and the measured time for
distributed problems (blue line). The split field method is much faster in general
than the artificial source method. A slight slow-down can be observed in the split-
field method primarily due to the fact that solving Maxwell’s equations at different
frequencies can take different amounts of time.



Part IV

Conclusion

107



Chapter 9

Discussion and Future Work

9.1 Discussion

In this thesis, we have discussed two important aspects of electromagnetic subsurface

imaging: data processing and model inversion. In the two parts, we have explored the

novel application of optimization algorithms to model and solve the unique problems

associated with electromagnetic subsurface imaging at VLF using natural sources.

9.1.1 Sparse Separation

The application of sparse separation to the VLF dataset is a novel application of

otherwise well known techniques in signal processing. By exploiting the sparsity

in the occurrence of sferics and transmitters in the data record, we have developed

an efficient method for separating different content types in our observations. Un-

like many of the subsampling results presented in [53], [105], we discover that the

wavelet-Fourier dictionary has a constant minimum achievable subsampling ratio. As

we change the number of wavelet levels that are included in the sparse separation

routine, the probability of recovering the sparsest solution by solving the minimum ℓ1

problem remains remarkably constant. Direct measurement of these undersampling

ratios provides confidence that when we apply this method to real data, we have

achieved the sparsest solution. On average, real data separation examples produce
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sparse representation vectors on the order of around 10%, which is less than the 20%

sparsity boundary between accurate and inaccurate reconstruction in the overcom-

plete wavelet-Fourier dictionary. This method has already been met with success

across multiple recordings in the VLF data library. It shows promise for both under-

standing the data and providing a means of compression; if the sparse vectors have

a sparsity on the order of 10%, then we obtain a 5:1 compression ratio of the data,

which could increase the throughput of a distributed network for monitoring VLF sig-

nals around the globe. This method for expanding over the Fourier and the wavelet

bases is only one potential candidate for representation. Larger representation spaces

could be used to improve accuracy and separation as we discuss below.

Development of solvers for sparse separation strongly informed our discussion and

development for electromagnetic subsurface imaging methods. The detailed study

of linear ill-posed problems made the study of nonlinear ill-posed problems clearer

and more rigorous. Furthermore, the detailed involvement in the development of algo-

rithms for sparse separation motivated much of the more detailed work for distributed

optimization development for electromagnetic subsurface imaging.

9.1.2 Electromagnetic Subsurface Imaging

Electromagnetic subsurface imaging is an old area of research. The main contributions

of this thesis include the development and formulation of electromagnetic subsurface

imaging across multiple frequencies and angles of incidence as a PDE-constrained op-

timization problem, applying and adapting optimization algorithms to fit the specific

mathematical structure of the problem, implementing these algorithms, and testing

the algorithms across a wide range of models and acquisition conditions. The re-

peated Monte Carlo evaluation algorithms for electromagnetic inverse problems is

another unique feature of the work presented here. To the author’s knowledge, no

other work in the literature has provided testing results as complete as the numerical

results presented here. These Monte Carlo results give us more confidence and more

information about the performance of the algorithm than solving any single problem

as is typically presented in the literature.
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Our Monte Carlo iterations show that the methods developed in this thesis have

different accuracy profiles. Under normal conditions, σbackground = 0.001 S/m and 16

illumination conditions, the sequential linear approximation estimates conductivity

with reasonable accuracy to depths of 70 meters. The artificial source method and the

split field method image to 50 and 70 meters respectively. The split-σ method achieves

the highest accuracy and is able to estimate the conductivity with reasonable accuracy

down to 150 meters. In none of these cases is recovery of the true conductivity

guaranteed. Furthermore, we can establish that of the algorithms, the split field

method is the fastest; it takes about an order of magnitude less time than any of the

other methods.

As we change the background parameters, i.e., introduce noise and change the

background conductivity, the performance of the algorithms changes. The sequential

linear approximation and the split field method prove to be the most robust to noise

and enable the estimation of conductivities at depths of 70 meters when the SNR is as

low as 45 dB. The artificial source and split-σ method show much higher sensitivity

to noise and are tolerant only of the smallest amount of noise 100 dB SNR before sub-

surface estimates are severely compromised. Increasing the background conductivity

also decreases the accuracy of estimates at depth. For background conductivities

greater than 0.1 S/m, Monte Carlo tests with the artificial source method show that

the accuracy of estimating subsurface perturbations decreases dramatically.

Lastly, we note the general trend that as more information dimensions - more

sensor measurements, more frequencies, more directions of arrival - are added to the

optimization problem, the accuracy of estimating subsurface conductivity perturba-

tions at depth increases. The most dramatic increase can be seen as a greater number

of illumination frequencies are added to the problem. This result makes sense since

in our tests, observations across multiple frequencies show less correlation than ob-

servations from more directions of arrival. The inclusion of 36 different illumination

conditions in the artificial source method enables accurate imaging to 90 meters.

Using the split-σ method, 6 frequencies and 71 sensors at the surface enables highly

accurate reconstruction throughout the subsurface profile, or down to 150 meters. In-

terestingly, adding more and more frequencies does not lead to a condition in which
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there is enough information unique determination of the subsurface conductivities. If

we add observations from 100 different frequencies and 30 sensors at the surface we

have a total of 3000 observations in order to determine 2000 subsurface conductivity

parameters. Even in such a case, the exact conductivity parameters are not recovered

as shown in Figure 8.15.

Incorporation of more illumination conditions comes at very low computational

cost. The distributed nature of the algorithm allows us to add more illumination

conditions to the problem in parallel. It takes roughly the same amount of time to

compute the solution with 36 illumination conditions as it does with 1 illumination

condition.

While our results are limited to the 2D electromagnetic models, this limitation is

primarily due to computational resource issues. The optimization methods discussed

herein can be extended to 3D models with no additional mathematical work.

9.2 Future Work

9.2.1 Real Data

The primary goal of electromagnetic subsurface imaging is to actually find mineral

resources underground and map the location and distribution of real conductivity

anomalies. Data from real field campaigns has been collected during the course of

this thesis work, but have not been used for subsurface electromagnetic imaging for

two reasons. Firstly, the results of Section 8.3.3 make it clear that many simulta-

neous, phase-locked sensors are required for field observations. The majority of the

field campaigns conducted during the course of this thesis did not involve such a set

of sensors. At most, there were times when three sensors were simultaneously record-

ing data in a synchronous fashion. Due to this lack of synchronous data, and low

number of sensors, noise and data quality issues are prohibitive for truly performing

electromagnetic subsurface imaging with the data collected.

Secondly electromagnetic subsurface imaging is intrinsically a three-dimensional

process. The methods and algorithms developed here can be extended to problems
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involving three dimensional geometry. The main difference is the incorporation of a

three-dimensional solver for Maxwell’s equations. All attempts to do so have run into

numerical difficulties. The intrinsic difficulty of computing solutions to Maxwell’s

equations for three dimensional situations has been acknowledged in the literature

[126], [37]. Some approaches have been tried, but most lie beyond the scope of this

thesis. Some attempts have been made for small three dimensional problems, but

even for these small problems, computational costs are high and the final results are

coarse.

9.2.2 Three Dimensional Solvers

Three dimensional electromagnetic models of arbitrary material parameters remain

a difficult problem in computational physics. The optimization methods developed

in this thesis can be extended to a 3D model without any change in mathematical

structure. At this point, a 3D computation of Maxwell’s equations with any sufficient

resolution is beyond our computational capabilities. Recent work has confirmed this

upper bound on the size of 3D electromagnetic problems [134]. Developments have

been made for finite difference frequency domain solvers and preconditioners for fully

3D models [126]. Further development of these results is necessary to adapt these

methods to low-frequency, sub-wavelength simulations with unstructured media. Al-

ternative methods may be more computationally feasible, adaptable, and accurate,

for example finite element methods [37].

9.2.3 Hierarchical Convolutional Methods

Separation and identification of disparate content types is a continuously evolving

field in machine learning. Sparse separation over a mathematically defined dictionary

consisting of the wavelet transform and the Fourier transform is a first step toward

understanding and decomposing the data. Work in this thesis has shown that moving

to bigger, larger data sizes can improve the performance of this specific algorithm as is.

However, the algorithm reaches a natural upper limit with respect to its computability

and tractability. As the size of the data exceeds 223 ≃ 8 × 106, the run time of the
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algorithm slows to hundreds of seconds, that is, it takes more than 6 times realtime

processing. This relative processing time can only get worse as larger data sizes

are used as the theoretical worst case computational complexity grows as O(n3).

Parallelization strategies can help the computational burden of these methods and

ultimately allow for bigger datasets to be processed, but parallelization will not lower

the computational complexity of the algorithm.

However, more powerful data decompositions are available. It is possible to learn a

dictionary of the elements in the data themselves using more powerful, more adaptive

algorithms. One such promising approach is given by the set of methods commonly

know as convolutional nets [91]. This computational model allows for a compact rep-

resentation of the data; a sequence of convolutional weights w that represent the data

in a sparse way are found through iterative application of the ℓ1 minimization problem

and a weight update step. Multiple layers of this algorithm have been wrapped into

nonlinear layers and used for powerful image recognition applications. Extensions

of these methods to the large scale time series data available at VLF may lead to

interesting results and data decomposition principles.
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[29] Stéphanie Chaillat and George Biros. FaIMS: A fast algorithm for the inverse

medium problem with multiple frequencies and multiple sources for the scalar

Helmholtz equation. Journal of Computational Physics, 231(12):4403–4421,

June 2012.

[30] N Champagne. FDFD: A 3D finite-difference frequency-domain code for electro-

magnetic induction tomography. Journal of Computational Physics, 170(2):830–

848, July 2001.

[31] Venkat Chandrasekaran and MI Jordan. Computational and statistical tradeoffs

via convex relaxation. Arxiv Preprint, pages 1–27, 2012.

[32] JT Chen, US Inan, and TF Bell. VLF strip holographic imaging of lightning-

associated ionospheric disturbances. Radio Science, 31(2):335–348, 1996.

[33] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic

decomposition by basis pursuit. SIAM Review, 43(1):129, June 2001.

[34] M. Chevalier and U. Inan. A Technique for Efficiently Modeling Long-Path

Propagation for Use in Both FDFD and FDTD. Antennas and Wireless Prop-

agation Letters, 5(1):525–528, December 2006.

[35] W C Chew and Y M Wang. Reconstruction of two-dimensional permittivity

distribution using the distorted Born iterative method. IEEE transactions on

medical imaging, 9(2):218–25, January 1990.



BIBLIOGRAPHY 118

[36] W.C. Chew. Waves and fields in inhomogeneous media. IEEE Press series on

electromagnetic waves. IEEE Press, 1999.

[37] Weng Cho Chew and Li Jun Jiang. Overview of Large-Scale Computing: The

Past, the Present, and the Future. Proceedings of the IEEE, 101(2):1–15, 2012.

[38] Weng Cho Chew and William H. Weedon. A 3D perfectly matched medium

from modified maxwell’s equations with stretched coordinates. Microwave and

Optical Technology Letters, 7(13):599–604, September 1994.

[39] Hansen Per Christian. Rank-Deficient and Discrete Ill-Posed Problems. Society

for Industrial and Applied Mathematics, 1998.

[40] Hugh J. Christian, Richard Blakeslee, Dennis Boccippio, William Boeck, Den-

nis Buechler, Kevin Driscoll, Steven Goodman, John Hall, William Koshak,

Douglas Mach, and Michael Stewart. Global frequency and distribution of

lightning as observed from space by the Optical Transient Detector. Journal of

Geophysical Research, 108(D1):4005, 2003.

[41] MB Cohen and RK Said. Mitigation of 50 60 Hz power line interference in

geophysical data. Radio Science, 45(July):1–12, 2010.

[42] Morris B. Cohen, Umran S. Inan, and Evans W. Paschal. Sensitive broadband

ELF/VLF radio reception with the AWESOME instrument. IEEE Transactions

on Geoscience and Remote Sensing, 48(1):3–17, January 2010.

[43] Steven Constable and Chester J. Weiss. Mapping thin resistors and hydro-

carbons with marine EM methods: Insights from 1D modeling. Geophysics,

71(2):G43–G51, March 2006.

[44] Benjamin R. T. Cotts and Umran S. Inan. VLF observation of long ionospheric

recovery events. Geophysical Research Letters, 34(14):L14809, July 2007.



BIBLIOGRAPHY 119

[45] Tie Jun Cui, A.A. Aydiner, Weng Cho Chew, D.L. Wright, and D.V. Smith.

Three-Dimensional Imaging of Buried Objects in Very Lossy Earth by Inver-

sion of VETEM Data. IEEE Transactions on Geoscience and Remote Sensing,

41(10):2197–2210, October 2003.

[46] T.J. Cui, W.C. Chew, A.A. Aydiner, and S. Chen. Inverse scattering of two-

dimensional dielectric objects buried in a lossy earth using the distorted Born

iterative method. IEEE Transactions on Geoscience and Remote Sensing,

39(2):339–346, 2001.

[47] T.J. Cui, W.C. Chew, X.X. Yin, and W. Hong. Study of Resolution and Super

Resolution in Electromagnetic Imaging for Half-Space Problems. IEEE Trans-

actions on Antennas and Propagation, 52(6):1398–1411, June 2004.

[48] I Daubechies. The wavelet transform, time-frequency localization and signal

analysis. IEEE Transactions on Information Theory, 36(5):961–1005, 1990.

[49] David Donoho and Jared Tanner. Observed universality of phase transitions

in high-dimensional geometry, with implications for modern data analysis and

signal processing. Philosophical Transactions of the Royal Society A: Mathemat-

ical, Physical and Engineering Sciences, 367(1906):4273–93, November 2009.

[50] David L. Donoho and Iain M. Johnstone. Minimax estimation via wavelet

shrinkage. The Annals of Statistics, 26(3):879–921, June 1998.

[51] David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algo-

rithms for compressed sensing. Proceedings of the National Academy of Sciences

of the United States of America, 106(45):18914–9, November 2009.

[52] David L Donoho, Arian Maleki, and Andrea Montanari. The noise-sensitivity

phase transition in compressed sensing. IEEE Transactions on Information

Theory, 57(10):6920–6941, October 2011.

[53] David L Donoho and Jared Tanner. Precise undersampling theorems. Proceed-

ings of the IEEE, 98(6):913–924, June 2010.



BIBLIOGRAPHY 120

[54] D.L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Informa-

tion Theory, 41(3):613–627, May 1995.

[55] D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,

52(4):1289–1306, April 2006.

[56] D.L. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse over-

complete representations in the presence of noise. IEEE Transactions on Infor-

mation Theory, 52(1):6–18, January 2006.

[57] D.L. Donoho and Xiaoming Huo. Uncertainty principles and ideal atomic

decomposition. IEEE Transactions on Information Theory, 47(7):2845–2862,

2001.

[58] O Dorn, H Bertete-Aguirre, and JG Berryman. A nonlinear inversion method

for 3D electromagnetic imaging using adjoint fields. Inverse, 1523, 1999.

[59] Richard Duda, Peter Hart, and David Stork. Pattern Classification. John Wiley

and Sons, 2001.

[60] S.L. Durden, J.D. Klein, and H.A. Zebker. Polarimetric radar measurements of

a forested area near Mt. Shasta. IEEE Transactions on Geoscience and Remote

Sensing, 29(3):444–450, May 1991.

[61] Gary D. Egbert and Anna Kelbert. Computational recipes for electromagnetic

inverse problems. Geophysical Journal International, pages no–no, January

2012.

[62] J Esser, M Moller, S Osher, G Sapiro, and J Xin. A convex model for non-

negative matrix factorization and dimensionality reduction on physical space.

IEEE transactions on image processing : a publication of the IEEE Signal Pro-

cessing Society, pages 1–15, March 2012.

[63] M Jalal Fadili, Jean-Luc Starck, Jerome Bobin, and Yassir Moudden. Image

decomposition and separation using sparse representations: an overview. Pro-

ceedings of the IEEE, 98(6):983–994, June 2010.



BIBLIOGRAPHY 121

[64] F. R. Foust, M. Spasojevic, T. F. Bell, and U. S. Inan. Modeling scatter-

ing from lightning-induced ionospheric disturbances with the discontinuous

Galerkin method. Journal of Geophysical Research, 116(A12):1–13, December

2011.

[65] J.J. Fuchs. Recovery of exact sparse representations in the presence of bounded

noise. IEEE Transactions on Information Theory, 51(10):3601–3608, October

2005.

[66] Vidya Ganapati, Owen D. Miller, and Eli Yablonovitch. Inverse electromag-

netic design for subwavelength light trapping in solar cells. IEEE Photonics

Conference 2012, 2(c):191–192, September 2012.

[67] D. I. Golden, M. Spasojevic, and U. S. Inan. Determination of solar cycle varia-

tions of midlatitude ELF/VLF chorus and hiss via automated signal detection.

Journal of Geophysical Research, 116(A3):1–15, March 2011.

[68] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Studies

in the Mathematical Sciences. Johns Hopkins University Press, 1996.

[69] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs.

In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning

and Control, Lecture Notes in Control and Information Sciences, pages 95–110.

Springer-Verlag Limited, 2008.

[70] M Grant and S. Boyd. CVX: Matlab software for disciplined convex program-

ming, version 1.21. http://cvxr.com/cvx, April 2011.

[71] Julien Guillemoteau, Pascal Sailhac, and Mickael Behaegel. Fast approximate

2D inversion of airborne TEM data: Born approximation and empirical ap-

proach. Geophysics, 77(4):WB89, 2012.

[72] T.M. Habashy, R. W. Groom, and B.R. Spies. Beyond the Born and Rytov

Approximations: A Nonlinear Approach to Electromagnetic Scattering. Journal

of Geophysical Research, 98(B2):1759–1775, 1992.



BIBLIOGRAPHY 122

[73] E. Haber and U.M. Ascher. Preconditioned all-at-once methods for large ,

sparse parameter estimation problems. Inverse Problems, 17(6):1847, 2001.

[74] Eldad Haber, Uri M. Ascher, and Douglas W. Oldenburg. Inversion of 3D

electromagnetic data in frequency and time domain using an inexact all-at-once

approach. Geophysics, 69(5):1216, 2004.

[75] Eldad Haber, Douglas W. Oldenburg, and R. Shekhtman. Inversion of time

domain three-dimensional electromagnetic data. Geophysical Journal Interna-

tional, 171(2):550–564, November 2007.

[76] Aapo Hyvrinen, Juha Karhunen, and Erkki Oja. Independent Component Anal-

ysis. J. Wiley, New York, 2001.

[77] U. S. Inan, S. a. Cummer, and R. a. Marshall. A survey of ELF and VLF

research on lightning-ionosphere interactions and causative discharges. Journal

of Geophysical Research, 115:A00E36, June 2010.

[78] U.S. Inan and A.S. Inan. Electromagnetic Waves. Prentice Hall, 2000.

[79] U.S. Inan and R.A. Marshall. Numerical Electromagnetics: The FDTD Method.

Numerical Electromagnetics: The FDTD Method. Cambridge University Press,

2011.

[80] Kazufumi Ito and Karl Kunisch. The augmented Lagrangian method for param-

eter estimation in elliptic systems. SIAM Journal of Control and Optimization,

28(1):113–136, 1990.

[81] Bangti Jin and Peter Maass. Sparsity regularization for parameter identification

problems. Inverse Problems, 28(12):123001, December 2012.

[82] MP Johnson, US Inan, and DS Lauben. Subionospheric VLF Signatures of

Oblique (Nonducted) Whistler-Induced Precipitation. Geophysical research let-

ters, 26(23):3569–3572, 1999.



BIBLIOGRAPHY 123

[83] H.M. Jol. Ground Penetrating Radar Theory and Applications. Elsevier Science,

2008.

[84] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Frontiers

in Applied Mathematics. CAMBRIDGE - USA, 1995.

[85] Kerry Key, Steven Constable, Lijun Liu, and Anne Pommier. Electrical image

of passive mantle upwelling beneath the northern East Pacific Rise. Nature,

495(7442):499–502, March 2013.

[86] Dongmin Kim, Suvrit Sra, and Inderjit S Dhillon. Tackling Box-Constrained

Optimization via a New Projected Quasi-Newton Approach. SIAM Journal on

Scientific Computing, 32(6):3548, 2010.

[87] Hyun Keol Kim and Andreas H Hielscher. A PDE-constrained SQP algorithm

for optical tomography based on the frequency-domain equation of radiative

transfer. Inverse Problems, 25(1):015010, January 2009.

[88] Seung-jean Kim, K Koh, M Lustig, Stephen Boyd, and Dimitry Gorinevsky. An

interior-point method for large-scale l1-regularized least squares. IEEE Journal

of Selected Topics in Signal Processing, 1(4):606–617, December 2007.

[89] D. S. Lauben, U. S. Inan, and T. F. Bell. Precipitation of radiation belt elec-

trons induced by obliquely propagating lightning-generated whistlers. Journal

of Geophysical Research, 106(A12):29745, 2001.

[90] D D Lee and H S Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–91, October 1999.

[91] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convo-

lutional deep belief networks for scalable unsupervised learning of hierarchical

representations. In Proceedings of the 26th Annual International Conference on

Machine Learning - ICML ’09, pages 1–8, New York, New York, USA, 2009.

ACM Press.



BIBLIOGRAPHY 124

[92] Jason D Lee, Yuekai Sun, and Michael A Saunders. Proximal Newton-type

methods for convex optimization. pages 1–25, June 2012.

[93] Nicolas Lee, Sigrid Close, Ashish Goel, David Lauben, Ivan Linscott, Theresa

Johnson, David Strauss, Sebastian Bugiel, Anna Mocker, and Ralf Srama. The-

ory and experiments characterizing hypervelocity impact plasmas on biased

spacecraft materials. Physics of Plasmas, 20(3):032901, 2013.

[94] N. G. Lehtinen and U. S. Inan. Radiation of ELF/VLF waves by harmonically

varying currents into a stratified ionosphere with application to radiation by a

modulated electrojet. Journal of Geophysical Research, 113(A6):A06301, June

2008.

[95] Nikolai G. Lehtinen and Umran S. Inan. Full-wave modeling of transionospheric

propagation of VLF waves. Geophysical Research Letters, 36(3):L03104, Febru-

ary 2009.

[96] L. O. Lø seth and B. Ursin. Electromagnetic fields in planarly layered

anisotropic media. Geophysical Journal International, 170(1):44–80, July 2007.
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