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Abstract

Modeling very low frequency (VLF, 3-30 kHz) wave propagation in the near-Earth

space environment remains a significant computational challenge. Because of the

strong inhomogeneity of the lower ionosphere, VLF waves propagating in these regions

have an extremely wide range of wavelengths, varying from nearly zero to nearly

infinite for some angles of propagation. In addition, the characteristic frequencies of

a plasma may be an order of magnitude higher than the VLF frequencies of interest,

presenting another significant problem for time-domain numerical solution methods

because explicit time-stepping techniques are limited by the largest characteristic

frequency present in the system. Further, the plasma environment of the Earth’s

magnetosphere is frequently unstable to VLF waves, leading to a wide variety of

natural emissions and wave amplification phenomena, many of which are still poorly

understood due to the relative paucity of high-resolution data and the difficulty in

developing a complete theory of nonlinear wave growth in unstable plasmas.

Early approaches to modeling wave propagation in this environment relied heav-

ily on analytical approximations under some set of physical assumptions, e.g., by

linearization or by assuming the solution is smooth or slowly varying.

In recent years, supported by rapid increases in computer processing speed and

memory capacity, so-called continuum time-domain methods such as the finite differ-

ence time-domain (FDTD) method have gained in popularity for solving such prob-

lems. FDTD works by discretizing a space into a finite number of points and then

evolving the solution on these points forward in time, step by step. Although useful

and simple, the FDTD method is not an ideal solution method for modeling wave

propagation in the inhomogeneous ionosphere. FDTD is only accurate when both the
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wavelengths present in the system are adequately sampled, and when the FDTD grid

is highly regular (plaid) and slowly varying. The consequence of these restrictions is

that when using FDTD, ionospheric propagation problems of any reasonable size are

either severely underresolved in the short-wavelength regions of the space (meaning

the solution is inaccurate), or overresolved in the long-wavelength regions of the space

(meaning the memory requirements are too large).

Another continuum, time-domain solution technique, called the discontinuous

Galerkin (DG) method, does not suffer from these restrictions. Due to its differ-

ent formulation, the DG method is easily adapted for use on unstructured grids,

allowing for increased spatial resolution only where it is required. The DG method is

also highly accurate, yielding high-quality solutions with smaller memory and com-

putational requirements than possible with low-order FDTD methods on structured

grids.

This dissertation describes our approach to adapting the DG method for modeling

wave propagation in plasmas, specifically addressing the challenges that arise at VLF

in the near-Earth plasma environment.

We first present a procedure to incorporate any anisotropic linear dispersive ma-

terial in the DG framework, with application to the perfectly matched layer (PML)

and magnetized plasmas. As a semi-discrete formulation, we can exploit fully mod-

ern implicit-explicit Runge-Kutta time-stepping methods in order to circumvent the

timestep restriction imposed by plasma frequency and gyrofrequency-induced stiff-

ness, resulting in speedups of 5-10 times for typical mid-latitude ionospheres without

the accuracy penalty typical of methods relying on low-order Strang splitting.

We next describe the hybrid DG-PIC (discontinuous Galerkin particle-in-cell)

method for studying nonlinear wave growth and damping in magnetized plasmas,

with specific attention paid to the scheme’s efficient parallelization in distributed

computing environments. Our DG-PIC method is a hybrid technique, which works

by splitting the plasma into a cold, dense background plasma (modeled as a fluid)

and a hot, strongly nonlinear and highly interacting population of energetic particles

(modeled with superparticles). This model is far more efficient than a direct PIC

method and also closely matches the physics of the real magnetosphere, making it an
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ideal framework to investigate nonlinear wave phenomena there.

We demonstrate our techniques on two difficult problems of interest at VLF in

the near-Earth space environment. First, we simulate scattering of VLF signals from

intense lightning-induced ionospheric disturbances. VLF signals propagating in the

Earth-ionosphere waveguide can be strongly scattered via interaction with density

or temperature perturbations in the lower ionosphere, producing measurable pertur-

bations on these signals when observed from ground-based receivers. To date, all

simulations of this scattering process have relied heavily on approximations (such

as smoothness or weak scattering) that do not, in general, hold. Our simulations

represent, to our knowledge, the first direct simulations of scattering from such dis-

turbances over a large 3D volume. The results have revealed the full spatial structure

of the scattered field from intense lightning-induced disturbances as observed by a

ground-based receiver.

Second, we use our hybrid DG-PIC technique to model the spontaneous generation

of coherent rising emissions in an unstable, inhomogeneous magnetized plasma. The

Earth’s magnetosphere naturally and frequently produces a variety of spontaneous

emissions, driven by instabilities in the relatively energetic population of radiation belt

particles that are injected into the Earth’s magnetosphere during active geomagnetic

storms. One type of emission, termed chorus, is characterized by discrete, quasi-

periodic, coherent rising tones. The nonlinear processes driving these emissions are,

at present, still relatively poorly understood.

Our simulations demonstrate that it is possible to consistently and spontaneously

generate quasi-periodic, coherent rising emissions, provided that the hot electron

distribution driving the growth process is sufficiently unstable. The emissions are

generated in a region just upstream of the magnetic equator and are subsequently

amplified as they travel through the equatorial region and away from the genera-

tion region. We additionally show that many features of these rising emissions are

well-predicted by linearized growth rates alone, demonstrating that while the chorus

generation process is indeed nonlinear, there is nonetheless a close relationship be-

tween chorus generation and the linear growth processes that produce the high wave

amplitudes necessary to induce nonlinear effects in the medium.
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Chapter 1

Introduction

Modeling electromagnetic wave propagation in even simple media is an exceedingly

difficult problem. Seemingly simple problems can be solved only approximately, neces-

sitating the use of specialized techniques valid under certain limits or the application

of approximations or linearizations to the governing equations before any attempt is

made to solve the problem. In a magnetized plasma (a partially ionized gas com-

posed of unbound electrons and ions), the situation is even more complicated and

often completely intractable.

The focus of this dissertation is to describe the development of a new model-

ing framework based on a relatively new technique called the nodal discontinuous

Galerkin (DG) method [Hesthaven and Warburton, 2002]. The DG method is highly

parallelizable, has an arbitrary order of accuracy, and is easily adapted to unstruc-

tured grids. Our goal is to develop a generic platform for modeling a very large

class of electromagnetic wave propagation problems in both the linear and nonlin-

ear regimes. The near-Earth plasma environment presents a particularly challenging

modeling problem due to the widespread presence of non-equilibrium distributions,

very large length scales, slow propagating modes, and short characteristic timescales.

We demonstrate the validity of our model in both linear and nonlinear regimes, show-

ing that it is well suited to modeling two unrelated, but notoriously difficult problems

in the near-Earth plasma environment.

1



CHAPTER 1. INTRODUCTION 2

1.1 Outline

In this introductory chapter, we give a description of the modeling environment of

interest, the near-Earth plasma medium, including a brief overview of some natural

radio phenomena at VLF (very low frequency, 3-30 kHz). We discuss some of the

challenges for modeling wave propagation in this environment, followed by a survey

of common numerical methods that can be applied to this problem. We then con-

clude with a historical discussion of the field of numerical simulation, showing how it

paralleled and was influenced by the simultaneous development of the computer.

In Chapter 2, we provide the theoretical background for the remainder of the dis-

sertation. We begin with an overview of the basic physics of plasmas. We begin with

a microscopic view and generalize to the multi-moment fluid approach, followed by a

discussion of waves in plasmas. We continue with a discussion of plasma instabilities

from the point of view of non-equilibrium distributions, then provide some specific

examples for which a linear growth rate can be derived.

In Chapter 3, we describe the DG method for modeling propagation in cold mag-

netized plasmas. We begin with a derivation of the DG method in three dimensions.

We then describe our method for including dispersive currents in the DG framework,

demonstrating its validity by applying it to two types of linear dispersive media: the

perfectly matched layer (PML) and a multi-component cold plasma. We then follow

with a discussion of the spectral properties of the DG operator with the cold plasma

currents included, followed by a description of time-stepping methods, with particular

emphasis placed on techniques for dealing with grid-induced and plasma frequency-

induced stiffness. We conclude with a high-level description of our implementation,

describing issues of parallelization, blocking strategies, and implicit solvers.

In Chapter 4, we describe our extension to the basic DG technique to include

nonlinear effects via the DG particle-in-cell (DG-PIC) method. We discuss our ex-

tensions to the basic technique, paying careful attention to its efficient parallelization

on unstructured grids. We conclude with a set of canonical experiments, demonstrat-

ing that the scheme reproduces physical behavior for cases in which an analytical

solution is known.
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In Chapter 5, we describe the application of the cold plasma DG method to scat-

tering from lightning-induced ionospheric disturbances. Large lightning discharges are

thought to strongly perturb the ionosphere directly above a lightning strike. This dis-

turbance in turn perturbs the amplitude and phase of a narrowband transmitter signal

propagating through the disturbed region, which can be detected and measured by a

ground-based receiver. While the basic causal chain had already been well-established

by experiment and prior two-dimensional models, the full three-dimensional structure

of the scattered field induced by these disturbances was not known to a high degree

of accuracy. This chapter addresses this issue, computing the full three-dimensional

scattered fields from a lightning-induced ionospheric disturbance over a large ground

area.

In Chapter 6, we use the DG-PIC method to model a notoriously difficult prob-

lem in magnetospheric plasma physics: spontaneous chorus emissions. Chorus is the

name given to naturally-occurring radio emissions originating from the Earth’s mag-

netosphere. The emissions are highly intense, coherent, and structured, often with

characteristic discrete rising tones and quasi-periodic behavior. We apply our tech-

nique to modeling this phenomenon on a truncated one-dimensional domain, showing

that we can consistently reproduce many of the qualitative features of chorus.

Finally, we make some concluding remarks in Chapter 7.

1.2 Contributions

The principal contributions of this work concern the development of new techniques

for simulating wave propagation in strongly inhomogeneous, unstable plasmas. Much

of this work concerns the details of these methods, but the final chapters concern the

application of these methods to the solution of two problems of interest at VLF in

the ionosphere and the near-Earth space environment.

Specifically, we have made the following contributions:

• We have developed techniques for the efficient simulation of Maxwell’s equations

in arbitrary, anisotropic dispersive media on unstructured grids using the DG

method.

• We have applied these techniques to simulating both cold plasmas and the
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perfectly matched layer, showing that the scheme maintains high-order accuracy

and performs well even in the presence of abrupt material discontinuities.

• We have shown for VLF waves propagating in cold plasmas typical of the Earth’s

ionosphere, the maximum eigenvalue of the discretized system is bound by the

upper right-hand mode cutoff frequency, not by the grid spacing. This intro-

duces a severe timestep restriction when using explicit timestepping techniques.

We have shown that with our formulation, we can use a high-order split Runge-

Kutta method to circumvent this timestep restriction with no impact on the

scheme’s formal order of accuracy.

• We have used these methods to directly simulate VLF scattering from in-

tense lightning-induced ionospheric disturbances. These simulations are, to our

knowledge, the largest continuum time-domain simulations of this scattering

process carried out to date.

• We have developed a large-scale hybrid particle-in-cell (PIC) code in the DG

framework, developing new techniques to efficiently parallelize the scheme on

unstructured meshes.

• Through parametric studies, we have demonstrated that the saturation ampli-

tude for cyclotron wave growth in a uniform, unstable plasma is directly related

to the linear growth rate itself. Since the saturation amplitude must be higher

than any statistical fluctuations introduced by the finite particle sampling, these

simulations conclusively show that long-time PIC simulations of cyclotron wave

growth are only possible for very large linear growth rates.

• We have used the DG-PIC technique to model spontaneous emissions from

unstable space plasmas. These simulation results qualitatively share many fea-

tures with natural emissions and additionally predict that the spectra of these

spontaneous emissions should be strongly correlated with linear growth rate

spectra.

1.3 Notation

In this dissertation, we use the following notation. A simple scalar quantity is denoted

in italics, e.g., a. Bold letters a refer to vector quantities. Whether it refers to a
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spatially oriented vector, e.g., a = (ax, ay, az) or an N -dimensional vector, e.g., a =

(a1, a2, . . . , aN) depends on context. When it is convenient, we use shorthand notation

a to refer to a spatially oriented vector of vectors, e.g., a = (ax, ay, az), where each

component ai is itself a vector. Which meaning is intended is clear from context. A

hatted quantity â refers to a unit vector. The vector r denotes the position vector, that

is, r = (x, y, z) in three dimensions, r = (x, y) in two dimensions, and r = (x) in one

dimension. In integrals,
∫
dr is shorthand to refer to the triple integral

∫∫∫
dxdydz

in 3D, a double integral
∫∫

dxdy in 2D, or a single integral
∫
dx in 1D. The same

notation is used for the velocity vector dv and the momentum vector dp.

Sans-serif characters such as A refer to matrices or tensors. Which meaning is

intended is clear from context. Due to typesetting limitations, Greek characters

denoting tensor quantities are marked with a double arrow, e.g., ↔σ. The special

matrix I always refers to the unit dyad or identity matrix. For most of the derivations

in this dissertation, we limit ourselves to only rank-two tensor fields, that is, the

divergence of a tensor field ∇ · f is a vector field:

∇ · f =
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

Overloading notation in this manner is conceptually convenient when generalizing

the DG scheme to tensor fluxes, but where required for clarity, we occasionally use

indices, which allows us to clearly disambiguate, for instance, the inner and outer

vector products, as illustrated in the following table:

a · b = aibi (inner, or dot product)

(ab)ij = aibj (outer, or dyadic product)

(a× b)i = εijkajbk (cross product)

∇ · u =
∂

∂xi
ui (divergence of a vector field)

(∇ · f)j =
∂

∂xi
fij (divergence of a tensor field)

(∇× u)i = εijk
∂

∂xj
uk (curl)
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The permutation symbol ε is defined as:

εijk =


1 if (i, j, k) = (1, 2, 3), (2, 3, 1), or (3, 1, 2)

−1 if (i, j, k) = (3, 2, 1), (2, 1, 3), or (1, 3, 2)

0 otherwise

Note that we use the Einstein summation convention, where repeated indices are

summed.

Throughout this text, we use j to denote the imaginary number (−1)1/2. We use

the complex frequency sign conventions e−jωt for time-domain phasors and e jkx for

the spatial domain.

1.4 The ionosphere

The ionosphere is the upper portion of the Earth’s atmosphere, so named because it is

partially ionized by the sun’s radiation during the day. The absorption cross-section

varies with altitude, but the usual photoionization sources are soft X-ray and extreme

UV emissions [Kelley, 2009, p. 30]. Typical ionization densities are quite low – the

ionized to neutral density ratio is on the order of 1% or less [Yeh and Liu, 1972, p.

402]. However, due to the low collision rates (decreasing exponentially with altitude),

the ionosphere nonetheless behaves as a plasma, albeit a cold one, with temperatures

on the order of a few thousand degrees Kelvin [Bilitza and Reinisch, 2008], relatively

low for an ionized gas.

The practical consequences of the existence of the ionosphere are significant. Long

range over-the-horizon radio communication is only possible because of the presence of

the ionosphere. To radio waves in some range of frequencies, the lower boundary of the

ionosphere acts as a reflective layer, making communication over very long distances

possible. Very low frequency signals (VLF) in the range of 3-30 kHz, in particular,

can propagate for extremely long distances with only minimal attenuation, effectively

guided in the waveguide formed between the lower boundary of the ionosphere and the

Earth [Davies, 1990, p. 367]. The ionosphere also affects higher frequency signals.

High frequency (HF) signals, for instance, can have their ray paths bent by the
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ionosphere. While not reflecting in the usual sense, this phenomenon can also be

used for long-range communication. Global Positioning System (GPS) signals, while

in the microwave range (in the GHz), nonetheless have their signals perturbed enough

by the ionosphere that real-time, dynamic compensation using a system of ground-

based receivers is necessary when high position accuracy is required [Enge et al.,

1996].

The ionosphere, however, is extremely variable, especially at night and at high

latitudes, which presents a reliability problem for radio signals passing through or

reflecting off of it. There are a number of reasons for this variability. At night,

the ionosphere is no longer being actively ionized by the sun and thus relaxes, but

some ionization sources still remain. Scattered Lyman-alpha radiation may contribute

[Strobel et al., 1974] as well as cosmic ray fluxes [Bailey, 1959]. Lightning discharges

can also modify the ionosphere locally due to the enormous movement of charge,

which creates large electric fields that can directly modify levels of ionization above

a lightning strike [Pasko et al., 1995, 1998]. In addition, the radiated EMP from a

lighting stroke can have large enough electric fields to further modify the ionization

above a lightning discharge [Inan et al., 1991; Cheng et al., 2007b; Marshall et al.,

2008a, 2010]. The intense radio waves from powerful VLF transmitters can also

create strong electron density irregularities [Bell et al., 2004, 2008; Titova et al.,

1984; James and Bell, 1987; Tanaka et al., 1987] as well as heat the ionosphere over

extended regions [Graf et al., 2011].

Given its importance to long-range communication and to the advancement of

scientific knowledge about atmospheric chemistry, it is remarkable that so little is

known at present about the ionosphere’s meso-scale structure. The primary reason is

that direct measurements, particularly of the lower ionosphere, are extremely difficult

due to its altitude (70-85 km), which is too low for satellites and too high for balloons.

In addition, the electron density in the lower ionosphere is typically too low, especially

at night, for there to be detectable echoes from radio sounders, even with the largest

ground-based radars [Sechrist, 1974].

GPS signal delays, which can be related to the total electron content (TEC) be-

tween the satellite and the ground receiving site, can be used to perform rudimentary
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tomographic reconstruction of the ionospheric density over both space and time [Es-

cudero et al., 2001; Mitchell et al., 1997; Brunini et al., 2004; Tsai et al., 2002; Pakula

et al., 1995; Ruffini et al., 1998; Erturk et al., 2009]. However, these methods have

fundamental resolution limits due to the sparsity of the measurements [Raymond

et al., 1994]. Further, imaging the lowest region of the ionosphere (between 60 and 90

km) is extremely difficult using tomographic methods due to the relatively small con-

tribution of that region to the total electron content measured along a tomographic

path [Kunitsyn and Tereshchenko, 2010, p. 88]. These limits have practical conse-

quences. For instance, one of the more popular ionospheric models, the International

Reference Ionosphere (IRI) is known to have systematic biases, problems reproducing

actual electron densities during storm times, and inaccuracies on short spatial scales.

These deficiencies have been noted by a number of authors [Bittencourt and Chrys-

safidis, 1994; Jakowski et al., 1998; Cöısson et al., 2008; Dettmering et al., 2011; Lühr

and Xiong, 2010].

While direct measurements of the lower ionosphere remain difficult, some special-

ized tools to probe the structure of the lower ionosphere do exist, one example of

which is so-called VLF remote sensing, utilizing propagation of VLF signals in the

Earth-ionosphere waveguide.

1.5 VLF remote sensing of the lower ionosphere

Since VLF signals reflect near the lower boundary of the ionosphere between 70-85 km

altitude, a VLF wave propagating in the Earth-ionosphere waveguide is exceptionally

sensitive to ionospheric perturbations at those altitudes. Any low-altitude ionospheric

density variation along the path from a transmitter to a receiver scatters the incident

wave, resulting in a measurable perturbation on the amplitude and phase of the

signal at the receiver. Since many powerful VLF transmitters are used worldwide for

long-range navigation and communications, this technique can be an effective tool for

measuring local disturbances in the lower ionosphere. A diagram of the basic process

is illustrated in Figure 1.1.

In Figure 1.2, we show a typical example of a scattering event. The plot shows

the magnitude of a filtered narrowband VLF transmitter signal as a function of time.
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Figure 1.1: Illustration of the VLF remote sensing concept. An incident wave from a VLF
transmitter at the left propagates in the Earth-ionosphere waveguide. The signal scatters from
an ionospheric perturbation, which is then observed at the receiver.

At about 115 seconds, some localized portion of the ionosphere along the great cir-

cle path between the transmitter and receiver suddenly changed, manifested on the

received signal as an abrupt change in the signal amplitude. In this case, the event

is well correlated in space and time with a large lightning strike located along the

transmitter-receiver path. The challenge faced by the modeler is to determine what

physical mechanisms are consistent with such an observation.

Figure 1.2: Example of an early-onset VLF scattering event. The plot shows the narrowband
signal amplitude of the 24 kHz NAA VLF transmitter in Cutler, Maine as observed from a
ground-based VLF receiver in Fountain, Colorado. A lightning-induced scattering event occurs
at approximately 115 seconds, manifesting as an abrupt change in the received signal amplitude.

The use of VLF signals to probe the lower ionosphere is a well-established tech-

nique [Cheng et al., 2007a; Moore et al., 2003; Inan et al., 1996; Cummer, 1997;

Rodger and McCormick, 2006]. However, interpretation remains a problem due to

the extreme sparsity of the data. In the absence of more dense receiver networks,

modeling plays a crucial role in this process. Modeling work to determine the scat-

tered signals from simple ionospheric disturbances has typically relied on analytical
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approximations, for example, modal scattering approximations using Green’s function

expansions [Poulsen et al., 1990, 1993], mode-coupling calculations in cylindrical co-

ordinates [Pappert and Snyder, 1972; Pappert and Ferguson, 1986], or Born scattering

approximations in layered media [Lehtinen et al., 2010]. Recently, direct simulation

in 2D (and small 3D domains) has also become feasible [Marshall et al., 2008a].

1.6 The magnetosphere

Processes determining the gross structure of the ionosphere in the range of 70-2000

km are largely independent of the Earth’s magnetic field. They are instead driven

by bulk gas and plasma processes: internal pressure, gravity, molecular constituent

densities, large-scale electric fields, and diffusion. The neutral constituents of the

atmosphere tend to stratify into layers. The specific percentages of the molecular and

atomic constituents as a function of altitude are largely determined by their masses.

Lighter constituents have higher rates of diffusion and therefore dominate at higher

altitudes [Hobbs, 2000, p. 29]. The structure of the ionosphere is directly related to

this neutral structure, due to the different neutral constituent densities and differing

corresponding absorption cross-sections to ionizing radiation. Above the ionosphere

is a region known as the magnetosphere, where the Earth’s magnetic field begins

to dominate the behavior of the ionized gases. The inner region of the magneto-

sphere, termed the plasmasphere, is composed primarily of cold, dense plasma, filling

a magnetic field-aligned region surrounding the Earth out to approximately 2.5 to 6

equatorial Earth radii, dependent on ambient conditions. The ultimate source of this

cold background plasma is diffusion from the ionosphere itself.

Beyond the plasmasphere, the Earth’s magnetic field can be strongly affected by

the solar wind. The supersonic flow of particles from the sun distorts the Earth’s

magnetic field into a characteristic comet-like shape, compressed on the sun side and

extending into a long tail on the night side. The outer magnetosphere is highly

dynamic, subject to large-scale fluctuations and instabilities. The basic picture of the

solar wind “compressing” the Earth’s magnetic field, while intuitively satisfying, is

overly simplistic. Any magnetic field must be associated with a real current, which

the magnetosphere has in the form of large, connected current structures. The major
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current systems of the magnetosphere are indicated in Figure 1.3.

Figure 1.3: Illustration of the Earth’s magnetosphere, showing magnetic field lines, plasmas-
phere (shaded), and magnetopause (in red). Major magnetospheric currents are indicated with
large arrows.

The magnetopause current, whose existence was originally postulated by Chapman

and Ferraro [1931], is a large current structure formed at the boundary between the

Earth’s magnetic field and the interplanetary magnetic field.

The sheet current [Potemra, 1979; Olson, 1984; Antonova, 2004; Baumjohann

et al., 2010] is a thin current structure flowing freely in the magnetic neutral region of

the magnetotail, where the magnetic field lines on either side of the sheet connect to

the North and South poles of the Earth. The sheet current and neutral region extend

out to great distances on the tail side before eventually dissipating. The tail region

of the magnetosphere can persist in metastable states in which large amounts of solar

wind energy are stored and then rapidly released in substorm events, which are a

result of sudden reconfigurations of the tail magnetic field of the tail [McPherron,

1991]. The process is closely related to magnetic reconnection, but the precise details

are poorly understood at present. The increased magnetic reconnection rate during

substorm events leads to enhanced transport and acceleration of tail plasma into the

inner magnetosphere, where it joins and enhances the so-called ring current circling

the Earth.

The ring current is largely a population of trapped particles in the inner magne-

tosphere existing in a magnetic field-aligned shell at approximately 3 to 5 equatorial
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Earth radii. The trapped population of particles slowly drifts around the Earth, con-

stituting a third large-scale current structure. During substorms, particles can be

injected from the tail into the inner magnetosphere, replenishing this population of

ring current particles. The electrons in this injected population have energies in the

range of about 10 to 100 keV and have anisotropic velocity distributions. Such dis-

tributions are unstable and can amplify electromagnetic waves propagating through

them [Jordanova et al., 2010]. VLF whistler-mode waves in particular can resonate

with the 10 to 100 keV electrons, gaining energy and being amplified in the process.

Other sources can also be amplified, including simple thermal noise, natural radio

emissions driven by lightning or other sources, or waves from ground-based transmit-

ters, leading to a wide variety of wave phenomena, some examples of which we discuss

in the next section.

1.7 Triggered emissions, chorus, and hiss

Any non-Maxwellian gas distribution is potentially unstable, a fact that can be de-

duced from a statistical mechanics point of view. For a given temperature, the

Maxwellian distribution has the highest entropy of all possible distributions. Any

non-equilibrium (non-Maxwellian) distribution, then, has free energy (energy that is

available to do thermodynamic work) which could be converted to some other form.

While this statement is factually correct, it is not especially useful since it says noth-

ing about how one might actually extract the energy or what form it might take.

However, it does give some useful insight into why, fundamentally, instabilities can

occur.

The Earth’s magnetosphere, and especially the region of the magnetosphere con-

taining electrons with energies in the range of 10-100 keV superimposed on an oth-

erwise Maxwellian cold plasma population, is a particularly interesting example of a

non-equilibrium distribution. VLF whistler mode radio waves resonate with electrons

in approximately this energy range. The unstable electron distribution gives up en-

ergy to the wave, amplifying it by as many as tens of decibels as the wave traverses

the magnetosphere. The exact growth rates depend strongly on the wave frequency,

the number of particles near resonance with the wave, and the degree of anisotropy (a
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rough measure of the non-equilibriumness) of the distribution. This basic instability

is natural and pervasive and is the primordial energy source for a number of natural

VLF wave phenomena in the magnetosphere.

1.7.1 Chorus

Some of the most interesting consequences of magnetospheric wave amplification are

nonlinear phenomena, encountered when wave amplitudes grow so high that the par-

ticle distribution not only gives up energy to the wave, but itself gets significantly

perturbed by the wave. Chorus is one such example. Chorus refers to naturally-

occurring, discrete VLF radio emissions spontaneously generated in the Earth’s mag-

netosphere. The emissions usually take the form of discrete, quasi-periodic, intense

rising tones, but can occasionally have falling tones, hooks, or even more complicated

behavior. Chorus is often observed in two discrete frequency bands, an upper and

a lower band, separated at approximately half the equatorial electron gyrofrequency

[Burtis and Helliwell, 1976]. Experimental evidence suggests that chorus is generated

outside the plasmasphere near the equator or near a magnetic minimum and is more

common during times of high solar activity.

Chorus has been observed and studied for over fifty years, and while a number

of theoretical generation mechanisms have been proposed, the specific details of the

generation mechanism are still hotly contested. What is generally agreed upon is that

chorus is caused by a nonlinear electron cyclotron wave-particle interaction driven by

highly anisotropic electron distributions in the magnetosphere, and that the inhomo-

geneity of the background magnetic field plays some role in the development of the

instability and the time-frequency behavior of individual chorus elements. A review

paper by Sazhin and Hayakawa [1992] and more recently by Santoĺık [2008] summarize

what is currently known about chorus, its generation mechanisms, and techniques for

modeling. An example spectrogram, showing characteristic rising chorus elements, is

shown in Figure 1.4.

1.7.2 Hiss

Hiss is the name given to another type of natural emission. As the name implies, hiss
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Figure 1.4: Magnetic field spectrogram of chorus emissions observed at Palmer station, showing
a common type of emission with positive time-frequency ramps and quasi-periodic behavior.

is a diffuse, unstructured noise band with no discernible internal structure. Hiss is

thought to be driven by similar mechanisms, i.e., amplification driven by anisotropic

electron distributions in the magnetosphere. An example spectrogram recorded at

Palmer Station, Antarctica, is shown in Figure 1.5. The literature on hiss is also

extensive. A summary can be found in the review paper by Hayakawa and Sazhin

[1992].

Figure 1.5: Magnetic field spectrogram of hiss emissions observed at Palmer station, showing
a characteristic broadband noise band.

In contrast to chorus, hiss is broadband and diffuse with no obvious nonlinear

character. Some authors have suggested that simple linear amplification of a broad-

band noise-like source may be sufficient to explain the amplitudes of hiss [Solomon

et al., 1988]. Other work, however, suggests the opposite [Church and Thorne, 1983].

Precisely because hiss is so incoherent, resolving this disagreement is difficult. Tracing

a hiss band to a single source region or even unambiguously determining the spectrum

of wavenormal angles in hiss is extremely problematic.
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A number of different potential embryonic sources of hiss have been proposed,

by Sonwalkar and Inan [1989] and more recently by Bortnik et al. [2008, 2011]. In

spite of the apparently contradictory views in the literature, however, it is plausible

(even likely) that there are many different embryonic sources. VLF waves in the

magnetosphere can follow complicated trajectories, drifting and magnetospherically

reflecting for tens of seconds as they propagate. This fact, combined with the fact that

a sufficiently unstable anisotropic electron distribution may amplify any broadband

background noise to measurable levels means that the question of where a given

packet of wave energy ultimately came from is largely irrelevant. Hiss is more likely

to be observed when linear growth rates along all propagation paths from source to

observation point are sufficiently large, and damping rates are sufficiently low, to

make it observable. The characteristic incoherence may be due to incoherence in

the seed waves or because of a lack of smoothness in the electron distribution itself,

which would tend to destroy the coherent trapping structures necessary to support

chorus-like growth.

1.7.3 Triggered emissions

A coherent VLF whistler mode wave passing through a region filled with a sufficiently

anisotropic electron distribution whose electrons are in resonance with the wave is

amplified. If the growth rate is sufficiently high, chorus-like emissions can be triggered

by the wave. These emissions can be highly structured, showing both rising and falling

features. An example is shown in Figure 1.6.

Figure 1.6: Magnetic field spectrogram of lightning-triggered emissions observed at Palmer
station. The dispersed impulse from the causative lightning strike is at 6.5 seconds, triggering
free-running emissions.
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1.7.4 Other phenomena

Chorus and hiss are sometimes observed together, and hiss itself is sometimes seen

to transition from a very diffuse, noiselike band into a more structured, chorus-like

band and back. Occasionally discrete emissions are seen emerging from the top of a

strong hiss band as shown in Figure 1.7, suggesting that hiss bands can sometimes

mask underlying coherent emissions and that the same instability that amplifies hiss

may also give rise to coherent emissions.

Figure 1.7: Magnetic field spectrogram of mixed chorus and hiss emissions observed at Palmer
station. Quasi-periodic rising emissions are shown emerging from a hiss band.

Other emissions defy classification, sharing features in common with triggered

emissions and with free-running, intense chorus emissions. One such example is shown

in Figure 1.8. It is possible that these waves are triggered as well, but the causative

source is too low in amplitude to be seen.

Figure 1.8: Magnetic field spectrogram of unusual free-running emissions observed at Palmer
station.
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1.8 Numerical modeling challenges

VLF wave propagation in the ionosphere and inner magnetosphere presents a diffi-

cult modeling challenge. Because of the large length scales of interest, extremely long

timescales (on the order of seconds or more), the strong inhomogeneity in the electron

density naturally present in the ionosphere, and the pervasive presence of nonlineari-

ties, many significant problems of interest are completely intractable to solve even on

modern supercomputers at the present time. The challenge a modeler faces, then, is

to simplify the global problem into one that is tractable, which necessarily involves

making approximations or reducing the size or scope of the simulation domain.

1.8.1 Length scales

The first major modeling challenges are due to the large length scales involved. VLF

waves propagating in the Earth-ionosphere waveguide are only minimally attenuated,

with attenuation rates of only a few decibels per megameter [Davies, 1990, p. 367].

Since VLF waves in the range of 3-30 kHz have free-space wavelengths of 10-100 km,

typical problem sizes of interest have on the order of tens to hundreds of wavelengths

per dimension. For numerical techniques that use spatial subdivision of the domain,

this limits the size of a domain that can be modeled. In the ionosphere, this issue is

exacerbated by the strong inhomogeneity of the ambient medium itself.

A magnetized plasma is both an anisotropic (the wavelength varies with propa-

gation direction) and a dispersive medium (the wavelength varies with frequency).

The two primary physical parameters affecting propagation at VLF are the electron

gyrofrequency (Equation 2.4) and the plasma frequency (Equation 2.2). The gy-

rofrequency scales with the background magnetic field magnitude and the plasma

frequency varies with the square root of the electron number density. The Earth’s

magnetic field is not a strong function of altitude near the Earth’s surface, but its

direction and magnitude do vary significantly as a function of latitude and longitude.
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1.8.2 Inhomogeneity

The plasma frequency introduces problems when modeling sub-ionospheric propaga-

tion because of its strong height dependence, which in turn leads to strong height-

dependent variation in the refractive index of VLF waves. As shown in Figure 1.9,

for a fixed VLF frequency of 30 kHz, the wavelength can vary by over an order of

magnitude, from 10 km in free space down to a minimum of less than a kilometer

above approximately 100 km altitude. The strong spatial gradients, as well as the

wide range in wavelengths even at a single, fixed frequency once again presents a

significant problem for modeling. For techniques that rely on spatial subdivision, the

problem is essentially one of sampling – the space must be subdivided more finely in

areas of strong gradients and where the wavelength becomes small. The ideal case is

to sample the space using an unstructured mesh, placing more grid cells only where

they are needed. In this way, the extra resolution is not wasted in areas where the

medium or wavelength are not changing rapidly.

Figure 1.9: Electron number density, plasma frequency, and total range of allowable whistler-
mode wavelengths (shaded region) for a 30 kHz VLF wave, plotted as a function of altitude.
Parameters are typical of the mid-latitude ionosphere. The minima and maxima are determined
by finding the minimum and maximum real wavelengths over all possible propagation angles for
the right-hand circularly polarized mode.

1.8.3 Plasma frequency-induced stiffness

Another significant problem at VLF is that the characteristic frequencies of the plasma

(the gyrofrequency and plasma frequency) can be an order of magnitude larger than

the frequencies of interest (see Figure 1.9). This difference in scale affects time-domain

solvers in the following way. Suppose that we wish to integrate (in time) a linear
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ordinary differential equation (ODE):

du

dt
= f(u)

Since the ODE is linear, we can consider each mode of the system separately by

computing an eigenvalue decomposition and doing a coordinate transformation u→
v, where v and ω are an eigenvector and eigenvalue, respectively, of the system f(u):

dv

dt
= ωv

We would ideally like to solve this ODE using an explicit numerical method be-

cause explicit methods are efficient and easily parallelized. An explicit numerical

method only uses information from the past to extrapolate the solution at some fu-

ture timestep. The maximum timestep that we can take using an explicit method

is limited by the magnitude of the largest eigenvalue ωmax. In a plasma, ωmax is re-

lated to the plasma frequency and gyrofrequency and can be as much as two orders

of magnitude higher than the VLF frequencies of interest. Therefore, the maximum

timestep we can take is less than an order of magnitude smaller than that required

to get an accurate solution of the equation, and thus the total computational cost is

an order of magnitude higher.

1.8.4 Geometry

A final challenge is geometry, that is, common computational problems involve curved

or complicated structures or boundaries. Many numerical methods are easier to derive

and implement on rectilinear (plaid) grids, but such frameworks place unnecessary

restrictions on the types of problems that one might solve. For instance, a rectilin-

ear grid cannot conform to a curved boundary (e.g., the Earth) without great loss

of precision. One common technique to overcome this problem is to use a curvi-

linear coordinate system, but such a system imposes a similar set of constraints on

the geometry, e.g., a curved coordinate system cannot conform to rectilinear bound-

aries. Unstructured meshes solve this problem by allowing the modeler to choose an

arbitrary mesh to conform to the specific geometry of their problem, as illustrated
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in Figure 1.10. Popular unstructured mesh techniques for electromagnetics, however,

are either restricted to low order (low accuracy), as in finite difference techniques, or

involve expensive matrix operations, as in finite element techniques.

Figure 1.10: Comparison between unstructured, conformal meshes and unstructured meshes.
The original geometry is at the left. Colors denote different types of materials. Even though the
total number of mesh elements are similar in the two discretizations, the unstructured grid does
a much better job of representing the curved boundary.

1.8.5 Nonlinearities

Nonlinear effects in the magnetized near-Earth plasma environment are commonplace

and non-equilibrium electron distributions are the norm rather than the exception.

The most complete fluid description of a plasma, which captures all linear and nonlin-

ear effects, is a six dimensional nonlinear partial differential equation (PDE). Direct

simulation of the complete six-dimensional system is unfortunately completely in-

tractable at the present time except for small toy problems. Nonlinearities, therefore,

are typically dealt with in problem-specific ways. Some computational strategies for

dealing with nonlinearities in plasmas are discussed in Sections 1.10.3, 1.10.2, and

1.10.4.

1.9 Survey of modeling techniques for electromag-

netics

This section provides an overview of some approaches commonly used to model wave

propagation in the ionosphere and magnetosphere. Each technique ultimately aims
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to solve Maxwell’s equations for a magnetized plasma, but each has its own range of

validity and its own class of problems for which it is well-suited to solve.

1.9.1 Raytracing

The raytracing approximation treats Maxwell’s equations in only a very approximate

sense, tracing the flow of a narrowband wave packet through a system. The technique

is similar to the geometric optics approximation commonly employed to analyze lens

systems, but generalized to spatially-varying media. The technique works by treating

the dispersion relation as a conserved quantity (a Hamiltonian) of the system. The

dispersion relation relates the wavenormal vector k to the temporal frequency ω via

some implicit function F (k, ω, r) = 0 (see Section 2.2.1). By identifying the function

F as the Hamiltonian, the wavenormal k as a momentum, and ω as an energy in

some reference frame, we can (by using Hamiltonian mechanics) directly write down

a set of equations describing the path of a ray through an inhomogeneous medium

[Haselgrove, 1955].

∂r

∂t
= − ∇kF

∂F/∂ω

∂k

∂t
=
∇rF

∂F/∂ω

A more rigorous derivation is discussed by Poeverlein [1962]. The technique can be

generalized to track the ray amplitude, also including higher-order effects like ray

spreading [Henyey, 1980].

The ray tracing approximation fails in the presence of strong gradients in the

material parameters. Roughly speaking, the refractive index in the medium cannot

change significantly over one wavelength. The basic scheme as described by Hasel-

grove [1955] also contains no information about the amplitude of the wave, nor can

it handle diffraction effects. Amplitude information can be inferred by launching ray

bundles, propagating some distance and then measuring the spatial density of the

rays. In a similar manner, temporal behavior can be inferred by launching many rays

at different frequencies and using Fourier decomposition methods.
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The technique cannot be used in the lower ionosphere at VLF because of the

high gradients in the refractive index, although it has some use in computing HF ray

paths through the ionosphere. Ray tracing is primarily used when the length scales

or time scales are far too large to use any other techniques, for example, in the case of

modeling the slow propagation of whistler mode waves through the magnetosphere.

1.9.2 Layered media

The layered media approximation or full wave method [Nagano et al., 1994; Yagitani

et al., 1994; Nygren, 1981; Wait, 1996] is a steady-state technique used to find the

solution to Maxwell’s equations in a stratified domain composed of horizontal uniform

layers, infinite in extent. At each layer boundary and for each incident wavenormal of

interest, Snell’s law is solved to find the two transmitted and reflected mode directions.

Since the component of the wavenormal parallel to the surface is conserved on either

side of a reflecting boundary (due to phase continuity), the problem amounts to

solving for the component of k normal to the surface and the associated modes (the

electric and magnetic polarizations associated with those wavenormals).

These reflected mode directions and polarizations are then used to compute the

reflection and transmission coefficients, which relate the incident mode amplitude to

the two reflected and the two transmitted mode amplitudes. The system is then

solved as a large matrix equation subject to boundary conditions to find these mode

amplitudes for every wavenormal angle present in the system. Sources can be handled

by transforming current distributions from physical space into k-space (i.e., using the

Fourier transform). A recent technique published by Lehtinen and Inan [2008] solves

the system using an efficient recursion relation and can also include any arbitrary

distribution of source currents.

The method’s primary strength is its efficiency and ease of parallelization. Since

the technique works in k-space, systems of great physical extent can be simulated to

high precision with relative ease, provided the k-space spectrum is sufficiently sparse.

Problems with very dense k-space spectra, however, would not benefit from this

advantage. Additionally, the technique is not useful if there is lateral variation in the

material properties. First-order perturbation techniques can be used to approximately
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solve such problems but only if the variation is very small relative to the background

[Lehtinen et al., 2010].

The layered media technique remains popular for modeling sub-ionospheric prop-

agation over limited lateral extent, but it requires mode-coupling approximations or

other similar methods in order to be used over longer distances.

1.9.3 Mode-coupling approximations

For propagation in the Earth-ionosphere waveguide, the limitations of the layered me-

dia method can be partially overcome using a mode-coupling approximation [Pappert

and Snyder, 1972; Pappert and Ferguson, 1986]. A long sub-ionospheric propagation

path is divided into a finite set of segments. In each segment, a full-wave method

or some other method is used to compute a set of waveguide modes and mode am-

plitudes. A set of mode coupling coefficients are then computed, which relate the

modes and amplitudes in one slab to the modes and amplitudes in the next. Weak or

evanescent modes are discarded. Backscattered modes are usually neglected [Pappert

and Snyder, 1972]. This family of techniques is limited to propagation in waveguides

and may have little use for any other type of modeling problem.

1.9.4 Integral methods

Integral methods are used to solve problems for which a Green’s function, or integral

kernel, can be found. A Green’s function is essentially a statement of action at a

distance. For instance, we can write the electric field at some distance r as the sum

of contributions from a set of currents J(r) distributed over space (presumably some

small subset of the entire space). The time-harmonic electric field is given by an

integral over those currents weighted by some distance-dependent kernel [Harrington,

1961, pp. 124-125]:

E(r) = jωµ

∫
G(r, r′) · J(r′) dr′

The kernel G(r, r′) is a tensor Green’s function that encapsulates how a current at

some location r′ contributes to the electric field at some other location r.
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Green’s functions are exceptionally difficult to derive for the arbitrary, inhomo-

geneous case. Therefore, integral methods are typically used only to solve simple

scattering or radiation problems, where the problem is to find the fields at some

distance from a small scatterer or antenna in an otherwise simple, uniform medium.

A further complication is that the source distribution J(r) is rarely known in

advance for any practical problem. What is more typical is that the electric fields at

some set of N points are known or prescribed (e.g., at a boundary). To determine the

unknown current distribution J(r), we first expand it in some basis with N unknown

expansion coefficients Ji. Using the basis allows us to convert the integral into a

simple weighted sum of the unknown expansion coefficients Ji at some observation

point rj. This procedure is repeated for each of the N observation points rj where

the electric fields E(rj) are known or prescribed, each time inserting the resulting

vector of weights into a new row in a matrix M. Solving the system MJ = E then

yields all of the unknown expansion coefficients Ji, effectively inverting the integral

and solving the problem. This technique is termed the method of moments [Gibson,

2008; Sadiku, 2000]. The matrices involved are typically very large and dense, so this

method is only practical when the number of unknowns N are relatively small.

1.9.5 Finite difference method

Finite difference methods [Lax and Keller, 1951; Lax, 1958; Lax and Wendroff, 1964,

republished 2005, 1960; Courant et al., 1952; Weinberger, 1959; Yee, 1966; Taflove and

Hagness, 2005; Inan and Marshall, 2011] are used to solve partial differential equations

(PDEs) by dividing the space up into a set of discrete sample points (x1, x2, . . . , xN),

and then approximating the continuous derivatives in the original system using finite

differences, for example:

∂u

∂x

∣∣∣∣
x=xi

' u(xi+1)− u(xi)

xi+1 − xi
=
ui+1 − ui
xi+1 − xi

,

where we have replaced the continuous unknown u(x) with a finite set of unknowns

(u1, u2, . . . , uN) defined at the sample points (x1, x2, . . . , xN). Thus, we have converted

the continuous equation into a discrete approximation, turning the PDE into a large
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ODE. The ODE can then be solved using any time-stepping method.

The first application of the finite difference method to Maxwell’s equations was

described by Yee [1966]. In recent years, the method has become the method of choice

for solving difficult electromagnetics problems due to its ease of implementation. The

finite difference method, unfortunately, suffers from a number of drawbacks that limit

its usefulness for certain types of problems in electromagnetics, most notably: its poor

handling of sharp material discontinuities, its poor handling of anisotropic materials,

its low order of accuracy except on very smooth domains, and its difficult adaptation

to unstructured grids while preserving high-order accuracy.

The fundamental issue causing all of these problems is the non-locality of the

finite difference operator. Continuous derivatives are strictly local statements about

the slope of a function, and the finite difference approximation violates this principle

by incorporating non-local information to estimate the derivative at some given point.

1.9.6 Finite volume method

The finite volume method [LeVeque, 2002] is used to solve conservation law problems

of the form:

∂u

∂t
+∇ · f(u) = 0,

where f is a flux that describes how material flows into or out of a small control

volume. The first step is to divide the space into a number of finite volumes of some

arbitrary shape. In each volume i, the quantity u(x) is first replaced by a single

cell-averaged quantity ui. The method can be implemented as a numerical scheme

by recognizing that the integral of the flux over some volume is related to the surface

integral of the flux around that volume through Gauss’s law:∫
V

∇ · f(u) =

∫
S

f(u) · dS

The fluxes at the surfaces between elements are estimated by combining the fluxes

f(u) interior and exterior to an element in a physically-consistent way. While similar

to the finite difference method, the different formulation makes the finite volume
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method much easier to use on unstructured grids.

However, there are fundamental difficulties extending the finite volume scheme

to high order accuracy. Essentially, the scheme only permits either high accuracy or

unstructured grids. The extension to both high order and unstructured meshes is ex-

tremely problematic. In addition, the unique odd-even structure and skew symmetry

of Maxwell’s equations make the finite volume scheme extremely inaccurate (only first

order) when naively applied to it. Complicated schemes, such as using interleaved

grids for the electric and magnetic fields, are necessary to bring the finite volume

scheme up to second-order accuracy for Maxwell’s equations [Madsen and Ziolkowski,

1990].

1.9.7 Finite element method

The finite element method [Jin, 2002; Hughes, 2000; Strang and Fix, 2008] is another

technique to discretize the spatial component of a PDE. The basic idea is to subdivide

the space into a number of small subdomains, termed finite elements, and find some

approximate solution in a basis expansion over each of those elements:

u(x) '
N∑
j=1

ujφj(x)

The most straightforward way to convert this idea into a numerical scheme is by

Galerkin projection [Galerkin, 1915]. For example, to solve the following PDE,

∂u

∂t
+
∂f(u)

∂x
= 0,

we substitute the approximation for u(x), leaving a residual error e(x):

∑
j

∂uj
∂t

φj(x) +
∑
j

fj
∂φj
∂x

= e(x)
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We then multiply by every function in the basis and integrate over all space, setting

the integrated residual to zero:

∑
j

∫ (
∂uj
∂t

φj(x) + fj
∂φj
∂x

)
φi(x) dx = 0

Finally, we enforce continuity between each element and evaluate the integrals for

every pair (i, j) in the basis and every element in the domain, yielding a very large

matrix ODE:

M
du

dt
+ Sf = 0

Once again, we have converted a PDE into an ODE with a large number of un-

knowns. The finite element method, at first glance, has many advantages. It is highly

accurate, flexible, and simple to use on unstructured grids. The biggest disadvantage

for time-domain problems is that the scheme is not local, that is, imposing the conti-

nuity constraint between elements means that the matrix M is as large as the entire

space. Solving this system of equations is extremely expensive for large problems,

often completely dominating the computational cost. It is for this reason that finite

element methods are not often used for time domain problems.

1.9.8 The discontinuous Galerkin method

The discontinuous Galerkin (DG) method, the subject of this dissertation, combines

elements of the finite volume method and finite element method to create a scheme

that is both local and highly accurate. The scheme also solves conservation law

problems of the form:

∂u

∂t
+∇ · f(u) = 0,

but does so in a slightly different manner than the finite volume method, using a

local basis expansion in each element instead of a volume-averaged quantity. The

technique is somewhat less generic than the finite difference method since it can only

be used for conservation law problems.
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This method and its application to Maxwell’s equations is discussed in far more

detail in Chapter 3.

1.10 Strategies for modeling in plasmas

The Vlasov approximation, described in detail in Section 2.1.3, describes the behavior

of a collisionless plasma in the fluid limit. It self-consistently describes the time

evolution of a particle distribution function f(r,v, t) in the presence of electric and

magnetic fields E and B. Unfortunately, since the Vlasov equation is six dimensional

and nonlinear, direct simulation is intractable. We now briefly discuss some of the

common approximations used to simulate plasmas. In principle, these techniques are

independent of the specific numerical method used.

1.10.1 Linearizations

One common approach is to linearize the Vlasov equation, that is, to assume that all

of the fields and the distribution function itself consist of a zeroth-order term plus a

small first-order perturbation.

f(v) = f0(v) + f1(v)

E = E0 + E1

B = B0 + B1

For wave propagation problems, it is common to assume the zeroth-order electric

field E0 = 0, in which case the first-order field perturbations are the wave electric and

magnetic fields, i.e., E1 = Ew and B1 = Bw. The linearized Vlasov equation can then

be further manipulated to yield dispersion relations for waves in a hot plasma, giving

both the allowed wave modes and their respective growth or damping rates [Inan and

Go lkowski, 2010, Chapter 12]. The technique is primarily useful as an analytical tool,

but the basic idea can also be used for simulation, leading to so-called δf techniques

[Dipeso et al., 1991].

The assumption of small perturbations on a zeroth-order quantity can give pow-

erful insight into the behavior of a plasma at small amplitudes but fails when the
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first-order perturbation becomes large relative to the zeroth-order terms.

1.10.2 Particle-in-cell

The basic particle-in-cell (PIC) method [Birdsall and Langdon, 1985] models a plasma

in a more direct fashion by directly including a population of superparticles with initial

velocity distribution chosen to approximate the desired velocity distribution function

f(v).

The approach is unusual in that it mixes the Lagrangian (where individual par-

ticles are tracked directly) and Eulerian (where the flow of particles is tracked on a

fixed grid) reference frames. Connecting the two frames involves two steps, interpo-

lation and projection. In the projection step, each particle is assumed to have some

finite-sized shape defined by a shape function S(r), which is used to project the par-

ticle charge ρ and current J from the particle location ri onto some set of nearby grid

locations. In the interpolation step, the particle is moved under the influence of the

fields E and B, where the fields must be interpolated at the location of the particle.

The basic process is illustrated in Figure 1.11.

Figure 1.11: Illustration of the PIC concept.

Particle-in-cell methods are extremely flexible, working even when the plasma

approximation is not strictly applicable. However, the technique has high levels of

artificial noise which can only be mitigated by using a very large number of particles,
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or by using artificially quiet cold start particle distributions. We describe our DG-PIC

technique in great detail in Chapter 4.

1.10.3 Multi-moment fluid codes

Another approach to modeling plasmas is to take averages of the Vlasov equation,

or so-called moments, as described in detail in Section 2.1.5. Each higher moment of

the Vlasov equation captures more detail about the distribution: the zeroth moment

captures the average charge density, the first moment captures the average current,

the second moment captures the temperature, and so on. The technique leads to very

quiet, robust descriptions of plasmas near equilibrium but fails in all other cases. In

addition, the number of terms in the equation increases exponentially with the number

of moments, practically limiting the method to four moments or less [Chevalier et al.,

2010].

1.10.4 Direct Vlasov simulation

The full Vlasov equation (Equation 2.12) is a six-dimensional description of the time

evolution of a particle distribution. Direct techniques, which discretize and track the

entire six-dimensional space, can be used but are extremely limited due to the very

large number of unknowns involved. For instance, using a naive discretization with

32 cells per velocity component and 100 cells per spatial component, over 30 billion

unknowns are required just to track the distribution function. At present, simulations

of this magnitude are nearly intractable, so direct methods are usually restricted to

small, reduced-dimension problems. 1d3v simulations (1 spatial dimension, 3 velocity

dimensions) are more feasible, but attaining competitive speeds (relative to PIC)

requires sophisticated adaptive techniques [Mehrenberger et al., 2006; Sonnendrücker

et al., 2004, 2005]. We do not investigate this approach in this dissertation, although

we acknowledge that the technique is promising.

1.11 History of numerical modeling

The history of numerical modeling of electromagnetic wave propagation is interesting

and varied. New developments in numerical modeling frequently paralleled advances
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in computer technology. One of the first applications of early computers was the

computation of artillery firing tables, which listed the range and trajectories of a

projectile fired from a large gun or cannon under varying crosswinds or downwinds.

This problem requires the solution of an ordinary differential equation (ODE) for a

wide variety of parameters and initial conditions. Interestingly, this problem has a

direct electromagnetic analogy: the trajectory followed by a light ray in a smoothly-

varying medium is governed by a very similar ODE.

Figure 1.12: Kay McNulty, Alyse Snyder, and Sis Stump operating a differential analyzer at
the University of Pennsylvania. Image in the public domain in the United States because it is a
work of the United States Federal Government under the terms of Title 17, Chapter 1, Section
105 of the US Code.

Prior to the development of the general-purpose computer, such firing tables were

computed by hand, an extremely laborious task requiring many dozens of skilled

workers. The first major advance was the development of machines that could solve

such ODEs. One such early machine, Vannevar Bush’s differential analyzer [Bush

and Hazen, 1931], could compute a trajectory in a small fraction of the time of a

human specialist. The machine was essentially a collection of mechanical analogues

of mathematical operations such as integration, multiplication, and addition, each one

of them an ingenious design all its own. The strength of the device, however, was that
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each of these fundamental blocks could be physically connected together to program a

specific ODE for solution. The only essential limit to the complexity of an ODE that

could be solved was the number of blocks available. However, the device was difficult

to program. Intermediate blocks had to be carefully tuned to balance accuracy against

the physical limits of the machine. For instance, very divergent trajectories or large

swings could physically clamp parts of the machine against internal mechanical stops.

Furthermore, the machine was highly specialized only for one task, which motivated

the development of more general-purpose electronic computers, such as the ENIAC,

an early programmable computer that used vacuum tubes for switching.

Figure 1.13: Photograph of the EDSAC I in June 1948. Copyright Computer Laboratory,
University of Cambridge. Reproduced by permission.

While the ENIAC was also primarily designed to compute firing tables [Kempf,

1961, Chapter 2], it was a fully general-purpose computing platform, programmable

by a combination of punch cards and physical rewiring. One thing the ENIAC sorely

lacked, however, was a large programmable internal memory, which motivated the

development of a stored-program computer, the EDVAC. The innovations and design

of the EDVAC were summarized by John von Neumann in the document First Draft

of a report on the EDVAC [von Neumann, 1945]. His clear, logical description of the
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design of general-purpose computing machines had enormous influence on the then-

new field of computation, inspiring British researchers to construct their own model

based on his document. Their resulting machine, the EDSAC (Figure 1.13), was

the first general-purpose stored-program computer, that is, it could store programs

in memory instead of relying on sequential punch cards. It was on this computing

platform that Jenifer Haselgrove, at the time a young graduate student at Cambridge

University, carried out one of the first electromagnetic simulations ever performed

on a modern-style computing platform [Hartley, 1999]. Specifically, she designed a

program to compute the paths traversed by monochromatic electromagnetic rays in a

magnetized plasma [Haselgrove, 1955] by framing the problem in Hamiltonian theory,

exactly the same framework used to compute ballistic trajectories.

The potential of the computer was, of course, recognized by experts in a number of

fields outside ballistics, leading to the rapid development of many different numerical

techniques along seemingly-unrelated lines.

Much of the earliest work in the numerical solution of partial differential equa-

tions (PDEs) focused on the finite difference method, which works by approximating

the continuous spatial (and possibly temporal) derivatives in the PDE with finite

differences. Proving stability, accuracy, and even existence of the finite difference

solution dominated the early literature. It was during this time that Lax, Courant,

and Wendroff did the pioneering early work on methods that now bear their names

[Lax and Keller, 1951; Lax and Richtmyer, 1956, republished 2005; Lax, 1958; Lax

and Wendroff, 1964, republished 2005, 1960; Courant et al., 1952; Weinberger, 1959].

In 1966, drawing inspiration from the already large body of extant literature on

finite difference methods, K. Yee wrote his seminal paper describing a finite differ-

ence method for the solution of Maxwell’s equations on arbitrary three-dimensional

domains [Yee, 1966]. Interestingly, Yee’s method for electromagnetic problems was

largely abandoned for many years in favor of variational and moment methods because

of their particular strength in solving scattering and boundary value problems on the

limited computing resources of the time.

At the same time, Russian researchers such as Tikhonov and Samarskii [1960]

began their pioneering work on conservative finite difference schemes, which would
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later develop into what are now known as finite volume methods. Finite volume

methods are extremely flexible and powerful, particularly for problems in nonlinear

fluid flow and thus completely dominated the fluid dynamics field until only very

recently.

The first precursors to the finite element method (as it is known in its modern

form) date back to as early as 1941, when Hrennikoff [1941] modeled the behavior of

a large mechanical system by dividing the structure into a mesh of finite deformable

rods, which, when interconnected, approximated the behavior of the whole.

Much of the progress in the field of numerical simulation has been in combining

seemingly unrelated methods, or by showing that existing methods can be general-

ized to solve larger classes of problems. For instance, the finite element method was

originally derived by Hrennikoff [1941] in a very ad-hoc way, by quite literally mod-

eling a mechanical system as a mesh of small, interconnected springs. Later authors

extended the method and put it on a more sound theoretical foundation [Strang and

Fix, 2008]. The Runge-Kutta method [Runge, 1912, p. 133] dates back to before

1912 and was originally designed to speed up graphical calculations of the solution

of initial-value problems. The technique was only placed in a more general frame-

work many years later, as its usefulness in computation became apparent. Today the

Runge-Kutta method is an entire family of highly flexible time-stepping techniques

with variable order, full splitting, and embedding for use in adaptive time-stepping.

The Fourier series, developed by Fourier in 1807 to solve the heat equation subject to

boundary conditions, is now known to be one example of a broader class of spectral

methods, which work by projecting the unknown infinite-dimensional solution of a

PDE onto a finite-dimensional basis, effectively solving the problem in a truncated

inner product space. The discontinuous Galerkin method, which is the focus of this

dissertation, is essentially a hybrid technique combining features from both the finite

volume method and the finite element method to yield a scheme that is both highly

local and highly accurate.

Development of numerical methods has also been highly influenced by changes in

computing technology. In recent years, direct, global methods like the finite difference

method and DG method have seen a resurgence of interest for solving problems in
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electromagnetics. This resurgence is largely due to the ready availability of cheap

RAM, fast processors, and ubiquitous fast interconnects. Today it is perfectly feasible

to directly simulate very large-scale three dimensional electromagnetics problems.

1.12 Commentary

A major focus of this dissertation is the application of the DG method to modeling

VLF wave propagation in plasmas. Our primary goal is to ultimately reduce the

constraints or limitations placed on the modeler. Considered in this context, the

DG method has a number of advantages over other global techniques like the finite

difference method and the finite volume method, namely its geometric flexibility,

strong handling of material discontinuities, and arbitrary order of accuracy.

Since full, global simulations of electromagnetic wave propagation over the entire

near-Earth space environment are still intractable, we limit our focus specifically to

linear and nonlinear electromagnetic wave propagation in strongly inhomogeneous

media. We prefer to make as few as possible a priori assumptions about the problem

geometry or the spatial distribution of the plasma’s physical parameters. We do not

make approximations that impose geometric constraints or constraints on smoothness

of the solution or background medium. The only significant constraint our method re-

quires is a sampling constraint, that is, the phenomena of interest must be sufficiently

sampled in both space and time.

In short, we stress generality over efficiency, although we do note that the DG

method can easily outperform other, simpler time domain methods such as the finite

difference time domain (FDTD) method, due to its high accuracy and geometric

flexibility. In addition, the high accuracy of the method means that it can be used to

validate more specialized approximate techniques (such as those using linearizations),

offering an independent evaluation of their range of validity and manner of breakdown.
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Science background

2.1 Basic plasma theory

A plasma refers to a partially or completely ionized gas that meets a few basic criteria:

• A plasma is quasi-neutral, that is, it is composed of negatively and positively

charged particles in roughly equal quantities. Local deviations from quasi-

neutrality are allowed, but these must be small relative to the total number

density in the plasma.

• The characteristic length scales must be bigger than a Debye length, that is,

the length scales considered must be large enough so that charge screening can

occur. Behavior on sizes smaller than a Debye length is dominated by statistical

fluctuations, and the plasma description cannot apply on these scales.

• The charged particles must be unbound, that is, not bound to any particular

nucleus and thus subject only to external forces and the Lorentz force.

An overriding theme here is that plasmas behave essentially as fluids. The number

of individual particles is so large that the behavior of the system as a whole can be

described quite independently of the behavior of its constituent particles. Neverthe-

less, a major component of this dissertation is devoted to the particle-in-cell (PIC)

method, which models the behavior of a plasma by tracking the motion of individ-

ual quasi-particles, so we continue with a brief overview of single-particle motion in

plasmas.

36



CHAPTER 2. SCIENCE BACKGROUND 37

2.1.1 Definitions and single-particle motion

All plasma behavior ultimately derives from the Lorentz force law, which gives the

force exerted on a particle of charge q and moving at velocity v by electric and

magnetic fields E and B, respectively:

F = q(E + v ×B) (2.1)

A plasma consists of a quasi-neutral collection of both positive and negative charges.

If the electrons and ions in a slab of plasma are displaced from each other, an electric

field is set up which (according to the Lorentz force) will act to push the particles back

towards equilibrium. In the absence of any losses or collisions, the system continues

to oscillate forever about its equilibrium position at a frequency called the plasma

frequency:

ωp =

√
Nq2

mε0
, (2.2)

where m is the particle mass, ε0 is the permittivity of free space, and N is the number

density in particles per cubic meter.

We primarily consider cases with a static background magnetic field B0. In the

absence of any electric field, the Lorentz force only acts at right angles to the particle

velocity and background magnetic field, meaning that a particle with any initial

velocity gyrates around the static magnetic field lines at the gyrofrequency ωc:

ωc =
qB0

m
, (2.3)

where B0 is the background magnetic field magnitude. We use the convention that

the charge q carries a sign. A negative gyrofrequency (for electrons) means the ro-

tation is in the right-hand sense with respect to the magnetic field, while a positive

gyrofrequency (for ions) means the rotation is in the left-hand sense.
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It is occasionally convenient to define an oriented gyrofrequency vector:

ωc =
qB0

m
(2.4)

Here B0 is the vector magnetic field, and thus ωc is also a vector with magnitude

equal to the gyrofrequency and pointing in the direction of the axis of rotation. As

above, the sign of q denotes the sense of the rotation with respect to the magnetic

field.

For wave-particle interactions, we consider the response of a particle to time-

harmonic electromagnetic fields, that is:

E(t) = Ee−jωt

B(t) = Be−jωt

Under such forced motion, individual particles can execute complicated trajectories,

as shown in Figure 2.1 for circularly polarized harmonic forcing.

Figure 2.1: Individual particle motion under forcing from a circularly polarized electric field,
with static background magnetic field oriented out of the plane of the plot. Four cases are
shown, for wave frequencies above the particle gyrofrequency in the top two panels and below the
gyrofrequency for the bottom two. The left and right sets of panels are for different polarizations
of the wave, either leading to driven motion rotating in the same sense as the particle gyromotion
or in the opposite sense.

This forced motion constitutes an additional current, which is not necessarily
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in the same direction or of the same phase as the input wave. Since the plasma

is composed of many such particles, these additional currents in turn modify the

properties of the wave propagating through the medium. Supposing that we have an

ensemble of N particles indexed by i, the electromagnetic behavior of a plasma is (in

principle) completely described by a relatively simple set of equations:

∂B

∂t
= −∇× E (2.5a)

µ0ε0
∂E

∂t
= ∇×B− µ0J (2.5b)

J =
N∑
i=1

viqi (2.5c)

ρ =
N∑
i=1

qi (2.5d)

subject to the additional constraints:

∇ · E =
ρ

ε0
(2.6a)

∇ ·B = 0 (2.6b)

While this discrete-particle description in principle captures all plasma phenomena,

in practice it is useless except in very simple cases, due to the extremely large number

of particles in natural plasmas of any interesting size – for instance, charged particle

number densities on the order of N = 106 m−3 or larger are commonplace in the

Earth’s ionosphere. Since typical scale sizes of interest for radio propagation in the

ionosphere are on the order of hundreds of km3, direct simulation of every particle in

the system is currently intractable. As such, it is common to treat the plasma as a

continuous fluid for analysis and numerical modeling. We will return to the single-

particle approach in Chapter 4 when discussing the PIC approach, but we will do so

in the sense of approximating the fluid description.



CHAPTER 2. SCIENCE BACKGROUND 40

2.1.2 Distribution function

The problems in modeling such a large number of particles can be remedied by rec-

ognizing that particles are interchangeable. In other words, a particle traveling at

a given velocity v and at a position r is indistinguishable from another particle at

the same velocity and position. Likewise, two particles at different positions and

velocities could be interchanged at will with absolutely no influence on the results.

Thus, it is natural to consider the entire population of particles in a statistical

sense. Instead of a discrete population of particles evolving self-consistently as time

progresses, we consider a distribution of particles evolving under the same set of

physical laws. For a given particle, its state is entirely determined by its velocity and

position, so the plasma distribution function is defined over a six-dimensional space

(three velocity and three position coordinates) termed phase space.

The phase space distribution function f is defined such that f is related to the

infinitesimal number density of particles dN in an infinitesimal phase space volume

dr dv via:

dN = f(r,v, t) dr dv

The distribution function, then, tells us the density of particles at a given position r

moving at a velocity v. The total number of particles N is found by integrating:

N(t) =

∫∫
f(r,v, t) dr dv

And the number density is then:

N(r, t) =

∫
f(r,v, t) dv (2.7)

We can continue this process, multiplying the distribution function by higher and

higher powers of the velocity and integrating to find the moments of the distribution.
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For instance, the first moment is proportional to the average bulk velocity u:

ui(r, t) =
1

N

∫
vif(r,v, t) dv (2.8)

The second moment is the pressure tensor:

Pij(r, t) =

∫
m(vi − ui)(vj − uj)f(r,v, t) dv (2.9)

The third moment gives the heat flux tensor:

Qijk(r, t) =

∫
m(vi − ui)(vj − uj)(vk − uk)f(r,v, t) dv (2.10)

Each higher moment captures additional information about the distribution in

some average sense. However, since the number of terms in the tensors grow expo-

nentially, it is extremely cumbersome to consider moments higher than the third or

fourth.

By coupling a force term into the continuity equation for phase space density, we

can write an equation for the time evolution of the distribution function. If this force

is the Lorentz force, this equation is called the Vlasov equation, which we discuss

next.

2.1.3 The Vlasov approximation

Consider a two-dimensional system, with only a scalar position x and scalar velocity

v. A particle begins at state (x, v) subject to an external force F . An infinitesimal

time dt later, the particle will be at position (x+ v dt, v+ (F/m) dt), as shown in

Figure 2.2.

Figure 2.2: Trajectory of a single particle in phase space before and after an infinitesimal
timestep dt.

It is clear that we can consider the vector (v, F/m) as the direction of some
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generalized flow of particles through phase space. Multiplying this vector by the

phase space density f , we immediately recognize φ= (fv, fF/m) as a pointwise flux,

representing the flow of a density f through phase space. Assuming that particles are

conserved, we can directly write a conservation law in these coordinates (x, v):

∂f

∂t
+

∂

∂x
(fv) +

∂

∂v

(
f
F

m

)
= 0

The extension to six dimensions follows straightforwardly. In vector form:

∂f

∂t
+∇ · φ = 0 (2.11)

where

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂y
,
∂

∂vx
,
∂

∂vy
,
∂

∂vz

)
φ =

(
fvx, fvy, fvz, f

Fx
m
, f
Fy
m
, f
Fz
m

)
In this form, it is clear that this is simply a statement of conservation of phase space

density. Substituting the Lorentz force for the term F, we have the Vlasov equation

in conservative form:

∂f

∂t
+∇r · (fv) +∇v ·

[
f
q

m
(E + v ×B)

]
= 0 (2.12)

∇r and ∇v denote the gradients with respect to space and velocity, respectively. The

Vlasov equation is commonly rewritten in non-conservative form as follows. The

divergence of the Lorentz force with respect to velocity is always zero, ∇v · F = 0,

which is easily verified. Assuming the particle mass m is constant (which holds

true for non-relativistic distributions), the divergence of the acceleration a = F/m is

therefore also zero, that is, ∇v · a = 0. Second, each term of ∇r · v is identically zero,

since v and r are independent variables. Therefore,

∇r · v +∇v · a = 0
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Another way of stating this result is that the distribution is incompressible in phase

space. We note that this condition only holds in the absence of any loss mechanisms

such as particle sinks, sources, or collisional losses. Expanding the product terms and

simplifying, we obtain the Vlasov equation in non-conservative form:

∂f

∂t
+ v · ∇rf +

q

m
(E + v ×B) · ∇vf = 0 (2.13)

The Vlasov equation is rarely used directly. For some simplified cases (e.g., beam

instabilities), it can be used directly, but for analysis, the equation is usually first

simplified by linearization or by taking successive fluid moments.

2.1.4 Linearization of the Vlasov equation

Linearizing the Vlasov equation is a common first step in determining the small-signal

behavior of waves in a hot plasma. We assume that all quantities of interest consist

of an equilibrium value plus a small first-order perturbation:

f(v) = f0(v) + fp(v)

E = 0 + Ew

B = B0 + Bw

The first-order perturbation on the distribution function fp is due to a wave prop-

agating with electric and magnetic fields Ew and Bw. B0 is the static background

magnetic field. We first note that the zeroth-order terms must themselves satisfy the

Vlasov equation in the absence of any perturbation [Inan and Go lkowski, 2010, p.

241], that is:

∂f0

∂t
+ v · ∇rf0 +

q

m
(E0 + v ×B0) · ∇vf0 = 0
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Substituting these equations into Equation 2.13 and dropping all products of small

terms, we have:

∂fp
∂t

+ v · ∇rfp +
q

m
(v ×B0) · ∇vfp +

q

m
(Ew + v ×Bw) · ∇vf0 = 0 (2.14)

The linearized Vlasov equation is a powerful tool for determining the small-signal

growth and damping rates of propagating modes in a plasma.

2.1.5 Moments of the Vlasov equation

Similar to the moments of the distribution function taken in Section 2.1.2, we can also

take moments of the Vlasov equation to find equations describing the time evolution

of the various moments of the distribution (number density, pressure, heat flux, etc.).

The derivations herein closely follow those in Inan and Go lkowski [2010, Chapter 4].

The zeroth moment is found by integrating each term of Equation 2.12:

∂

∂t

∫
f dv +

∫
∇r · (fv) dv +

1

m

∫
∇v · (fF) dv = 0

The first term is equal to the time rate of change of the number density:

∂

∂t

∫
f dv =

∂N

∂t

For the second term, we interchange the integral and derivative as they apply to

different coordinates:

∇r ·
∫
fv dv = ∇ · (Nu),

where u is the average bulk velocity. By physical argument, the third term is zero,

which we can see by rewriting the integral as a surface integral:∫
∇v · (fF) dv =

∮
fF · dsv

Any realistic density f will vanish quickly enough as |v|→∞ so the magnitude of
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this term must necessarily go to zero. Thus,

∂N

∂t
+∇ · (Nu) = 0, (2.15)

which is a statement of conservation of charge. Similarly, the first moment is:

∂

∂t

∫
vif dv +

∫
vi∇r · (fv) dv +

1

m

∫
vi∇v · (fF) dv = 0

The first term is:

∂

∂t

∫
vif dv =

∂

∂t
(Nu)

The second term:∫
vi∇r · (fv) dv =

∂

∂xj

∫
vivjf dv

=
∂

∂xj

∫
[(vj − uj)(vi − ui) + (viuj + vjui − uiuj)] f dv

=
∂

∂xj

(
1

m
Pij +Nuiuj

)
Thus, ∫

v∇r · (fv) dv =
1

m
∇r · P +∇r · (Nuu),

where the pressure tensor P is defined in Equation 2.9 and uu is the dyadic product

defined in Section 1.3. The third term is more complicated. Evaluating the integral

by parts,

1

m

∫
vi∇v · (fF) dv =

1

m

∮
vifF · dsv −

1

m

∫
(fF) · (∇vvi) dv

Once again, we argue on physical grounds that the density f decays sufficiently fast

as |v|→∞ that the surface integral term goes to zero. For the second term, we have
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two cases:

− 1

m

∫
(fF) · (∇vvi) dv = − 1

m

∫
fFj

∂vi
∂vj

dv

When i 6= j, the integral is identically zero since ∂vi/∂vj = 0.

When i= j, ∂vi/∂vj = 1, so we have:

− 1

m

∫
fF dv = −Nq

m
(E + u×B),

where we have substituted the Lorentz force for F. We now have:

∂

∂t
(Nu) +

1

m
∇r · P +∇r · (Nuu)−N q

m
(E + u×B) = 0 (2.16)

We can further simplify Equation 2.16 to put the temporal and spatial derivatives in

a more familiar form, yielding the first moment of the Vlasov equation:

N

(
∂u

∂t
+ u · ∇u

)
+

1

m
∇r · P−N

q

m
(E + u×B) = 0 (2.17)

We can continue to higher and higher moments, but once again, the number of terms

grows exponentially so it is rarely practical to continue past the third or fourth mo-

ment. An additional problem is closure, that is, each moment introduces an unknown

quantity. For instance, Equation 2.17 contains a pressure term P, but we have no

equation telling us how this quantity evolves. The second moment would provide a

time evolution equation for P, but it introduces a new unknown, the heat flux Q. At

some point, we must appeal to some physical assumption in order to close the system

of equations, e.g., by assuming that the temperature is constant. One important

example of a simple closure relationship is the cold plasma approximation, discussed

in the next section.

2.1.6 Cold plasma approximation

We begin with Equation 2.17, which has an unknown pressure tensor P. In the cold

plasma approximation, we assume the temperature (and therefore pressure) are zero
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and this term is simply dropped. Further, for small signal analysis, it is common to

drop the small convective derivative term u · ∇u. Identifying qNu as the current J,

we have:

dJ

dt
− q2N

m
E− q

m
J×B = 0

If we further assume that the background magnetic field B0 is much larger than any

wave magnetic field Bw, we can drop the cross term J×Bw. Finally, using Equations

2.2 and 2.4, we rewrite the equation in a more compact form:

dJ

dt
= ε0ω

2
pE− ωc × J

Although we have not discussed collisions, it is also common to introduce an effective

collision frequency representing macroscopic losses:

dJ

dt
+ νJ = ε0ω

2
pE− ωc × J (2.18)

Under this set of approximations, a cold plasma is completely characterized by a

first-order ODE relating the cold plasma current J to the input E and the static

background magnetic field B0. While plasmas are not cold, Equation 2.18 is a rea-

sonable approximation of Equation 2.17 in certain regimes, in particular in the Earth’s

ionosphere.

2.1.7 The cold plasma conductivity tensor

We begin with Equation 2.18. For notational convenience, we denote the complex

frequency s=−jω. Making the substitution d/dt→ s, we have a matrix equation

relating the cold plasma current J and the electric field E:
s+ ν −ωcz ωcy

ωcz s+ ν −ωcx
−ωcy ωcx s+ ν

J = ε0ω
2
pE
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Symbolically inverting this matrix yields a conductivity tensor relating J and E via

J =↔σE, where each entry is a ratio of polynomials in s:

↔σ(s) =
ε0ω

2
p

d(s)


σxx(s) σxy(s) σxz(s)

σyx(s) σyy(s) σyz(s)

σzx(s) σzy(s) σzz(s)

 (2.19)

Where:

d(s) = (s+ ν)(s2 + 2sν + ν2 + |ωc|2)

and:

σxx(s) = s2 + 2νs+ ν2 + ω2
cx

σxy(s) = ωczs+ ωcxωcy + νωcz

σxz(s) = −ωcys− νωcy + ωcxωcz

σyx(s) = −ωczs+ ωcxωcy − νωcz
σyy(s) = s2 + 2νs+ ν2 + ω2

cy

σyz(s) = ωcxs+ νωcx + ωcyωcz

σzx(s) = ωcys+ νωcy + ωcxωcz

σzy(s) = −ωcxs− νωcx + ωcyωcz

σzz(s) = s2 + 2νs+ ν2 + ω2
cz

If multiple plasma species are present, the currents simply sum by linearity:

J(s) = (↔σ1(s) +↔σ2(s) + . . .) E(s),

where ↔σj(s) is the conductivity tensor for the jth plasma species.
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2.2 Waves in plasmas

The steady-state analysis of waves in plasmas leads to a dispersion relation, which

relates the wave vector k to the wave frequency ω. We begin by transforming the

field quantities in Maxwell’s equations into the frequency domain. Assuming a plane

wave solution of the form:

E(t) = Ee j(k·r−ωt)

H(t) = He j(k·r−ωt)

The differential operators transform as:

∂

∂t
→− jω (2.20a)

∇ →jk (2.20b)

When considering losses or gains, the frequency ω (or k) are complex, that is, ω=

ωr + jωi. The imaginary component ωi thus represents a gain (positive) or a loss

(negative).

We begin with waves in cold plasmas and follow with a discussion of Landau

damping and whistler mode cyclotron instabilities. The cold plasma dispersion re-

lation can be solved easily. In a hot plasma, by contrast, the concept of a mode

only makes sense for smooth distribution functions considered under long time be-

havior, but it is nonetheless a useful technique for understanding anisotropy-driven

wave instabilities in plasmas.

2.2.1 The cold plasma dispersion relation

We begin by writing Maxwell’s equations for a cold plasma in the frequency domain,

where we have transformed the differential operators as in Equation 2.20:

k× E = ωµ0H

k×H = −ω
(
ε0I−

↔σ1(ω)

jω
−
↔σ2(ω)

jω
− . . .

)
E
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Identifying the term in parentheses as an effective permittivity ↔ε eff(ω), we have:

k× E = ωµ0H (2.21a)

k×H = −ω↔ε eff(ω)E (2.21b)

For convenience, we fix the propagation angle and solve for the wave vector magni-

tude k. We define the matrix K, where we have rewritten the vector k in spherical

coordinates with φ being the angle from the ẑ axis and θ being the azimuthal angle:

K = kK̂ = k


0 − cosφ sin θ sinφ

cosφ 0 − cos θ sinφ

− sin θ sinφ cos θ sinφ 0


The Maxwell system in block matrix form is then:[

−ω↔ε eff(ω) 0

0 ωµ0I

][
E

H

]
= k

[
0 K̂

K̂ 0

][
E

H

]

Numerically solving the resulting generalized eigenvalue problem yields the solution:

Av = kBv,

which gives the wave vector magnitude k as a function of the frequency ω as well as

the characteristics E and H associated with that mode. Two of the eigenvalues k are

infinite. These arise as a result of the nullspace of the curl operator, reflecting the

physical fact that adding a static curl-free field to E or H leaves the electromagnetic

wave behavior unaffected.

The equation here would apply even if the permeability µ were also a frequency-

dependent tensor. However, since µ is a simple scalar in a plasma, we can also

eliminate H, yielding a simpler eigenvalue problem:[
ω2µ0

↔ε eff(ω) + k2K̂2
]

E = 0 (2.22)
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These eigenvalues can be found algebraically by setting the determinant of the

quantity in parentheses to zero and solving for k, which for a plasma (after sim-

plification) yields a more explicit form as a quadratic in terms of k2, a form popu-

larly known as the Appleton-Hartree-Lassen equation [Appleton, 1928; Hartree, 1931;

Lassen, 1927]. We note that the eigenvalue approach, however, can apply to any

linear medium with only small modifications.

Solving the cold plasma dispersion relation for the wavenumber k in terms of the

frequency ω is relatively straightforward as shown. However, supposing we want to

solve the inverse problem, that is, the dispersion relation ω(k), or ω as a function of

wave vector magnitude k, the solution is less straightforward. For two or more cold

plasma species there are more than four roots ω for a given wavenumber k, which

means that an explicit solution cannot even be written down. However, an eigenvalue

approach still exists and can be useful in some situations. This approach is discussed

in Appendix A.

2.2.2 The electrostatic hot plasma dispersion relation

A hot plasma supports purely electrostatic modes. In order to compute the small

signal propagation velocity and damping rate, we use the linearized Vlasov equation

(Equation 2.14) to derive the dispersion relation for electrostatic waves. We first set

k⊥ and Bw to zero. Additionally, we consider an unmagnetized plasma for the time

being, so ωc = 0. Noting that we are left with only componentwise derivatives and

no cross-terms, we assume without loss of generality that propagation is in the ẑ

direction. Thus, Equation 2.14 reduces to:

fp = j
q

mkz
Ez

∂f0/∂vz
vz − ω/kz

(2.23)

From the divergence theorem and Equation 2.7, we have:

ε0
∂Ez
∂z

= ρ = q

∫
fp dv (2.24)
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Substituting Equation 2.23 into 2.24 and making the Fourier transform substitution

∂/∂z → jkz, we have: (
1− q2

ε0mk2
z

∫
∂f0/∂vz
vz − ω/kz

dv

)
Ez = 0

The trivial solution Ez = 0 is not useful, so the other term must be zero, which leads

to:

1− q2

ε0mk2

∫
∂f0/∂v

v − ω/k
dv = 0 (2.25)

Note that we have integrated out the vx and vy terms for clarity, so f0 is now un-

derstood to be a purely one-dimensional function in terms of a scalar velocity v. An

alternative form is found by integrating by parts:

1− q2

ε0mk2

∫
f0(v)

(v − ω/k)2
dv = 0 (2.26)

The singularity in the denominator is not integrable, so a solution to this equation

does not exist unless there are losses or gains allowed, that is, if either the wave

frequency ω or the wavenumber kz are allowed to take on complex values. Thus to

carry out the integration, we must analytically continue v into the complex plane,

allowing the singularity at v=ω/k to lie off the real axis, as shown in Figure 2.3.

Figure 2.3: Landau integration contours in the complex v plane for the electrostatic mode in
a hot plasma. The singularity v=ω/k is indicated with an x-mark. Left: Integration contour
for damping (Im{ωi}< 0). Right: Integration contour for gain (Im{ωi}> 0). In both cases the
wavenumber k is taken to be positive.

Carrying out the contour integration on Equation 2.25, we now have the electro-

static dispersion relation for damping in an integrable form, where v is again a real
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quantity and the contour integration around the pole has contributed a factor of 2πj:

1− q2

ε0mk2

(∫ ∞
−∞

∂f0/∂v

v − ω/k
dv + 2πj

∂f0

∂v

∣∣∣∣
v=ω/k

)
= 0 (2.27)

Equation 2.27 is valid for damping only. For gain, the contour is not deformed so the

second term is zero:

1− q2

ε0mk2

∫ ∞
−∞

∂f0/∂v

v − ω/k
dv = 0 (2.28)

Either ω or k (or possibly both) are now complex numbers. This equation can

be solved numerically using a complex root finding technique. Typically one of the

frequencies, either ω or k, is chosen as some fixed, real number, and then the root

finder solves for the other complex variable, i.e., to find k(ω) or ω(k).

2.2.3 The electromagnetic hot plasma dispersion relation

In principle, solving the dispersion relation for the electromagnetic modes in a lin-

earized hot plasma is similar to the approach taken in Section 2.2.1. The primary

complication is that the hot plasma equivalent permittivity tensor is non-local, that

is, it depends not only on the temporal frequency ω but also the wavenumber k:

↔ε eff(ω,k) = ε0I−
↔σ1(ω,k)

jω
−
↔σ2(ω,k)

jω
− . . .

The actual expression for each conductivity tensor is exceedingly complicated. We

reproduce it here in time-harmonic form for a one-species distribution function in

cylindrical coordinates f0(v⊥, v‖) without derivation. One derivation is given in Gur-

nett and Bhattacharjee [2005, pp. 367-370]:

↔σ = j
q2

mωc

∑
n

∫ ∞
−∞

∫ ∞
0

2πv⊥ dv⊥dv‖
α + n


a
n2v⊥
β2

J2
n ja

nv⊥
β
JnJ

′
n b

nv⊥
β
J2
n

−janv⊥
β
JnJ

′
n av⊥J

′
nJ
′
n −jbv⊥JnJ ′n

a
nv‖
β
J2
n jav‖JnJ

′
n bv‖J

2
n
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This expression is only valid when the background magnetic field B0 is in the ẑ

direction. The subscripts ‖ and ⊥ denote the components parallel and perpendicular

to the background magnetic field B0, respectively. The quantities α and β are defined

as:

α =
k‖v‖ − ω

ωc

β =
k⊥v⊥
ωc

Jn denotes Jn(β), the Bessel function of the first kind with argument β. J ′n denotes

the derivative of the Bessel function of the first kind with respect to its argument,

evaluated at β. The values a and b are defined as:

a =
∂f0

∂v⊥
+
k‖
ω

(
v⊥
∂f0

∂v‖
− v‖

∂f0

∂v⊥

)
b =

∂f0

∂v‖
− nωc
ωv⊥

(
v⊥
∂f0

∂v‖
− v‖

∂f0

∂v⊥

)
This expression also has a singularity of the form k‖v‖−ω, necessitating an analytic

continuation of the velocity v and an associated contour integration, as in Figure 2.3.

The dispersion relation is then defined by the implicit function:

det
(
ω2µ0

↔ε eff(ω, k) + k2K̂2
)

= 0 (2.29)

In principle, solving Equation 2.29 is not much different from solving the cold plasma

dispersion relation, but is much more difficult in practice. Direct evaluation to find the

modes of the system typically requires numerical techniques. A useful simplification,

however, and one that can provide useful insight into cyclotron instabilities, is to

assume propagation parallel to the background magnetic field. Equation 2.29 then

simplifies to [Inan and Go lkowski, 2010, p. 242]:

1−
c2k2
‖

ω2
− q2

mε0ω2

∫ ∞
−∞

g(v‖)

v‖ − (ω ± ωc)/k‖
dv‖ = 0 (2.30)
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where the sign ± is positive for the right-hand circularly polarized mode and negative

for the left-hand mode.

g(v‖) =

∫ ∞
0

[(
ω

k‖
− v‖

)
∂f0

∂v⊥
+ v⊥

∂f0

∂v‖

]
πv2
⊥ dv⊥ (2.31)

Similar to the Landau damping case, there is a non-integrable singularity. The tech-

nique to carry out the integration follows in the same manner. One final simplification

is common in the literature: when growth or damping is small, only particles very

near resonance with the wave contribute to the integral over v‖, thus collapsing that

integral. The imaginary component of the frequency (that is, the growth rate) can

then be explicitly written [Kennel and Petschek, 1966]:

ωi = −πωc
N

(
1 +

ω

ωc

)2

|vres|
(
A− ω

|k‖vres|

)∫ ∞
0

2πv⊥f0(v‖ = vres, v⊥) dv⊥, (2.32)

where the resonant velocity is:

vres =
ω ± ωc
k‖

(2.33)

and the anisotropy factor A is:

A =

∫ ∞
0

k‖
|k‖|

(
v‖
∂f0

∂v⊥
− v⊥

∂f0

∂v‖

)
v2
⊥
v‖
π dv⊥∫ ∞

0

2πv⊥f0(v‖, v⊥) dv⊥

∣∣∣∣∣∣∣∣∣
v‖=vres

(2.34)

Sufficiently large positive anisotropy factors lead to growth (positive ωi) of the electron

cyclotron whistler mode wave. Note that we use the signed gyrofrequency defined in

Equation 2.3, that is, ωc is negative for electrons and positive for ions.

2.3 Plasma instabilities

The plasma in the Earth’s magnetosphere is particularly interesting because it is

frequently unstable. Because it is relatively diffuse and nearly collisionless, the plasma
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in the near-Earth space environment can exist in metastable states for very long

periods before releasing its energy in some manner or another. We now discuss some

basic physics of instabilities from the entropy point of view and then continue with a

brief discussion of some specific examples relevant in the context of this dissertation.

2.3.1 Entropy arguments

Instabilities arise in plasmas, fundamentally, because the system is not in equilibrium.

From a statistical mechanics point of view, instabilities arise because the entropy in

the system is not at a maximum, so that there is energy that could be extracted for

useful work. One of the most fundamental relations in thermodynamics provides a

good illustration of this concept [Lifshitz et al., 1994, p. 43]:

dU = TdS − PdV, (2.35)

where U is the internal energy (kinetic plus potential energy), T is the temperature, S

is the entropy, P is the pressure, and V is the volume. We can see that if, for instance,

the temperature, pressure, and volume are somehow kept constant, the change in

entropy from some beginning state to some final state is directly proportional to the

change in potential energy.

It is then natural to ask, for a given temperature, which distribution of particles

has the highest entropy of all distributions, since this would place an upper bound on

the useful energy that could be extracted from a system. It is possible to show that

for an ideal gas, the answer is the Maxwell-Boltzmann distribution [Lifshitz et al.,

1994, pp. 118-119]:

f(px, py, pz) = N

(
1

2πmkBT

)3/2

exp

(
−
p2
x + p2

y + p2
z

2mkBT

)
(2.36)

The assumptions used to derive this are modest. First, there must be some mechanism

for random momentum or energy exchange between particles. In a dense gas, collisions

accomplish this. In a plasma, Coulomb interactions, collisions, wave phenomena,

or other processes may do the same. The second assumption is that particles are
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indistinguishable. That is, if we have three particles with positions (r1, r2, r3) and

momenta (p1,p2,p3), the state of affairs in hand would be indistinguishable from a

set of particles with positions (r3, r1, r2) and momenta (p3,p1,p2). That is, there is

no preferred ordering for a set of N particles. Under these assumptions, the most

overwhelmingly likely state for a very large number of N ideal gas particles to be

in is described by a Maxwellian velocity distribution. In some sense, the entropy is

conceptually similar to a likelihood function, that is, it is a measure of the relative

likelihood of a given distribution function.

The entropy per unit volume can be computed from the distribution function

[Huang, 2008, p. 73]:

S(r) = −kB
∫
f(p, r) log f(p, r) dp (2.37)

The entropy of the Maxwell-Boltzmann distribution, or the equilibrium entropy, is

then:

Smax(r) = −kBN
[
log

(
N

(2πmkBT )3/2

)
− 3

2

]
(2.38)

This equation can be used to estimate an upper bound on the maximum energy that

is available to drive an instability but says nothing about the manner in which it

might happen. We now investigate some specific cases of instabilities in plasmas.

2.3.2 Electrostatic beam instability

The electrostatic two-beam instability is one of the simplest examples of a plasma

instability. The instability arises when there are two counterstreaming beams of

particles, each with opposing velocities but sharing the same physical space. The

reduced 1D distribution function is:

f(v) = Nδ(v − v0) +Nδ(v + v0)
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Substituting into the electrostatic dispersion relation Equation 2.26, we have:

1−
ω2
p

(v0k − ω)2
−

ω2
p

(v0k + ω)2
= 0 (2.39)

Solving this for ω shows there is exponential growth whenever k <ωp2
1/2/v0. This

result can easily be extended to a system of multiple beams:

f(v) =
∑
i

Niδ(v − vi)

we have:

1− q2

ε0m

∑
i

Ni

(vik − ω)2
= 0 (2.40)

This yields a large polynomial with many terms. While the roots are difficult to

predict directly from the coefficients, this system is also unstable for some range of

spatial frequencies k.

This instability, which exists for nearly any system of beams, has enormous prac-

tical implications for numerical simulations. We discuss this problem and its conse-

quences for particle-in-cell (PIC) simulations in Section 6.2.3.

2.3.3 Whistler mode cyclotron instability

One commonly-encountered instability in the magnetosphere is the electron cyclotron

instability. This instability leads to the growth of whistler-mode waves propagating in

the magnetosphere, sometimes by many tens of decibels as a wave makes one traverse

from the surface of the Earth to the opposite hemisphere along a magnetic field line.

The basic linear growth rate is given by Equation 2.32. The most important

parameter from the point of view of growth is the anisotropy given by Equation

2.34. Anisotropy simply means that for a given velocity magnitude, the distribution

function is not the same in every direction. A positive anisotropy means that there

are more particles traveling perpendicular to the magnetic field than parallel to it.

Sufficiently large positive anisotropies can lead to wave growth.
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When wave amplitudes get large enough that the distribution function itself is

significantly perturbed from equilibrium, predictions from linear theory can fail. In

extreme cases, the assumptions used to derive the linear growth rate (i.e., smoothness

and long-time behavior) break down, so it is no longer even possible to use linear

theory to describe the behavior of the perturbed distribution. In the nonlinear regime,

a variety of interesting effects can occur, one of the most important of which is

saturation. The cyclotron instability cannot continue forever. While Equation 2.32

predicts the growth or damping rate at low amplitudes, the process must eventually

saturate because the particle anisotropy is destroyed by the wave itself. Essentially,

the free energy in the non-equilibrium particle distribution is given up to the wave,

and when that energy is exhausted or no longer available to create an instability, the

process stops.

2.3.4 Inhomogeneity-driven cyclotron instability

When spatial inhomogeneity is present, the phenomena encountered can be even more

interesting. The inhomogeneity of the Earth’s background magnetic field, coupled

with nonlinearities induced by large-amplitude waves, is thought to be responsible

for much of the characteristic behavior of chorus.

One well-developed theory of cyclotron instabilities in an inhomogeneous magne-

tized plasma is due to Omura et al. [2008], based on previous work by Omura et al.

[1991]; Bell [1984, 1986]; Nunn [1974]. The basic theory is concerned with particle

trapping. Sufficiently large wave fields can act as potential wells, effectively trapping

particles in lockstep with the wave, thereby significantly altering the trajectories of

particles near the resonant velocity:

vres =
ω + ωc
k‖

Note the sign convention: ωc is negative for electrons, so this means that for k‖

positive, the resonant velocity is negative. In other words, the resonant electrons and

the wave are traveling in opposite directions. The contribution of Omura et al. [1991]

was to add first-order corrections to the basic resonance condition in order to write
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an explicit expression for the trajectory of a particle in phase space, where the phase

space angle ζ is the angle of a single particle’s perpendicular velocity vector with

respect to the wave magnetic field:

∂2ζ

∂t2
= ω2

t (sin ζ + S) (2.41)

The trapping frequency ωt is given by:

ωt =

√
kv⊥
|q|Bw

m
(2.42)

The term S incorporates first-order corrections to account for the spatially-varying

background magnetic field and time-varying wave frequency which we write in non-

relativistic form:

S = − 1

ω2
t δ

2

[(
1− vres

vg

)2
∂ω

∂t
+

(
kv2
⊥

2ωc
+

(
1 +

δ2

2

)
vres

)
∂ωc
∂h

]
(2.43)

The term ω is the wave frequency and vg is the wave group velocity. The dimensionless

term δ is defined as δ2 = 1−ω2/(c2k2). The term h is the distance along a single

magnetic field line.

This equation is recognizable as the forced pendulum equation. The frequency

of oscillation is roughly equal to ωt, and the term S represents some external force

acting to push the pendulum away from equilibrium. Effectively, the term S makes

the pendulum oscillation lopsided, shifting its equilibrium position away from ζ =π

and also modifying the motion away from sinusoidal.

What trapping means is more obvious when we plot the trajectories of individual

particles in this system. Figure 2.4 shows some of the trajectories followed by a

particle for different values of S in (ζ, v‖) space. The term v‖ is directly related to

the angular position via ∂ζ/∂t= k(v‖ − vres).

The red lines indicate trapped particle trajectories. In the pendulum analogy, a

trapped particle would correspond to a pendulum swinging from side to side within

some small angle near its equilibrium position at ζ = π. Blue lines denote untrapped
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Figure 2.4: Trapped and untrapped particle trajectories in phase space. The horizontal axis
is the gyrophase or angle with respect to the wave magnetic field. The vertical axis is the
parallel velocity of the particle. Red indicates trapped particle trajectories while blue indicates
untrapped.

particle trajectories. In the pendulum analogy, untrapped particles would correspond

to the case of a pendulum pushed so hard that it rotated freely about its axis instead

of swinging from side to side. The term S introduces an asymmetry in this swinging,

changing both the shape and the location of the trap in phase space.

Once the particle trap is created by the wave fields, particles can neither enter nor

leave the trap until the wave dissipates or the trap topology changes or is destroyed.

The trap itself, to first order, is a persistent structure that can remain even if it

moves into a region where the untrapped particle density is different than the density

inside the trap. When this happens, the situation becomes much more complicated,

because the difference in density constitutes a resonant current. If the distribution of

particles inside the trap are known, then in principle, the induced resonant current

can be computed by integrating over velocity space using Equation 2.8.

The asymmetry induced by S changes both the nature and the magnitude of this

resonant current, so that maximum wave growth is attained when S is negative. Since

S depends on the time rate of change of the wave frequency ∂ω/∂t, this implies that

there will be some special class of seed waves, driven by noise, with a specific time-

frequency slope for which nonlinear growth is maximized. These waves have either

rising or falling frequencies depending on the sign and phase of this resonant current.

The most significant limitation of this theory is that it says nothing about the

ultimate energy source that produces and amplifies these seed waves. In fact, none

of these processes can happen unless the initial distribution function is sufficiently
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anisotropic to drive wave growth to sufficiently high levels to initiate particle trap-

ping. Omura et al. [2008] suggest that chorus is ultimately driven by noise, which

is amplified by the unstable distribution function and then selectively amplified by

the aforementioned process. This theory, however, makes great reliance on quasi-

monochromatic behavior of the wave, that is, it is not good enough that only one

trap is formed, but by making assumptions of smoothness and quasi-monochromatic

waves, the theory implicitly assumes the seed waves must also be smooth, slowly-

varying, and sufficiently coherent over many periods in order to produce persistent

current structures that amplify the waves. We discuss more along these lines in

Chapter 6, suggesting some simple mechanisms to produce coherent seed waves.



Chapter 3

The DG method

The discontinuous Galerkin (DG) method is a hybrid method for solving hyperbolic

conservation-law partial differential equations. Between elements, the method resem-

bles the finite volume method. Local to each element, the method is a spectral method.

Spectral methods differ greatly in their details and the range of problems they are

well-suited to solving. All share one common feature, that is, they all seek to use a

finite-dimensional basis to approximate an infinite-dimensional solution space. Here,

for simplicity we only consider weighted linear combinations of some predefined finite

basis {φ1, φ2, . . . , φN}∈Φ, where the unknown solution u(x) is approximated as:

u(x) '
N∑
j

ujφj(x)

The goal is to find the weights uj such that the approximate solution nearly matches

the actual solution u(x). Precisely how this is developed into a scheme for solving a

specific PDE is what defines a particular spectral method.

Spectral methods are quite old, dating back to as early as Fourier’s work on the

heat equation. Fourier recognized that if the unknown solution to the heat equa-

tion were approximated using an orthogonal set of sinusoids, the continuous spatial

variable could be integrated out, leaving behind a set of coefficients which could be

solved for directly. The DG method is one of the more recent developments in solution

methods of this kind. We apply it to our class of problems specifically because of its

63
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flexibility (both geometrically and in terms of its accuracy) and because of its ease

of parallelization on modern computers. We begin with a brief introduction to the

method, followed by application to a plasma, paying particular attention to issues of

stiffness that commonly arise in wave propagation problems at VLF in the near-Earth

space environment.

Portions of this chapter have been published in the Journal of Geophysical Re-

search as Foust et al. [2011b].

3.1 Description and derivation

The nodal DG formulation described in this section is based primarily on the work of

Hesthaven and Warburton [2002] and described in the book by Hesthaven and War-

burton [2007], and thus our notation and terminology follow theirs closely, elaborating

where necessary for clarity. We first describe the DG method and then describe the

minor changes necessary to make the scheme nodal.

The DG scheme begins with a conservation law:

∂u

∂t
+∇ · f(u) = s

The term s is source term which may or may not depend on the unknown u. Both u

and f can be tensor fields, so that:

∇ · f =
∂

∂x
fx +

∂

∂y
fy +

∂

∂z
fz

In this notation, it is implied that if f is a rank n tensor field, then the divergence

∇ · f is of rank n− 1. We primarily consider problems of the form:

∂u

∂t
+∇ · f(u) = s (3.1)

Here f is a rank-two tensor-valued function of the vector u, that is:

∂uj
∂t

+
∂

∂xi
fij = sj
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We begin by dividing the continuous space into a set of discrete elements, as shown in

Figure 3.1, where the mesh is chosen to conform to boundaries between any discrete

objects in the domain. The element size is typically chosen such that the wavelengths

of interest are adequately sampled by the grid. The choice of grid size and its effect

on the convergence of the scheme are discussed more quantitatively in Section 3.5.

When written in conservative form, the flux terms in Maxwell’s equations are tensor

Figure 3.1: Sample illustration showing how a geometry can be discretized into a mesh of
discrete triangles.

quantities. As such, we now discuss the basic method with special attention paid

to the complicated tensor terms that arise. We rely heavily on overloaded notation,

meaning that we often write an equation as if it were in terms of simple matrix-vector

products, understanding that in fact each entry of the matrix may itself represent

another matrix. We find that overloading in this manner is a useful conceptual tool

when generalizing the DG method to tensor fluxes. Nevertheless, we elaborate these

equations where required for clarity.

3.1.1 Derivation

We begin by approximating the unknown solution u(r) within each element as a

weighted sum of basis functions:

ue(r) '
N∑
j=1

uejφ
e
j(r) (3.2)

The functions φj(r) are the members of the basis. These could be any linearly inde-

pendent functions spanning a space, e.g., polynomials or sinusoids. The weights uj
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are what we seek to find. Given these weights, the approximate solution can be found

by a weighted sum over the basis. The superscript e denotes that what we have is

strictly an element-local expansion, that is, the basis and weights only apply within

a single triangle in the mesh in Figure 3.1. Similarly, we approximate the unknown

flux and source terms in the same manner:

fe(r) '
N∑
j=1

fejφ
e
j(r) (3.3)

se(r) '
N∑
j=1

sejφ
e
j(r) (3.4)

Substituting the approximations into Equation 3.1, we have:

∂ue(r)

∂t
+∇ · fe(r)− se(r) = ee (3.5)

The term on the right is the residual error e. To convert Equation 3.5 into a scheme,

we multiply the residual by each function in the basis again and set each integrated

residual to zero:∫
V

(
∂ue(r)

∂t
+∇ · fe(r)− se(r)

)
φei (r) dr = 0, i = {1, 2, . . . , N} (3.6)

This method of forcing the integrated residual to zero is termed Galerkin projection,

and ensures that the residual is orthogonal to the space spanned by the basis. For

linear problems, this means that the approximate solution expanded in the given

basis is as close as possible to the true solution in a least-squares sense [Roman,

2005, pp. 315-316]. This concept is illustrated in Figure 3.2, where some basis

in R1 spans a one-dimensional subset of the full two-dimensional space of residuals

in R2. The true solution is where the residual error goes to zero, that is, at the

origin. The approximate solution found by Galerkin projection is the point where

the residual error is orthogonal to the space spanned by the basis. This simple 2D

figure only illustrates the basic concept of Galerkin projection. In reality, our true

solution exists in R∞ and we seek to approximate it in some smaller space RN using
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an N -dimensional basis.

Figure 3.2: Conceptual illustration of Galerkin projection. The 2D space is the space of all
possible residuals. The true solution is found where the residual goes to zero (the origin). The
approximate solution expanded in some 1D basis spans a 1D subset of this space, indicated in
blue. Galerkin projection picks the approximate solution such that the error residual (indicated
in red) is orthogonal to the space spanned by the basis.

At this point, the boundary conditions on each element are still unspecified, so

the solution cannot possibly be unique. In the DG method, this problem is solved

by borrowing an idea from the finite volume technique. For conservation laws, the

volume integral of the divergence of the flux over one element is related to the surface

integral of the flux on the boundary of that element, a relation known as Gauss’s

theorem: ∫
V

∇ · f dr =

∮
S

n̂ · f dr (3.7)

Integrating Equation 3.6 by parts once (applying Gauss’s theorem), we have the

following, where we have dropped the superscript e, understanding that this is still

an element-local statement:∫
V

(
∂u(r)

∂t
− f(r) · ∇ − s(r)

)
φi(r) dr = −

∮
S

(n̂ · f∗(r))φi(r) dr (3.8)

On the right-hand side, we have replaced the flux f with an unknown quantity f∗

called the numerical flux, a concept borrowed from the finite volume technique. The

numerical flux is essentially a well-educated estimate of the unknown flux at the

interface between two elements, chosen such that it combines information interior to

the element and exterior to the element in a physically consistent manner.

Equation 3.8 is the DG scheme in so-called weak form. The term weak here is

used loosely and refers to the fact that the boundary conditions depend only on the
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numerical flux. Integrating Equation 3.8 by parts again, we have the DG scheme in

its strong form, where the right-hand side includes both a local flux term f and the

unknown numerical flux f∗:∫
V

(
∂u(r)

∂t
+∇ · f(r)− s(r)

)
φi(r) dr =

∮
S

n̂ · (f(r)− f∗(r))φi(r) dr (3.9)

Recalling that we have approximated the unknown quantities in a basis expansion

using Equations 3.2, 3.3, and 3.4, we see that the only terms that depend on r are

the members of the basis. Thus we can evaluate the integrals for each pair (φi, φj) in

the basis, yielding the matrix version of the weak form:

M
du

dt
− KT · f −Ms = −L (n̂ · f∗) (3.10)

and the strong form:

M
du

dt
+ K · f −Ms = L (n̂ · f − n̂ · f∗) (3.11)

The mass, stiffness, and surface mass matrices, (M, K, and L, respectively), are defined

as follows, where the surface mass matrix L is evaluated only along the faces of the

element (denoted as a subscript F in the integral):

Mij =

∫
V

φi(r)φj(r) dr (3.12a)

Kij =

∫
V

φi(r)∇φj(r) dr (3.12b)

Lij =

∫
F

φi(r)φj(r) dr (3.12c)

We are now heavily overloading notation, so some clarification is in order. The

original unknown u(r) is a continuous vector-valued function of spatial coordinates.

For the sake of illustration, we will assume it is a directed vector R3, i.e., r = (x, y, z)

and u(r) = [ux(r), uy(r), uz(r)]. After discretization, each continuous component of

this vector is converted into a vector of unknown weights of finite length N , where

N is the number of functions in the basis. Therefore, we now have the vector of
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vectors (ux,uy,uz). The term Mu, then, should be understood to mean the block-

componentwise multiplication of the N ×N matrix M by each of these N -length

vectors, that is:

Mu =


Mux

Muy

Muz


The stiffness tensor K is most easily thought of as three N ×N matrices, one for each

component of the gradient, that is, K = (Kx,Ky,Kz). Thus, the dot product term in

Equation 3.11 should be understood as:

K · f = Kxfx + Kyfy + Kzfz =


Kxfxx + Kyfyx + Kzfzx

Kxfxy + Kyfyy + Kzfzy

Kxfxz + Kyfyz + Kzfzz


Similarly:

n̂ · f = nxfx + nyfy + nzfz =


nxfxx + nyfyx + nzfzx

nxfxy + nyfyy + nzfzy

nxfxz + nyfyz + nzfzz


The surface normal n̂ is the outward normal on each face of a triangle (in 2D) or

tetrahedron (in 3D).

The numerical flux term f∗ provides a mechanism to exchange some conserved

quantity (an integrated flux) between elements, thus ensuring a globally valid solu-

tion. However, in contrast to the finite element method, we do not explicitly require

continuity of the fields at the boundaries between elements. In other words, the solu-

tion is discontinuous. This property may seem, at first glance, to be a disadvantage

of the method, but it in fact has some major advantages. First, the scheme is highly

parallelizable. Unlike in the finite element method, the mass and stiffness matrices

are local and small, so no large matrix inversion is required. Second, the scheme

has extremely robust handling of material discontinuities, since each element-local
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expansion is completely independent of its neighbors.

3.1.2 Nodal DG formulation

The nodal DG method described here is due to Hesthaven and Warburton [2002]. The

basic idea is to replace the basis described in the previous section with an interpolating

basis. In other words, we define a set of interpolation points on each triangle and

use the resulting interpolating polynomials to approximate the solution. The overall

picture is illustrated in Figure 3.3.

Figure 3.3: Exploded view demonstrating the nodal DG formulation. A set of interpolation
control points are defined on each triangle, as shown in the middle panel. The interpolation is
independent on each triangle, as shown in the rightmost view.

Constructing the basis in this way leads to a very intuitive representation of the

approximate solution. The values at the control points are the solution at those

points. The values anywhere else in the element can be found by simply interpolating

using the element’s basis and control points. In addition, the scheme simplifies the

construction of the surface integral terms. Since only points defined on the faces

of each element contribute to the surface integral there, we can rewrite the surface

integral matrix L as a reduced sum over each face. We can then rewrite the surface

integral term as a sum over the contributions from each face:

L (n̂ · f) =

Nfaces∑
k=1

Lk
(
n̂k · f

)
The superscript k denotes a face of the element, which would be each end of a line
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segment in 1D, each edge of a triangle in 2D, and each face of a tetrahedron in 3D.

Each face matrix Lk can be written as a non-square matrix, since only the points on

each face contribute to the surface integral there. This rewriting is accomplished by

changing the second index j in Equation 3.12c to include only points on that face.

The order Np refers to the order of the interpolating polynomials, which in turn

determines the number of points defined within each triangle, as illustrated in Figure

3.4 for polynomial orders 1, 3, and 5. The nodal sets are chosen to optimize the

quality of the interpolation over a given triangle, and thus are more clustered near

the corners of the elements.

Figure 3.4: Diagram showing the node locations for a sample mesh for polynomial orders Np

equal to 1, 3, and 5. First order is linear interpolation, requiring only three points to specify a
plane. Orders 3 and 5 incorporate more points, including points on the interior of the element.

3.1.3 Application to Maxwell’s equations

The nodal DG method described in the previous sections can be applied easily to

Maxwell’s equations. We only need to write Maxwell’s equations in flux conservation

form and then identify a suitable numerical flux. Maxwell’s equations are:

∂D

∂t
−∇×H + J = 0 (3.13a)

∂B

∂t
+∇× E + Jm = 0 (3.13b)

Coupled with the constitutive relations:

D = ↔ε E (3.14a)

B = ↔µH (3.14b)
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Note that we include a magnetic current Jm. Although magnetic currents do not

exist in nature, it is often more convenient to treat a complicated material as if it had

an equivalent magnetic current instead of modeling the material via the constitutive

relation. Rewriting in conservative form, we have:

∂D

∂t
+∇ · fE + J = 0 (3.15a)

∂B

∂t
+∇ · fH + Jm = 0, (3.15b)

where the tensor fluxes fE and fH are defined as:

fE =


0 Hz −Hy

−Hz 0 Hx

Hy −Hx 0

 fH =


0 −Ez Ey

Ez 0 −Ex
−Ey Ex 0

 (3.16)

so that:

∇ · fE = −∇×H ∇ · fH = ∇× E

The DG scheme follows directly from the results in the previous section. In strong

form:

M
d(εE)

dt
+ K · fE + MJ = L (n̂ · fE − n̂ · f∗E) (3.17a)

M
d(µH)

dt
+ K · fH + MJm = L (n̂ · fH − n̂ · f∗H) (3.17b)

We use a standard numerical flux [Hesthaven and Warburton, 2002]:

n̂ · (fE − f∗E) =
1

(Z+ + Z−)

(
αn̂ (n̂ · [E])− α[E]− Z+n̂× [H]

)
(3.18a)

n̂ · (fH − f∗H) =
1

(Y + + Y −)

(
αn̂ (n̂ · [H])− α[H] + Y +n̂× [E]

)
(3.18b)

The bracketed notation [u] means the field difference at the face of a given element,

[u] = u−−u+, where u− denotes the field values at a face interior to a given element,
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and u+ denotes the field values at the face of the element’s immediate neighbor. Z

is the impedance, (µ/ε)1/2. Y is the admittance, (ε/µ)1/2. The term α is variable.

If α= 0, the flux is a so-called central flux, essentially an average of the field values

weighted by the harmonic average of the characteristic impedance or admittance. If

α= 1, the flux is an upwinding flux, which attempts to take into account the direction

of propagation of the various characteristic modes of the system. The derivation of

the upwind flux is given in Appendix B.

Whether upwind fluxes or central fluxes should be used depends greatly on the

problem in hand. Upwind fluxes tend to be mildly dissipative, but this dissipation

can be an advantage in suppressing high-frequency noise. Central fluxes never exhibit

dissipation, but instead unresolved modes can have negative group velocities. Reso-

lution problems, then, can be more difficult to spot when using central fluxes, since

energy is perfectly preserved even when the solution is very inaccurate. However,

central fluxes can better tolerate a complete loss of hyperbolicity. We discuss this

problem further in Section 3.3, when we describe the spectral properties of our cold

plasma DG scheme. In practice, either upwind fluxes or central fluxes can be used for

many problems. Either choice yields nearly identical answers except in pathological

cases.

3.2 Linear dispersive media

We now describe our approach to incorporate arbitrary linear media in the DG frame-

work. We begin by rewriting Maxwell’s equations to collect all frequency dependence

and nonlinearities in the constitutive relations as effective electric and magnetic cur-

rents J and Jm:

ε∞
∂E

∂t
−∇×H + J

(
∂E

∂t
,E, t

)
= 0 (3.19a)

µ∞
∂H

∂t
+∇× E + Jm

(
∂H

∂t
,H, t

)
= 0 (3.19b)

Here we have introduced the simple scalar terms ε∞ and µ∞, which represent the

(assumed isotropic) scalar permittivity and permeability at infinite frequency. On
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physical grounds, we know that as the frequency tends to infinity, the terms ε and µ

approach their free space values ε0 and µ0, which are simple non-frequency dependent

scalars. We can therefore simply subtract off the term at infinity, which leaves us with

the non-frequency dependent terms ε∞ and µ∞ in front of the time derivatives. In

other words, we write the frequency-dependent permittivity and permeability as a sum

of a constant term (ε∞ and µ∞) and a frequency-dependent equivalent conductivity

(see Equation 3.21). Collecting all of the remaining terms yields the expressions

for the equivalent currents J and Jm. After DG discretization, we are left with a

differential algebraic equation (DAE) of the form:

f

(
du

dt
,u, t

)
= 0

Equations like this are usually solved iteratively because of the implicit dependence

on the time derivatives of the field. Solution methods for DAEs are typically much

slower than those for simple explicit ODEs but DAEs can, in principle, be solved.

However, we do not investigate the solution of DAEs since cold plasmas and other

common types of materials do not have this kind of implicit dependence. We therefore

only consider forms such as:

ε∞
∂E

∂t
−∇×H + J (E, t) = 0 (3.20a)

µ∞
∂H

∂t
+∇× E + Jm (H, t) = 0, (3.20b)

which lead to explicit ODEs of the form:

du

dt
= f (u, t)

Explicit ODEs of this form can be solved easily using any of a number of well-

developed techniques. All of the materials we consider in this dissertation can be

described this way, but we emphasize that we need not require linearity of the equiv-

alent currents. In this section, we consider only linear dispersive media, but the

idea can be easily applied to nonlinear media with the appropriate expression for the
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current. In Chapter 4, for example, we discuss our incorporation of nonlinear plasma

behavior using the particle-in-cell (PIC) method.

Based on the discussion above, we can rewrite any linear permittivity as an equiv-

alent conductivity using the following relation:

↔ε(ω) = ε∞I−
↔σ(ω)

jω
, (3.21)

where I is the unit dyad (the identity matrix). We explicitly denote ε∞ as the per-

mittivity at infinite frequency, although for any physical system, ε∞= ε0 as ω→∞.

However, it is sometimes useful for computational reasons to be able to choose differ-

ent values.

By incorporating all of the frequency-dependent behavior in the equivalent current,

we need not change the basic DG formulation in order to handle different types of

materials. Further, the approach is natural. The nodal DG approach solves for the

field values at interpolation points, so the relationship between the current and the

causative electric field at those points is direct. The electric field determines the

current through some pointwise set of ordinary differential equations, described in

the frequency domain as:

J(s) = ↔σ(s)E(s),

where we are now using s to denote the complex frequency instead of −jω. This

formulation is particularly useful for a plasma since the cold plasma conductivity

tensors sum for each component species:

J(s) = (↔σ1(s) +↔σ2(s) +↔σ3(s) + . . .) E(s)

Typically either the permittivity tensor ↔ε(s) or the conductivity tensor ↔σ(s) are

specified in frequency-domain form. For a linear material, each entry in the tensor is

a simple ratio of polynomials in s. Rather than developing an ad-hoc time-stepping

approach specifically tailored to each type of material, it is more flexible to utilize

the already very large body of highly accurate techniques to solve first-order ODEs
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of the form:

du

dt
= f(u)

The task of converting such a frequency-domain description into a first-order system

is a well-known problem from control literature termed system realization. We now

describe our approach and its application to two types of linear, dispersive media.

3.2.1 Realization

Our goal is to convert a frequency-domain description relating the current to the

causative electric field J(s) =↔σ(s)E(s) to a first-order ODE, which we write as:

dx

dt
= Ax + BE (3.22a)

J = Cx + DE (3.22b)

Each of these matrices has a useful interpretation. A describes the dynamics of the

system. The characteristic frequencies are the eigenvalues of this matrix. B describes

how the input E maps into the current state. C describes how the state x maps into

the output J. D, the pass-through matrix, dominates as the frequency approaches

infinity.

A realization is correct if the output of this ODE has the same transient and

time-harmonic response as the frequency-domain description for all possible inputs.

Realizations, however, are not unique. In fact, there may be an infinite number of

matrices {A,B,C,D} consistent with the given frequency-domain description, and

there exist many published algorithms to compute them [Ho and Kalman, 1966; De

Schutter and De Moor, 1995; De Schutter, 2000]. However, not all realizations are

equally well-suited for numerical simulation.

A given frequency-domain description has a finite number of internal degrees of

freedom. A realization is termed minimal if the state vector x is only as large as needed

to represent all the degrees of freedom. If the state vector is larger, this may mean that

there are hidden states or unnecessary, redundant states. In a computational setting,
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a non-minimal realization wastes both memory and computing time. In addition, for

numerical stability it is essential that the matrices are all well-conditioned so that the

inputs do not map unequally into the current state and the current state does not map

unequally into the output. In either case, finite precision effects in an ill-conditioned

system could lead to excessive numerical noise or even instability.

The technique we use is a SVD-based (singular value decomposition) balanced

minimal realization technique due to Antsaklis [1997, p. 423]. The first step is to find

the minimal polynomial m(s) of the system, defined as the least common denominator

of every entry σij(s) of the conductivity tensor. The integer r is the order of this

resulting polynomial. We first expand the conductivity tensor in a series:

↔σ(s) = ↔σ0 +↔σ1s
−1 +↔σ2s

−2 + . . . (3.23)

The matrices ↔σ0,
↔σ1,

↔σ2, . . . are called the Markov parameters of the system, which are

defined as:

↔σ0 = lim
s→∞

↔σ(s) (3.24)

↔σ1 = lim
s→∞

s(↔σ(s)−↔σ0)

↔σ2 = lim
s→∞

s2(↔σ(s)−↔σ0 −↔σ1s
−1)

· · ·

We then define the block matrices G and G̃:

G =


↔σ1 · · · ↔σr
...

. . .
...

↔σr · · · ↔σ2r−1

 (3.25)

G̃ =


↔σ2 · · · ↔σr+1

...
. . .

...
↔σr+1 · · · ↔σ2r

 (3.26)
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The tensor ↔σ has dimensions 3× 3, so the matrices G and G̃ have dimensions 3r× 3r.

We then compute the SVD of the matrix G, yielding:

G =
[

U UN

] [Σ 0

0 0

] [
V VN

]T
(3.27)

The matrices UN and VN are the nullspace singular vectors, which we have written

explicitly as separate matrices because we will discard them. The matrices U and V

are the left and right singular vectors, respectively, and Σ is the diagonal matrix of

singular values. We can equivalently write G as:

G = UΣVT (3.28)

The number of nonzero singular values are the number of degrees of freedom in the

system. The realization is then computed by:

A =
(

Σ−
1
2 UT

)
G̃
(

VΣ−
1
2

)
(3.29a)

B =
(

Σ
1
2 VT

) [
I3×3 03×(3r−3)

]T
(3.29b)

C =
[

I3×3 03×(3r−3)

] (
UΣ

1
2

)
(3.29c)

D = ↔σ0 (3.29d)

The matrices I and 0 are the identity matrix and all-zeros matrix, respectively. The

subscripts denote their dimensions. Supposing the number of nonzero singular values

is m, then the matrices are sized: A ∈ Rm×m, B ∈ Rm×3, C ∈ R3×m, and D ∈ R3×3.

This realization is both minimal and balanced. Minimal means that the state

vector x and state transition matrix A are as small as possible, that is, there are

only enough states as needed to capture the dynamics of the system. Balanced

means that the realization is equally observable and controllable [Gilbert, 1963]. These

properties lead to well-conditioned matrices with good stability and noise properties.

However, we acknowledge that other realizations may have more numerically desirable

properties such as more sparsity in the state transition or mixing matrices. However,
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since an existing realization can be transformed into many different equivalent forms

by coordinate rotations or similarity transforms, finding only one realization suffices.

Other forms can be found by simple matrix operations in a post-processing step.

3.2.2 Application to a cold plasma

The cold plasma conductivity tensor in frequency domain form is given by Equation

2.19. The minimal polynomial of this system can be computed exactly:

m(s) = (s+ ν)(s2 + 2sν + ν2 + ω2
c ) = d(s) (3.30)

The procedure follows directly, with one caveat: we have found that when forming the

Hankel matrix for a typical plasma, the entries can become extremely large, leading to

severe ill-conditioning. The end result is that the zero singular values are not clearly

delineated from the non-zero singular values, leading to incorrect realizations with

far too many or far too few states. A solution to this ill-conditioning is to pre-scale

the frequency s, i.e., s̃= s/k. We choose k such that the roots of the characteristic

polynomial are as close to one as possible. We have found that setting k equal to the

largest absolute value of the roots of the minimal polynomial m(s) is a good heuristic

procedure. After carrying out the realization procedure, we are left with temporary

scaled matrices Ã, B̃, C̃, and D̃. The true matrices can by found by scaling back as:

A = kÃ, B = kB̃, C = C̃, and D = D̃.

3.2.3 Application to the PML

An absorbing or radiation boundary condition is typically required for time-domain

simulations on a truncated domain. Without it, waves numerically reflect from the

boundary and corrupt the solution. The PML, or perfectly matched layer, is one type

of absorbing boundary. It is a theoretically perfect medium in that it admits waves

with identically zero reflection and then damps them as they propagate further into

the absorbing medium. The PML was originally discovered by Bérenger [1994] and

formulated in a rather ad-hoc way using a nonphysical field splitting. It was later

shown that the PML was equivalent to either a complex stretching transform on the
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space [Chew and Weedon, 1994] or a material with an anisotropic tensor constitutive

relation [Gedney, 1996]. The two formulations are equivalent in terms of their wave

behavior but have different physical laws and numerical behavior.

The space stretching PML is equivalent to the original PML described by Bérenger

[1994] and nearly all other PML formulations developed since [Roden and Gedney,

2000; Chevalier and Inan, 2004]. Formally, the method analytically continues the

spatial domain, allowing the coordinates themselves to take on complex values. The

tensor form of the PML redefines the constitutive relations using frequency-dependent

metric transforms on the permittivity and permeability. This form includes the UPML

[Gedney, 1996] and a PML for bianisotropic media [Teixeira and Chew, 1998].

The space stretching PML is popular due to its relative ease of implementation.

Since only the curl operators are affected in this PML formulation, the PML is explic-

itly medium-independent and thus can be adapted to any other type of medium with

ease. With our realization approach, however, the tensor form presents no particular

difficulty and indeed has some advantages. First, we can avoid modifying either the

time-stepping scheme or our DG scheme itself. Second, the PML can be treated as

just another type of material, entirely characterized by some equivalent magnetic and

electric conductivity and thus fundamentally no more complicated or different than

any other linear, dispersive material.

Teixeira and Chew [1998] showed how the tensor form of the PML can be con-

structed for any type of dispersive, anisotropic material. The end form closely resem-

bles a metric transformation of the material tensors ↔ε(s) and ↔µ(s):

↔εpml(s) =
1

det S
S↔ε(s)S (3.31a)

↔µpml(s) =
1

det S
S↔µ(s)S (3.31b)

The matrix S is defined as:

S =


η−1
x 0 0

0 η−1
y 0

0 0 η−1
z

 (3.32)
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The stretching parameters ηx, ηy, and ηz are typically complex functions of the

frequency s, chosen so that waves are damped in the direction normal to the PML

interface. If the normal to the boundary is n̂ = (1, 0, 0), we set the PML stretching

parameters to η= (η, 0, 0). In a corner region where two faces meet, we set two of the

stretching parameters, e.g., η= (η, η, 0) for an x-y corner. Where three faces meet,

η= (η, η, η). We have illustrated this in Figure 3.5.

Figure 3.5: Illustration of a PML showing how the stretching parameter η is defined in each
of the regions.

We first illustrate the construction of the tensor PML for an isotropic, non-

dispersive medium. In this case, the material reduces to the UPML [Gedney, 1996]:

↔εpml(s) = εS̃(s) (3.33a)

↔µpml(s) = µS̃(s) (3.33b)

where:

S̃ =


η−1
x ηyηz 0 0

0 ηxη
−1
y ηz 0

0 0 ηxηyη
−1
z

 (3.34)

It may be tempting to attempt to generalize this to interfaces not aligned along the

primary axes, e.g., we may attempt to truncate a boundary with face normal n̂ =

(cos 45◦, sin 45◦, 0) by setting η= η(cos 45◦, sin 45◦, 0), but this approach is incorrect.

The resulting PML is a corner PML and will not correctly truncate a face aligned at

45 degrees. The correct approach is to first construct a PML aligned along one of

the primary axes and then rotate the resulting material tensor into a new reference

frame, as we show below.
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We use the complex frequency-shifted PML (CFS-PML) described by Gedney and

Zhao [2010]. In our notation, ξi is the PML loss term and αi is a small term chosen

to make the PML strictly causal. A nonzero αi eliminates late-time reflections and

other problems related to the weak causality of the original UPML formulation. The

subscript i refers to one of the principal directions x, y, or z.

ηi = 1 +
ξi

αi + sε0
=

s+

(
αi + ξi
ε0

)
s+

αi
ε0

(3.35)

To simplify notation, we define βi = (αi + ξi)/ε0 and γi =αi/ε0. Thus,

ηi =
s+ βi
s+ γi

(3.36)

The equivalent electric and magnetic conductivities are then:

↔σpml(s) = ↔εs
[

S̃(s)− I
]

(3.37a)

↔σm,pml(s) = ↔µs
[

S̃(s)− I
]

(3.37b)

We write the term s(S̃− I) as a new matrix G(s). Explicitly:

G(s) =


gxx(s) 0 0

0 gyy(s) 0

0 0 gzz(s)

 (3.38)

where:

gxx(s) = s

[
(s+ γx)(s+ βy)(s+ βz)

(s+ βx)(s+ γy)(s+ γz)
− 1

]
gyy(s) = s

[
(s+ βx)(s+ γy)(s+ βz)

(s+ γx)(s+ βy)(s+ γz)
− 1

]
gzz(s) = s

[
(s+ βx)(s+ βy)(s+ γz)

(s+ γx)(s+ γy)(s+ βz)
− 1

]
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We have assumed so far that the PML is being used to absorb outgoing waves

propagating in a simple medium, but the technique can be easily extended to handle

anisotropic, dispersive media. Suppose we have a tensor conductivity composed of a

sum of constituent conductivity tensors:

↔σ(s) = ↔σ1(s) +↔σ2(s) + . . .

From Equation 3.21, the equivalent permittivity is:

↔ε(s) = ε∞I +
↔σ1(s)

s
+
↔σ2(s)

s
+ . . .

Applying the PML correction from Equation 3.31 and converting back to an equivalent

conductivity, we have the following, where it is clear that the PML introduces both

a free-space term and a modification to each tensor conductivity term:

↔σpml(s) = sε∞

(
1

det S
SS− I

)
+

1

det S
S↔σ1(s)S +

1

det S
S↔σ2(s)S + . . . (3.39)

A note of caution is in order, however. In anisotropic media, the PML can ex-

hibit an instability, as noted by Bécache et al. [2003] and other authors [Chevalier

et al., 2008]. When the components of the group and phase velocities normal to the

PML surface are anti-parallel, waves in the PML are exponentially amplified instead

of being exponentially damped. The instability seems fundamental to the PML for-

mulation. To the best of our knowledge, no one has yet constructed a PML that is

always stable for anisotropic media.

Some recent work on absorbing boundaries has focused instead on non-local meth-

ods that attempt to directly filter the solution in k-space [Soffer and Stucchio, 2008].

These approaches have promise, but we do not attempt to implement them here. In

cases where the instability arises, we have found an acceptable alternative for many

problems is to simply break the PML by removing the gain terms from the system.

This procedure converts the PML into an imperfect absorber, but it is stable and is

therefore often an acceptable compromise.
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3.2.4 Rotations and transformations

Our realization method for incorporating dispersive media in the DG scheme does

not automatically produce the most efficient scheme possible for that medium. How-

ever, high-order methods require fewer total unknowns per degree of freedom for a

given accuracy than do low-order methods. Consequently, since fewer total points

are required to simulate the dispersive medium to a given accuracy, the resulting

total computational cost is lower than would be possible with an optimized low-order

method even though the per-point cost may increase. Nevertheless, it is still possible

to exploit some prior knowledge about the medium in order to construct a scheme

that requires fewer multiplications or has better sparsity patterns in the state space

matrices {A,B,C,D}.
One particularly useful example is the cold plasma. A cold plasma is a gyrotropic

medium, meaning that the properties of the medium are symmetric about an axis of

rotation (the background magnetic field B0). If the medium is aligned such that the

axis of rotation is coincident with one of the principal axes, the realization procedure

generates much sparser state space matrices {A,B,C,D} than it would if the medium

were not axis-aligned.

Thus, we can realize the system in one reference frame and simply rotate it into

another reference frame, reducing the total computational storage requirements. This

concept is illustrated in Figure 3.6.

Figure 3.6: Illustration showing how a gyrotropic medium can be constructed in one reference
frame (at the left) and rotated into another reference frame under only two angles (φ, θ).

For instance, if we carry out the realization procedure for an axis-aligned cold



CHAPTER 3. THE DG METHOD 85

plasma, we get state space matrices of the form:

A =


0 a 0

−a 0 0

0 0 0

 B =


−b 0 0

0 b 0

0 0 b

 C =


−c 0 0

0 c 0

0 0 c

 D =


0 0 0

0 0 0

0 0 0


The matrices are not only very sparse, but only have three unique values, denoted by

the constants a, b, and c. Combined with the two rotation angles φ and θ necessary

to rotate this system into another reference frame, we have reduced the total storage

requirements from 36 (one for each entry in the matrix) per point to 5 (a, b, c, φ, θ).

Given a realization {A,B,C,D} in a given reference frame and a rotation matrix R

that performs the rotation, the rotated realization {A′,B′,C′,D′} in the new reference

frame is:

A′ = A (3.40a)

B′ = BR (3.40b)

C′ = RTC (3.40c)

D′ = RTDR (3.40d)

One other useful application of rotations and transformations is to the PML.

Since the boundaries in a DG domain need not be aligned along any of the principal

axes, it is useful to construct a PML to terminate some arbitrarily-oriented slab

boundary. The procedure follows in the same manner. We first construct a PML in

some reference frame, e.g,. with surface normal n̂ = x̂, and then rotate that canonical

realization into new, rotated frames following Equation 3.40. We apply this technique

to terminating curved, concave domains in Section 3.6.

3.3 Spectral properties of the DG scheme for a

cold plasma

The DG scheme is semi-discrete, which means that it converts the spatial component

of a PDE over continuous space into some operation on a finite set of unknowns on a
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discrete space and does so without any coupling into the time derivative term. That

is, after DG discretization, we are left with a simple ODE of the form:

du

dt
= f(u) (3.41)

Equation 3.41 can then be solved using any standard time-integration method

for initial value problems. Many such techniques exist, including Runge-Kutta,

multistep, backwards differentiation formula (BDF), extrapolation, and the leapfrog

method.

Very broadly speaking, we can divide these methods into two classes: explicit

and implicit. Implicit methods incorporate information about the next timestep

when computing the next timestep, that is, typically f or some function of f must

be inverted. Explicit methods, by contrast, only incorporate information from the

past when computing the next timestep, and thus no inversion is required. Explicit

methods, however, always suffer from a stability criterion that limits the maximum

timestep that can be taken in each step. The limit is essentially a sampling limit, that

is, if we have a mode of the system with frequency ω, we cannot expect to reasonably

sample such a mode if we take timesteps much larger than the characteristic period

1/ω, but with an explicit method the consequence is worse than simple inaccuracy.

In fact, the system may be unstable.

In order to understand the stability criterion for our cold plasma scheme, then, we

must understand what the eigenvalues of the discretized system are and what physical

parameters affect them. The DG discretization, while complicated, is nonetheless

linear. Thus, our DG scheme can, in principle, be written as a linear ODE of the

form:

du

dt
= Au, (3.42)

where u represents the vector of unknowns over the entire space and A is some very

large sparse matrix representing both the DG operator and the plasma currents. By
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eigenvalue decomposition, we can consider each ith mode separately:

dvi
dt

= ωivi (3.43)

Note that vi denotes the ith eigenvector associated with the ith eigenvalue ωi. The

set of all possible ωi is called the eigenvalue spectrum. We use this spectrum to

determine the stability properties of a given time-stepping technique when applied to

the discretized DG system.

In the absence of a plasma, the upper bound on the maximum eigenvalue is ap-

proximately equal to the ratio of the speed of light in the system and the grid spacing:

ωfs = κ
c

min(∆x)
,

where ∆x is the grid spacing, c is the speed of light in the domain, and κ is some

constant dependent on the order of the scheme and the location of the interpolation

control points. The inverse of ωfs is proportional to the maximum stable timestep

when using an explicit time-stepping method.

When filled with a cold plasma, however, the situation is much more complicated.

The plasma system has internal poles and zeros of its own, which can strongly distort

the DG spectrum from its free-space configuration. This distortion can result in a

significant reduction in the maximum allowable timestep.

To help illustrate this issue, we first plot the eigenvalue spectrum for a simple

free-space case. We discretize a one meter by one meter square box into triangles

using the DG scheme with a full upwinding flux (α= 1.0 in Equation 3.18) and plot

the complex eigenvalues of the resulting DG operator in Figure 3.7. Each dot on

this plot shows the location of a numerical mode. Points lying exactly on the real

axis correspond to oscillating solutions, while points lying on the imaginary axis

correspond to evanescent solutions. In continuous space, there would be an infinite

number of modes, each corresponding to a specific cavity resonance. In the discretized

space, however, there are only a finite number of modes. Some of these modes map

directly into physical modes, while others (particularly modes that are poorly resolved

on the given grid) are nonphysical.
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Figure 3.7: Representative DG spectrum for free-space filled 2D square domain, one meter on
a side. The blue dots indicate the locations of the eigenvalues. The vertical axis corresponds to
oscillatory solutions. The horizontal axis corresponds to evanescent solutions.

For a given explicit time-stepping method to be stable, all of these eigenvalues

must lie entirely within a bounded region of stability in the complex ω-plane. The

size and shape of this region is dependent on the timestep and the specific details of

the time-stepping scheme being used. Two such regions of stability are shown and

discussed in the next section (see Figure 3.10). For the time being, however, it suffices

to use the maximum extent of the real part of the eigenvalue spectrum as a proxy for

the free-space grid frequency ωfs and its inverse 1/ωfs as a proxy for the maximum

timestep. For our sample case shown in Figure 3.7, ωfs is approximately 13 Grad/s.

To illustrate the consequences of including cold plasma currents, we plot two

representative samples of the eigenvalue spectra for the same domain filled with a

cold electron plasma in Figures 3.8 and 3.9. For reference, we show the location of

some important cutoff frequencies and resonances. In addition to the plasma and

cyclotron frequencies, we also show the right and left-hand cutoff frequencies, which
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Figure 3.8: Representative DG cold plasma spectrum for a well-resolved system, where the
plasma characteristic frequencies are well below ωfs. The blue dots indicate the locations of the
eigenvalues. The indicated frequencies ωR, ωp, ωL, ωc are the right-hand mode cutoff, plasma
frequency, left-hand mode cutoff, and cyclotron frequency, respectively.

are combinations of the characteristic frequencies ωp and ωc:

ωR =

√
ω2
p +

ω2
c

4
+
ωc
2

(3.44a)

ωL =

√
ω2
p +

ω2
c

4
− ωc

2
(3.44b)

Figure 3.8 illustrates the case when the free-space grid frequency ωfs is much larger

than these characteristic frequencies and cutoffs. While the low-frequency portion of

the spectrum is highly distorted by the addition of the plasma currents, the maximum

extent of the real part of the spectrum (approximately 17 Grad/s) remains relatively

unchanged from its free-space value of 13 Grad/s.

In our second case (Figure 3.9), we scale both the electron number density and

background magnetic field so that the characteristic frequencies of the plasma are

on the order of, or larger, than the free-space grid frequency ωfs. In this case, the

maximum extent of the eigenvalue spectrum increases to 27 Grad/s, which has the

effect of approximately halving the maximum timestep. As is apparent from Figure
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3.9, it is no longer the grid spacing that dictates the maximum timestep. Instead,

it is the cutoff frequency ωR for the upper right-hand mode branch. This result can

be explained by considering the behavior of the right-hand mode near cutoff. Since

k= 0 at a cutoff, a right-hand mode propagating near cutoff can be easily resolved

even on an extremely coarse grid. However, while the spatial frequency of the mode

is extremely low, the temporal frequency can nonetheless be quite high, which has

the effect of limiting the maximum timestep.

Figure 3.9: Representative DG cold plasma spectrum for a poorly-resolved system, where the
characteristic frequencies are higher than ωfs. The parameters plotted are the same as those
plotted in Figure 3.8.

If we are interested only in resolving the low-frequency modes (as is often the case

when modeling phenomena at VLF frequencies), large cutoff frequencies can impose

a severe timestep restriction, increasing the simulation time by a factor of ten or

more. In numerical ODE parlance, such a situation is a classic stiff problem, which

means we are interested in low-frequency behavior, but the system imposes a timestep

restriction on the order of the period of the high-frequency dynamics.
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3.4 Time integration and stiffness

As demonstrated by Figure 3.9, the addition of cold plasma currents to the DG

system can introduce strong stiffness if the desired frequencies of interest are much

less than the plasma characteristic frequencies. Such is frequently the case for VLF

signals in the ionosphere, where the frequencies of interest are in the range of 3-30

kHz, but the plasma and gyrofrequencies can be in the hundreds of kHz or even

higher. For efficiency, we must deal with this issue of stiffness. In this dissertation,

we are primarily concerned with systems where stiffness is imposed by the plasma

characteristics.

3.4.1 Standard Runge-Kutta method

An extremely popular technique due to Runge [1912, p. 133], the Runge-Kutta fourth

order (RK4) method, is a simple four-stage method that uses intermediate estimates

of the timestep to accurately estimate the solution at some small timestep in the

future. The classic RK4 method has 4 intermediate stages:

k(1) = ∆t f
(
u(n), t(n)

)
k(2) = ∆t f

(
u(n) +

1

2
k(1), t(n) +

1

2
∆t

)
k(3) = ∆t f

(
u(n) +

1

2
k(2), t(n) +

1

2
∆t

)
k(4) = ∆t f

(
u(n) + k(3), t(n) + ∆t

)
u(n+1) = u(n) +

1

6
k(1) +

1

3
k(2) +

1

3
k(3) +

1

6
k(4) (3.45)

The superscript (i) denotes an intermediate-stage solution that is discarded after a

timestep. The superscript (n) denotes the current timestep, while (n+ 1) denotes

the solution at the next timestep (the one we wish to solve for). Since this scheme is

discrete, we can assume a modal solution to analyze the stability properties, that is,

we assume that the solution at a timestep n can be written in terms of a discrete-time
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complex frequency Ωi and some characteristic vi:

v
(n)
i = Ωn

i v
(0)
i (3.46)

Stability is guaranteed provided all |Ωi| ≤ 1. The complex frequencies Ω are found by

solving for the roots of the characteristic polynomial:

Ω =
1

24
(ω∆t)4 +

1

6
(ω∆t)3 +

1

2
(ω∆t)2 + (ω∆t) + 1 (3.47)

Plotted as a function of (ω∆t), |Ω|= 1 defines the stability boundary for the scheme,

which we have plotted in Figure 3.10. The eigenvalues of the cold plasma DG scheme

(e.g., Figures 3.8 and 3.9) must be entirely contained within this boundary for the

scheme to be stable.

Figure 3.10: Stability boundaries for two RK4 schemes. The red boundary shows the classic
RK4 stability boundary, while the blue is for the low-storage RK4 scheme.

3.4.2 Low-storage Runge-Kutta method

The classic RK4 method requires storage of all of the intermediate variables k(i).

A more memory efficient version due to Carpenter and Kennedy [1994] reduces the
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memory requirements but at the cost of one additional function evaluation.

p(0) = u(n)

k(i) = aik
(i−1) + ∆t f

(
p(i−1), t(n) + ci∆t

)
i = 1, . . . , 5

p(i) = p(i−1) + bik
(i) i = 1, . . . , 5

u(n+1) = p(5) (3.48)

The coefficients are given in Appendix C, Section C.1. The characteristic mode Ω for

this reduced-storage method is:

Ω =
1

200
(ω∆t)5 +

1

24
(ω∆t)4 +

1

6
(ω∆t)3 +

1

2
(ω∆t)2 + (ω∆t) + 1 (3.49)

The boundary of stability of the scheme (where |Ω|= 1) is also shown in Figure 3.10.

The low-storage RK4 method has a larger region of stability on the real axis, which

an advantage for the upwind DG scheme. As illustrated by Figures 3.8 and 3.9, the

upwind DG method has a large number of very large eigenvalues lying directly on the

real axis, which could adversely impact the maximum timestep of the classic RK4

method.

3.4.3 IMEX Runge-Kutta method

The basic Runge-Kutta approach can be extended to split schemes, one useful example

of which is a singly diagonally implicit IMEX (IMplicit-EXplicit) scheme. The IMEX-

RK method can be used to solve certain types of stiff problems in an extremely efficient

manner [Kanevsky et al., 2007; Kennedy and Carpenter, 2003]. The scheme is used

to solve ODEs of the following form, where the right-hand side (RHS) has been split

into the sum of two parts:

du

dt
= f [im](u) + f [ex](u) (3.50)

The scheme steps one part of the RHS f [ex] using an explicit method while the

other part f [im] is solved implicitly. The errors are cancelled using the standard Runge-

Kutta approach so the overall scheme retains its high order accuracy. The implicit
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part has no timestep restriction, so if the function f [im] can be easily inverted, the

overall scheme can be highly efficient even for stiff problems, provided a suitable

splitting can be found.

The scheme is as follows, where the different sets of coefficients are denoted with

the superscripts [im] and [ex]:

u(i) = u(n) + ∆t
s∑
j=1

a
[ex]
ij f

[ex]
(
t(n) + cj∆t,u

(j)
)

+

∆t
s∑
j=1

a
[im]
ij f [im]

(
t(n) + cj∆t,u

(j)
)

(3.51a)

u(n+1) = u(n) + ∆t
s∑
j=1

bjf
[ex]
(
t(n) + cj∆t,u

(j)
)

+

∆t
s∑
j=1

bjf
[im]
(
t(n) + cj∆t,u

(j)
)

(3.51b)

The scheme we use is a six-stage (s= 6), fourth order method with singly diagonally-

implicit stages. The coefficients are given in Appendix C, Section C.2. At each RK

stage for i > 1, we must solve an implicit system of the form:

u(i) − (∆t)a
[im]
ii f [im]

(
u(i)
)

= r,

where the right-hand side r collects all of the summed terms that can be evaluated

explicitly. Or for a linear system, we can write the function as a matrix A, so:

u(i) =
[

I− (∆t)a
[im]
ii A

]−1

r (3.52)

For this IMEX scheme, all coefficients aii for i > 1 equal exactly 1/4, so we can re-use

the matrix inverse or factorization at each stage.

3.4.4 Cold plasma IMEX method

Our approach for combating plasma-induced stiffness is to use the IMEX method

to integrate the plasma currents implicitly while keeping the DG part explicit. The
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splitting we use, illustrated for a single species, is:

d

dt


x

E

H

 =


A B 0

−1
ε
C −1

ε
D 0

0 0 0




x

E

H


︸ ︷︷ ︸

Implicit part

+


0 0 0

0 0 1
ε
∇×

0 − 1
µ
∇× 0




x

E

H


︸ ︷︷ ︸

Explicit part

From Equation 3.52, at each RK stage i > 1, we must solve a system of the fol-

lowing form, where for completeness we now consider a multi-species plasma with the

realization for the kth species characterized by the four matrices {Ak,Bk,Ck,Dk} and

state vector xk:
I− (∆t)aiiA1 0 · · · −(∆t)aiiB1

0 I− (∆t)aiiA2 · · · −(∆t)aiiB2

...
...

. . .
...

1
ε
(∆t)aiiC1

1
ε
(∆t)aiiC2 · · · I + 1

ε
(∆t)aii (D1 + D2 + . . .)




x

(i)
1

x
(i)
2
...

E(i)

 =


rx1

rx2

...

rE


Or simply:

M̃u = r (3.53)

The vector r collects all of the right-hand side terms while u collects all of the un-

knowns. M̃ is a large block matrix. Recalling that I is the identity matrix, this matrix

has all diagonals filled and is invertible, with condition number dependent on the

timestep. This matrix has a block arrow sparsity pattern and can thus be inverted

efficiently using a block inverse. For convenience, we make the following definitions:

Ãk = I− (∆t)aiiAk

B̃k = −(∆t)aiiBk

C̃k =
1

ε
(∆t)aiiCk

D̃ = I +
1

ε
(∆t)aii (D1 + D2 + . . .)
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The Schur complement of the system is:

S̃ = D̃− C̃1Ã−1
1 B̃1 − C̃2Ã−1

2 B̃2 − . . .

Defining an intermediate solution b:

b = rE − C̃1Ã−1
1 rx1 − C̃2Ã−1

2 rx2 − . . .

The electric field at stage i is then found by:

E(i) = S̃−1b

We can then solve for the state vectors x
(i)
k as:

x
(i)
1 = Ã−1

1

(
rx1 − B̃1E

(i)
)

x
(i)
2 = Ã−1

2

(
rx2 − B̃2E

(i)
)

. . .

If ∆t is constant, we can pre-compute all of the matrices needed to compute the

matrix inverse in Equation 3.53. Specifically, we pre-compute and store the matrices

Ã−1
k , Ã−1

k B̃k, and C̃kÃ−1
k per species per point and the matrix S̃−1 per point, roughly

doubling the material coefficient storage requirements.

This IMEX time integration technique is more expensive per timestep than the

low-storage RK method discussed in the previous section because the IMEX method

has more stages and each stage involves more matrix multiplications and sums. How-

ever, it permits taking timesteps as large as allowed by the DG grid, which can result

in significant speedups for very stiff plasmas.

3.4.5 Time integration convergence tests

To demonstrate fourth-order convergence of the time-stepping schemes, we discretize

a plasma-filled metallic cavity and initialize it with a sinusoidal perturbation with

vanishing tangential electric field at the wall, i.e., a fundamental cavity mode if the
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domain were not filled with a plasma. We then compute a reference simulation on

this domain using an extremely small timestep ∆t= 0.001∆tmax up to a final time tf .

We repeat the simulation for different timesteps up to the maximum ∆t= ∆tmax and

compute the norm error over the space. The results are plotted in Figure 3.11.

Figure 3.11: Plot demonstrating convergence of the IMEX and explicit RK4 methods for a
cold electron plasma-filled domain. The horizontal axis is the fractional timestep with respect to
the maximum ∆tmax. The vertical axis is the normed error between the reference solution and
the solution run at a given fractional timestep. The deviation from order ∆t4 at low fractions is
due to finite precision effects.

For reference, we show the slope for theoretical fourth-order convergence, demon-

strating the convergence of both schemes. The IMEX method not only converges but

also has slightly lower absolute error than the explicit method.

3.5 Plasma verification

In Section 3.4.5, we demonstrated convergence of the time integration scheme for a

cold plasma. To demonstrate convergence of the scheme as a whole, we show that

the error is systematically reduced as a function of the grid spacing and that this

rate of convergence is higher for increasing polynomial order. As in the previous

section, we compute a reference simulation on a plasma-filled domain to high order.

We then compare this reference to lower-order simulations, varying both the grid

spacing and the polynomial order. We show 1D results in Figure 3.12. The optimum

convergence rates are nearly exactly met for the upwind scheme (α= 1.0 in Equation



CHAPTER 3. THE DG METHOD 98

3.18). The central scheme (α= 0.0) has an apparent loss of optimal convergence

for odd polynomial orders Np, which is due to the odd-even structure of Maxwell’s

equations.

Figure 3.12: Plot demonstrating convergence of the DG cold plasma scheme. We fill a 1D
domain with a cold magnetized electron plasma with background magnetic field B0 aligned
along the free spatial dimension, and compute a reference simulation to high order. We then
vary both the order and grid spacing h for varying polynomial orders Np. At the left, we plot
the measured error as a function of the grid spacing h for the upwind flux and central flux.
At the right we show the theoretical optimum convergence rates for these polynomial orders,
O[h(Np+1)].

We show the same convergence test in two dimensions in Figure 3.13. The con-

vergence results are similar to the 1D results in Figure 3.12, with the central flux

in this case apparently performing nearly optimally. This difference between the 1D

and 2D results is due partially to the loss of hyperbolicity (that is, some modes be-

come evanescent) for some propagation directions in a cold magnetized plasma. For

these directions, there is no actual propagating wave and the central flux becomes

the optimal choice. The balance between the two tends to mask the loss of optimal

convergence for the propagating modes.

The convergence results in three dimensions are so close to these cases that we omit

them for brevity. In order to understand the full spectral characteristics of the scheme,

we also compute a simulated dispersion diagram, plotting the allowed frequencies ω

as a function of the wavenumber k. To compute this diagram, we drive the system

with a narrow (in both time and space) current source at time t= 0 and position

x= 0. We run the simulation for some time and record the resulting fields over the

space for each timestep. Given this data in t-x space, we can compute the dispersion
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Figure 3.13: Plot demonstrating convergence of the 2D DG cold plasma scheme. We fill a 2D
domain with a cold electron plasma and compute a reference simulation to high order. We then
vary both the order and per-dimension grid spacing h for varying polynomial orders Np. At the
left, we plot the measured error as a function of the per-dimension grid spacing h for the upwind
flux and central flux. At the right we show the theoretical optimum convergence rates for these
polynomial orders, O[h(Np+1)].

diagram by a 2D Fourier transform into ω-k space. This method is particularly useful

because unlike the spectra in Figures 3.8 and 3.9, the synthetic dispersion diagram

illuminates the full spectral characteristics of the scheme, including the relationship

between the temporal and spatial parts.

For illustration purposes, we consider a system with electron number density N =

3.2 × 1010 m−3 and background magnetic field B0 = 4.34 × 10−5 T. The theoretical

dispersion relation is shown in Figure 3.14 for propagation parallel and perpendicular

to the background magnetic field.

In Figure 3.15, we display the computed numerical dispersion relation for the

central flux method (α= 0.0 in Equation 3.18). The numerical dispersion relation is

noticeably different than that in Figure 3.14, not only diverging significantly from

reality at high spatial frequencies, but also showing spurious modes, which are modes

that are not present in the original equations but nonetheless appear in the numerical

scheme. This phenomenon is a well-known consequence of using the central flux. Its

consequences for the cold plasma scheme seem especially severe, since there exists no

clear separation between all of the spurious modes and all of the natural modes.

However, the physical and spurious branches do not touch, so there is apparently

no way for the physical and spurious modes to couple into each other. Provided, then,



CHAPTER 3. THE DG METHOD 100

Figure 3.14: Theoretical dispersion relation for a magnetized plasma with electron number
density N = 3.2 × 1010 m−3 and background magnetic field B0 = 4.34 × 10−5 T. The left plot
is for propagation parallel to the background magnetic field, while the right is for propagation
perpendicular. The different modes are labeled with their common names: O (ordinary mode),
X (extraordinary mode), whistler, RH (right-hand mode), and LH (left-hand mode).

Figure 3.15: Numerical dispersion relation for a magnetized plasma using the DG cold plasma
scheme with a purely central flux. The left plot is for propagation parallel to the background
magnetic field, while the right is for propagation perpendicular to it. The parameters are identical
to those used in Figure 3.14.

that we avoid exciting the spurious modes by other means, the physical solution can

still be recovered. In this instance, we have deliberately driven the nonphysical modes

by using a very poorly resolved, narrow source in time and space so that all modes,

spurious and physical, are excited. If the initial conditions and sources, however,

are kept smooth, the spurious modes are not likely to be excited except through
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numerical roundoff error. Further, supposing there is only one mode of interest in a

particular simulation, say, the whistler mode, we can reasonably filter the solution in

post-processing to completely suppress the spurious mode, since the spurious branch

of the whistler mode is confined to temporal frequencies strictly greater than those

of the physical branch. Interestingly, the perpendicular dispersion relation shows

evidence of a hybrid resonance, visible as a horizontal line in the rightmost plot in

Figure 3.15 at the upper hybrid frequency ωuh = (ω2
p +ω2

c )
1/2. This mode is physical

but is not normally visible in the purely cold plasma approximation as it requires

a non-zero divergence of the electric field, that is, ∇ · E 6= 0. The mode is instead

driven by numerical errors at high values of k. The upwind flux discussed next cleanly

suppresses this upper hybrid mode, while still preserving the plasma resonance at ωp

for parallel propagation.

Figure 3.16: Numerical dispersion relation for a magnetized plasma using the DG cold plasma
scheme with a purely upwind flux. The left plot is for propagation parallel to the background
magnetic field, while the right is for propagation perpendicular to it. The parameters are identical
to those used in Figure 3.14.

The results for the upwind flux (α= 1.0 in Equation 3.18) are shown in Figure

3.16. The results are apparently much better, showing neither nonphysical spurious

modes nor branches with negative group velocities. For these reasons, we typically

prefer the pure upwind flux. The pure upwind flux, however, is mildly lossy, which can

introduce errors for extremely sensitive scattering calculations. The central flux, by
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contrast, is strictly energy-preserving. We note, however, that we have not found the

upwind flux to introduce noticeable losses for any reasonably well-resolved problems

at moderate order, say 10 unknowns per wavelength per dimension with a fourth-order

basis.

3.6 PML verification

To further demonstrate the validity of our scheme, we test the performance of the

PML implemented as described in Section 3.2.3. We perform a standard convergence

test, showing that the reflection error of the PML is reduced exponentially as a

function of the polynomial order (equivalently, as the number of points per dimension

is increased). We compute two simulations, one on a large domain truncated with

a perfect reflector, which serves as the reference solution for a second simulation

on a smaller, PML-truncated grid. We place a current source at the center of the

domain and run the simulation until any reflections have completely filled the smaller

computational domain. The normalized reflection error 20 log10(‖u−uref‖/‖uref‖))
gives a global measure of the performance of the scheme.

We first demonstrate the scheme on a 2D rectangular domain. We truncate each

face with a PML oriented to the surface normal. For example, for faces with surface

normal n̂ = x̂, we set the PML loss parameters (defined in Equation 3.35) ξx = ξ and

ξy = ξz = 0. Similarly, at faces with surface normal in the ŷ direction, we set ξy = ξ

and ξx = ξz = 0. In corner regions, we set ξx = ξy = ξ and ξz = 0. We then compute the

residual error as a function of increasing ξ and repeat for different polynomial orders

Np. The results are plotted in Figure 3.17.

The scheme shows clear convergence, with the reflection error decreasing exponen-

tially as a function of both the loss parameter ξ and the polynomial order Np. At low

ξ, the reflection error is large because the wave is not sufficiently damped as it makes

a traverse through the PML, reflects from the outer boundary, then propagates again

through the PML back into the main domain. For increasing ξ, then, the damping

rate increases, so the reflection error in turn decreases exponentially until saturation

is reached. At saturation, the accuracy of the scheme begins to dominate the total

error and increasing ξ further has no advantage and may even have a detrimental
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Figure 3.17: PML convergence test for a rectangular domain. Left: Illustration of one section
of the PML-truncated domain, showing three distinct PML regions. In regions with face normal
n̂= x̂, we set the PML loss parameter ξ= (ξ, 0, 0), leading to attenuation in the x̂ direction. For
face normal n̂= ŷ, we set ξ= (0, ξ, 0). In the corner regions, we set ξ= (ξ, ξ, 0). Right: Plot of
the normalized error for the PML-truncated rectangular domain, shown in dB as a function of
increasing PML loss parameter ξ for varying polynomial order Np.

effect on the overall reflection error. As a function of increasing polynomial order Np

(roughly proportional to the number of points per dimension), the minimum reflec-

tion error attained decreases exponentially, i.e., the scheme converges. Increasing the

polynomial order beyond four does not lead to any additional improvement for this

particular mesh, because the reflection error is already so low that finite precision

effects begin to dominate.

We further note that we construct the PML with no grading, as is often done in

FDTD simulations. The PML is encountered as a single, abrupt jump in the material

parameters. Nevertheless, the scheme still performs exceptionally well, with reflection

errors at least as low as for graded FDTD schemes, demonstrating the better handling

of material discontinuities by the use of the DG scheme.

As a further demonstration of the flexibility of the direct realization approach, we

use our method to construct a PML for an arbitrary, curved concave boundary. Our

test domain is illustrated in Figure 3.18, where we show the electric fields produced

by a monochromatic current source in both an untruncated curved domain and a

PML-truncated curved domain.

We first construct a reference PML to truncate an x̂-oriented surface. Using

Equation 3.40, we rotate this reference PML such that the surface normal is oriented

normally to some arbitrarily-rotated slab boundary. In the corner regions, we use an

isotropic corner absorber as described earlier, with ξ= (ξ, ξ, 0). This corner absorber
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Figure 3.18: Illustration of a PML truncating a curved domain. We place a vertical (ẑ-
oriented) current source in an ellipse-shaped domain and plot the resulting vertical electric fields
after sufficient time has passed to fill the domain with reflections. Left: A curved domain with a
naive (perfectly reflecting) truncation, showing strong reflection errors. The dark oval line shows
the location of the boundary. Right: Curved domain truncated with a PML. The dark line
shows the location of the reflective boundary, while the dashed line shows the PML interface.
Virtually no reflection errors are visible.

is invariant under rotations about the ẑ axis, so the corner regions all have identical

material properties. The technique and convergence results are illustrated in Figure

3.19.

Figure 3.19: PML convergence test for a curved domain. Left: Illustration of the faceted
PML. We begin with a reference PML aligned along the x̂ direction. We construct each face slab
by rotating this reference PML into a new frame such that the normal coincides with that slab’s
face normal. The corner regions are truncated as before, with PML loss parameter ξ= (ξ, ξ, 0).
Right: Plot of the normalized error for the PML-truncated rectangular domain, shown in dB
as a function of increasing PML loss parameter ξ for varying polynomial order Np.

3.7 Implementation notes

The efficiency of a scheme depends not only on its formulation but on its implemen-

tation as well, and therefore a short discussion on implementation is in order.

Each Runge-Kutta stage involves computation of a difference between the fields
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on the faces of adjoining elements, d− = u− − u+, or in index notation:

di− = ui− − ui+ (3.54)

The index set i− denotes face indices interior to each element, while i+ denotes those

exterior (facing) each element. The face indices and their matching exterior neighbors

are built in a pre-processing step. The difference operation is performed using a

generic vector scatter using the Petsc library [Balay et al., 2011, 2010, 1997], which

performs the following operation on arbitrary vectors a and b:

aj = bk (3.55)

The index sets j and k are arbitrary sets of indices with conforming sizes. The amount

of communication between nodes must also be minimized for efficient parallelization,

as illustrated in Figure 3.20. We pre-segment the domain with the ParMETIS graph

Figure 3.20: Left: An efficient segmentation of a grid onto two CPUs. Only four faces cross the
CPU boundary. Right: An inefficient segmentation, where nine faces cross the CPU boundary.

partitioning library [Karypis et al., 1997], which approximately solves the weighted

graph partitioning problem in parallel.

Each element-local operation requires multiplying a small matrix (e.g., M1) and a

small number of local field values. We accelerate this operation by concatenating the

unknowns into another large, dense matrix M2, as shown in Figure 3.21. Clever block-

ing strategies can improve the speed of this dense matrix operation by many times

over naive implementations. We use the ATLAS library [Whaley and Petitet, 2005;

Whaley et al., 2001; Whaley and Dongarra, 1999, 1998, 1997], an automatically-tuned

linear algebra package with optimized dense matrix-matrix multiplication routines.

We also use similar tuning strategies to accelerate more complicated operations.
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Figure 3.21: Illustration of the local DG matrix vector operations converted into a single dense
matrix multiplication.

For instance, we may have a function composition representing two parts of the update

step for a vector of unknowns u:

u← f(g(u))

It is not always clear whether it is more efficient to first compute an intermediate

vector from the function g, then use that to compute the update to u, i.e.,

g← g(u)

u← f(g),

or to compute the intermediate quantity as a simple scalar within a loop, i.e., for each

index i, to compute:

gi ← g(ui)

ui ← f(gi)

The answer, somewhat unsurprisingly, is that it depends greatly on the size of the

local working set and how much shared data is used by the functions g and f . Since

the CPU cache is many times faster than main memory, it is more efficient to perform

a complete set of operations on an active working set in cache before moving onto a

new block of data, which requires another fetch from main memory.

We have found that a configurable blocking strategy leads to the most efficient

evaluation of each stage, where the size of the intermediate vector is adjusted empiri-

cally so that cache utilization is optimized. We show the efficiency of this strategy in

Figure 3.22 for a sample problem in two dimensions. For a given fixed grid, we vary
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Figure 3.22: Total CPU time per timestep plotted as a function of the local working set block
size in log-log scale. We plot the time per timestep for varying polynomial orders Np.

the local block size, run a simulation for some number of timesteps, and then plot the

real CPU time per timestep. We repeat this procedure for varying polynomial orders

from Np = 1 to Np = 4.

The optimum for Maxwell’s equations is attained somewhere near block sizes of

approximately 100 for Np = 4, with a slight increase in the optimum as the polynomial

order decreases due to the decrease in size of the mass and stiffness matrices. At small

block sizes, we are not efficiently taking advantage of the ATLAS library’s optimized

matrix-matrix products, so the scheme suffers. At large block sizes, the working set

begins to exceed the CPU cache size and the scheme once again suffers. The total

performance gains are relatively modest when the scheme is considered as a whole,

since the element-local operations are only part of the entire computational cost

(the other major contributor being inter-element communication). However, speedup

factors of two or greater are nonetheless possible.

Finally, we plot the speedup of our scheme as a function of the number of CPUs,

demonstrating that the scheme is efficiently parallelized. Results for a typical mesh

are shown in Figure 3.23. The speedup is approximately linear over a very wide

range of local problem sizes, only becoming sublinear when the number of elements

per CPU is lower than approximately 400 (the red line in Figure 3.23). At this point,

the communication cost per timestep begins to dominate the overall computational

cost and we reach a point of diminishing returns.
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Figure 3.23: Speedup (referenced to one CPU) vs. number of CPUs for a typical DG domain.
The optimum case is a perfect linear speedup, that is, the scheme is faster in direct propor-
tion to the number of CPUs used. This optimum is indicated with a dashed line. The plots
above indicate that the speedup is approximately linear down to approximately 400 elements per
CPU. These timing tests are conducted on a small 16-node cluster connected via an Infiniband
interconnect.

3.8 Summary

In this chapter, we have described the application of the nodal DG technique [Hes-

thaven and Warburton, 2002] to Maxwell’s equations in anisotropic, dispersive me-

dia. We have described our new auxiliary differential equation method to incorporate

any linear material in the DG framework. We have demonstrated the validity of the

scheme as applied to two types of linear materials: the perfectly matched layer (PML)

and a cold, multi-component magnetized plasma. Since all fields are co-located and

all material properties are incorporated as a set of auxiliary differential equations,

the resulting scheme is semi-discrete and completely explicit.

Our approach allows us to directly address the problem of plasma stiffness. If

the frequencies of interest are far below the characteristic frequencies of the material,

the maximum timestep allowed by an explicit method is limited by these charac-

teristic frequencies, which would normally severely limit the range of problems that

we could efficiently solve. To illustrate this issue and its consequences for simulat-

ing propagation in cold plasmas, we have explicitly computed the eigenvalue spectra

for some representative examples, demonstrating that the cold plasma currents in-

troduce eigenvalues with magnitude on the order of the cutoff frequency ωR for the
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upper right-hand mode.

In our framework, we address this stiffness problem by simply replacing the clas-

sical RK4 time-stepping scheme with an implicit-explicit (IMEX) RK4 scheme. This

scheme allows us to circumvent the timestep restriction without the need to resort to

extremely inaccurate and diffusive operator-splitting approaches (e.g., Strang split-

ting). We have further described a block decomposition approach to pre-computing

the matrix inverses needed by the IMEX scheme, which leads to only a doubling of

the material coefficient storage requirements and only modest increases in the total

computational cost per timestep.

We have illustrated the convergence of our method in both time and space for

plasma-filled domains, showing that the schemes converge at their theoretically op-

timum rates. Finally, through the use of numerical dispersion relations, we have

shown that the schemes are consistent with cold plasma theory. When central fluxes

are used, the numerical dispersion relations show evidence of complicated spurious

modes. The central DG scheme in free space also shows a spurious mode, but since

there is only one free-space mode and one spurious mode, the spurious mode is easily

detected and even filtered out of the solution. For our plasma scheme, one additional

spurious mode appears for each real plasma mode. The upwind scheme does not

suffer from this problem, reproducing only the physical cold plasma modes. However,

the upwind scheme suffers from artificial numerical losses at high (poorly-resolved)

spatial frequencies.

As an additional application, we have also demonstrated a PML implementation.

The scheme converges well, with normalized reflection errors lower than −100 dB.

Our approach also allows us to construct a novel conformal PML, which allows the

termination of arbitrarily-shaped concave domains with no modification to the basic

scheme.

Finally, we have concluded this chapter with a brief discussion of some implemen-

tation details, with particular attention paid to parallelization.



Chapter 4

The DG-PIC method

Many interesting problems in plasma physics are extremely difficult to solve either

analytically or numerically. From a numerical standpoint, the fundamental difficulty

is dimensionality. As discussed in Section 2.1.3, in principle all behavior of a collision-

less plasma is completely described by the Vlasov equation (Equation 2.12) coupled

with Maxwell’s equations. Unfortunately, the Vlasov equation describes the time evo-

lution of an unknown phase space density in six dimensions: three spatial and three

momentum. At the present time, direct discretization of this equation is intractable

for large problems since the memory and computational costs scale as N6, where N

is the number of discretized unknowns per dimension. As such, a number of approx-

imate techniques are of necessity. These fall into four general classes of techniques:

direct discretization, linearization, multi-moment expansions, and particle techniques.

The direct method involves direct discretization of the Vlasov equation in either

its conservative form (Equation 2.12) or its non-conservative form (Equation 2.13).

Since a naive discretization requires on the order of N6 unknowns, this approach is

only feasible if either the dimensionality can be reduced, e.g., by reducing either the

number of spatial dimensions, or if the solution space itself is extremely sparse, which,

when combined with adaptive techniques, leads to less expensive schemes.

The linearized Vlasov equation (Equation 2.14) is a powerful analytical tool for

determining the small-signal behavior of a plasma but is not often used directly as a

simulation method due to its limited range of applicability.

110
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Multi-moment expansions are sometimes used for simulation in plasmas that are

near equilibrium, such that the initial and perturbed particle distributions can be ad-

equately described by the first few moments of the distribution function, as described

in Section 2.1.5. However, while each successively higher moment captures more of

the non-equilibrium statistics of a given distribution, the number of terms (and thus

the computational cost) grows exponentially.

The particle-in-cell (PIC) method [Birdsall and Langdon, 1985] is a relatively well-

established technique to model difficult problems in plasma physics. The technique

has been applied to modeling a wide variety of problems: plasma expansion [Sarri

et al., 2011], the Weibel instability [Stockem et al., 2010], laser-plasma interactions

[Klimo et al., 2010], solar wind interactions [Omidi et al., 2002], magnetic reconnection

[Daughton et al., 2006], and nonlinear Landau and cyclotron damping, among others.

The technique is extremely straightforward in principle. Instead of attempting to

model a distribution as a phase-space fluid, the PIC method returns to the particle

description of the plasma, approximating the population of particles with a popula-

tion of superparticles. Each of these superparticles acts as if it were a cohesive cluster

of particles all moving together under the influence of the same electric and magnetic

fields. Since each particle artificially represents a very large number of physical par-

ticles, statistical fluctuations are typically much higher than they are in nature, the

consequence being that noise can easily dominate the solution.

A PIC method consists of two basic parts, a particle mover and a field solver.

Typical PIC implementations use FDTD to solve for the electric and magnetic fields,

which are then interpolated at each particle location to move the particles. There

is no fundamental reason the field solver must be FDTD, however, and there are

some compelling reasons to consider other methods. The DG method discussed in

the previous chapter, for instance, is high-order, local, and has all fields physically

co-located.

As a high-order method, the accuracy of DG as a field solver is essentially a

non-issue. Instead, errors in a DG-PIC scheme are nearly entirely dominated by the

particle component. The strict locality of the scheme means that reconstructing a

high-order interpolated solution at an arbitrary spatial point (which is necessary to
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move the particles) requires only element-local information, eliminating inter-CPU

communication for that stage of the PIC scheme. The co-location of all electric and

magnetic fields is an advantage compared to field solvers utilizing staggered grids such

as FDTD, particularly when simulating anisotropic media like magnetized plasmas.

In order to maintain second-order accuracy in magnetized plasmas using FDTD, it is

necessary to resort to extensive spatial averaging to ensure that the fields and currents

are located at the same physical points in space. This averaging leads to artificial

diffusion as well as other nonphysical effects. Further, the DG solution, while only

solved for at interpolation points, is nonetheless defined everywhere within a given

element.

It is natural to ask, then, whether a using a high-order, high-quality field solver

such as DG can lead to a general improvement of the PIC method, and according

to early work on the DG-PIC method by Jacobs and Hesthaven [2006], it does, with

particularly low levels of noise and excellent long-term stability properties compared

to FDTD-PIC.

In this chapter, we discuss our extensions to the basic DG-PIC approach. We first

review the basic scheme, followed by a description of our method for efficiently par-

allelizing both the projection and interpolation steps on generic unstructured meshes

on a distributed (that is, not shared memory) system. We then describe our hybrid

DG-PIC approach, where we treat a plasma as a combination of a cold background

plasma modeled using a fluid approach and a hot electron component modeled using

PIC. This approach is particularly useful for solving nonlinear wave growth problems

in the Earth’s magnetosphere, where a highly non-equilibrium, energetic electron pop-

ulation is frequently superimposed on a cold and (comparatively) dense background

plasma.

Portions of this chapter have been published in Physics of Plasmas as Foust et al.

[2011a].

4.1 PIC scheme

The basic particle-in-cell scheme samples a given particle distribution f using a col-

lection of discrete particles at a set of points ri moving at velocity vi. Each particle
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has an associated rest mass mi and charge qi. The particles are moved under the

Lorentz force, where the required fields E and B, defined on a fixed mesh, must be

interpolated to the particle locations:

dpi
dt

= qi

[
E (ri) +

1

miγi
pi ×B (ri)

]
(4.1)

dri
dt

=
pi
miγi

(4.2)

The particle velocity is related to the momentum, p, by:

vi =
pi
γmi

, (4.3)

and the Lorentz factor in terms of the momentum is:

γ =

√
1 +

(
|pi|
mic

)2

We use the momentum here to simplify the equations. Writing these equations in

terms of the particle velocity would not (directly) yield an explicit ODE when rela-

tivistic effects are included.

The ensemble of particles interacts with the fixed mesh through a shape function

S, chosen such that the ensemble of particles smoothly approximates the underlying

distribution from a finite set of points.

J (r) =
∑

qiviwiS (|r− ri|) (4.4)

ρ (r) =
∑

qiwiS (|r− ri|) (4.5)

We have introduced the weight wi, which is a measure of how many physical particles

N at position ri moving with velocity vi are represented by the given numerical

particle at index i. The window function S(r) is a smoothing or weighting window
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with some finite radius R. We use a standard window function:

S(r) =

γ
(

1− rβ

Rβ

)α
0 ≤ r ≤ R

0 r > R

The normalization constant γ is chosen such that volume integral of S integrates

to exactly one. If the parameter β is equal to the number of spatial dimensions, the

normalization constant has a simple closed-form solution. Otherwise, the normal-

ization can be pre-computed using numerical quadrature. We have also found the

triangle function (α= β= 1) to perform adequately:

S(r) =

γ
(

1− r

R

)
0 ≤ r ≤ R

0 r > R

Using an unstructured mesh complicates the PIC scheme, particularly when imple-

mented in parallel. In the following sections, we discuss our approach to handling

both the projection and interpolation steps in a parallel environment.

4.1.1 Projection step

The particle projection step involves computing an approximate current and charge

density by accumulating weights onto a finite number of mesh points within a radius

R about the particle position ri, weighted by the window S. Explicitly, for each

particle i, we accumulate the currents and charges onto the grid as:

J (rj)← J (rj) + qiviwiS (|rj − ri|) , {j
∣∣ |rj − ri| ≤ R} (4.6a)

ρ (rj)← ρ (rj) + qiwiS (|rj − ri|) , {j
∣∣ |rj − ri| ≤ R} (4.6b)

The task is made difficult by two complications. First, the set of mesh points must

be queried quickly for all mesh points within a radius R of some given particle ri.

Second, while a particle is represented by a single infinitesimal point and is therefore

owned by only one CPU, the particle’s shape function S may project across CPU
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boundaries, so we must store not only the set of all mesh points owned by the current

CPU but also all other mesh points on triangles owned by neighboring CPUs that a

particle might be projected onto. We address both of these problems in order.

Figure 4.1: Illustration of the scattered point search problem. The dashed circle denotes the
point search region. Mesh points within the search region are shaded red, while those external
are in blue.

The mesh point search problem is illustrated in Figure 4.1. A naive algorithm

requires order NM time, where N is the number of mesh points and M is the number

of particles. We use two approaches to accelerate this procedure.

The first acceleration method uses a rectilinear grid into which points are binned.

The tradeoff is identical to that encountered in hash tables. If the hash table is too

coarse, then most of the time is spent performing a linear search through each bin.

If the hash table is too fine, then space and time are wasted on empty bins.

The second acceleration technique uses a kd-tree. A kd-tree is a variant of a binary

tree that is constructed by recursively subdividing a space into halfspaces, dimension

by dimension. Each node of the tree corresponds to a cutting plane, whose cutting

dimension is given by the depth of the given node. For example, if the root of the

tree represents a division along the x̂ dimension, the second level would divide along

the ŷ dimension, the third along the ẑ dimension, the fourth along the x̂ dimension,

and so on. The left and right branches from a given node contain all points to the

left or right of the cutting plane, respectively. Pseudo-code to build a kd-tree to sort

mesh points is described in Algorithm 1.
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Algorithm 1 Pseudo-code to build a kd-tree.

1: function BuildKdtree (points, depth)
2: dim← depth mod numDimensions
3: points← sortByDimension (points, dim)
4: pivot← round (length (points)/2)
5: tree.point← points(pivot)
6: tree.dim← dim
7: tree.left← BuildKdtree (points(1 . . . pivot− 1), depth+ 1)
8: tree.right← BuildKdtree (points(pivot+ 1 . . . end), depth+ 1)
9: return tree

10: end function

Once built, queries on the kd-tree only take logarithmic time. Pseudo-code for a

log-time search for all points within a given radius is described in Algorithm 2. We

note that while the kd-tree has very good formal complexity (log time), the bin search

is in practice more efficient for uniform grids, since it has better locality of reference.

Algorithm 2 Pseudo-code to search a kd-tree for all points within a given radius.

1: function SearchKdtree (tree, point, radius)
2: if (tree.point(tree.dim) < point(tree.dim) + radius) then
3: SearchKdtree (tree.right, point, radius)
4: end if
5: if (tree.point(tree.dim) > point(tree.dim)− radius) then
6: SearchKdtree (tree.left, point, radius)
7: end if
8: if (‖tree.point− point‖ < radius) then
9: OutputPoint (tree.point)

10: end if
11: end function

The second problem to be solved is that particles violate the strict locality of the

DG scheme, since a single particle’s radius of influence may extend beyond not only

a single element but across CPUs. The problem is illustrated in Figure 4.2. Our

solution is to pre-build a list of indices of points on neighboring CPUs, all within a

superset volume containing all points within a radius R of the local CPU’s elements.

This is computationally costly, since each CPU must broadcast its local set of points
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to all other CPUs in turn, but this needs to be done only once as a pre-processing

step.

Once these local indices and data structures are found, it is a simple matter to

query for mesh points within a radius R. The actual accumulation step is performed

using the Petsc library’s generic vector scatter and accumulate, which computes the

function uj←uj + vi, where u represents one of the field unknowns (either J or ρ), j

is a set of indices (which may be local or off-CPU), i is a set of local indices, and v

is the window-weighted particle contribution.

Figure 4.2: Illustration of the particle projection problem. Left: two particles’ radii of influ-
ence are shown in gray. All mesh elements owned by the current CPU are drawn in green. The
rightmost particle’s range of influence is entirely contained within the local CPU. The leftmost
particle crosses a CPU boundary. Right: CPU-local mesh elements showing its radius R bound-
ing volume. Ghost indices of points on all neighboring CPUs contained within this superset are
stored in a CPU-local table.

4.1.2 Interpolation step

In order to move the particles, we must reconstruct the solution at some arbitrary

particle location ri using the DG basis:

E(ri) =
N∑
j=1

Ejφj(ri) H(ri) =
N∑
j=1

Hjφj(ri)

While no closed-form expression exists for the interpolating basis (Lagrange poly-

nomials) in two and three dimensions, we can nonetheless pre-compute the polyno-

mial coefficients for a nodal set on a reference triangle, speeding the evaluation of the

required fields at arbitrary particle locations. However, since the particles are free
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to migrate between elements and even across CPUs, the question of which element

owns a given particle must also be addressed. Since we are interested in beamlike and

highly relativistic electron distributions characteristic of the magnetosphere, particles

are not only free to move between CPUs but are expected to frequently do so.

Determining which element owns a given particle is a relatively simple proposition

in exact arithmetic. For instance, in two dimensions, a triangular element’s interior

is the intersection of three halfspaces defined by the vertices {r1, r2, r3} and surface

normals {n̂1, n̂2, n̂3}. A point is strictly within the triangle if n̂i · (r− ri)< 0 ∀ i. In

finite-precision arithmetic, however, an ambiguity exists because of numerical round-

off. In the worst cases, the procedure may conclude that no triangle owns a given

point, leading to the disappearance of the particle from the scheme. Likewise, the

procedure may conclude that more than one triangle owns a given point, leading to

a doubling of that particle. Either case is extremely undesirable in a PIC simulation,

since a single particle may represent a very large amount of physical charge.

On a shared-memory architecture, the ambiguity is easily resolved. Each processor

can simply compare their inner products n̂i · (r − ri) to determine which triangle is

closest to owning the given particle. In a distributed MPI architecture, however, this

is an extremely costly proposition as it would require broadcasting information about

every ambiguous particle at every timestep. We resolve this situation by identifying

when a particle is within a circle of confusion where an ambiguity might exist, and

then virtually pushing the particle away from the circle of confusion. This procedure

is illustrated in Figure 4.3. Provided each CPU performs this procedure in an identical

fashion, every CPU comes to the same conclusion about which element owns a given

particle, effectively resolving the ambiguity without communication. This technique

is similar to simulation of simplicity, described in detail in Edelsbrunner and Mücke

[1990].

When a particle crosses an element boundary, a coarse search is necessary to first

quickly determine which set of elements might become the point’s new owner. Similar

to the mesh search above, it is straightforward to generalize both the rectilinear grid

accelerator and the kd-tree accelerator to hold element bounding boxes instead of

infinitesimal points. For illustration purposes, we have plotted a sample grid with its
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Figure 4.3: Illustration of the ambiguity introduced by finite-precision arithmetic. Near a
boundary, an effective circle of confusion (shaded in gray) exists where the point’s owning triangle
cannot be unambiguously determined. Pushing the particle away from the boundary resolves
the ambiguity.

kd-tree cutting planes overlaid in blue in Figure 4.4. We stop constructing the kd-

tree at either a predefined maximum depth or when the number of elements contained

within the kd-tree bounding volume is less than some predefined small number, say

ten elements. Once the coarse search is performed, each individual element is queried

in turn to find the true particle owner.

Figure 4.4: Illustration of a bounding box kd-tree. The blue lines indicate the locations of the
cutting planes. The regions bounded by these cutting planes are leaf nodes of the kd-tree, each
of which contains a list of pointers to any element whose bounding box overlaps this region.

4.1.3 Divergence correction

Time-domain solution techniques for Maxwell’s equations typically ignore the two di-

vergence constraints ∇ ·D = ρ and ∇ ·B = 0. In a PIC simulation, however, ignoring

the electric flux divergence can lead to significant errors. Consistency can be en-

forced by a number of techniques. We may opt to correct the electric field E after

every timestep by solving a Poisson problem. The constraints could also be explicitly
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included by introducing a Lagrange multiplier. Either approach requires that a sys-

tem of equations be solved in parallel every timestep, which unfortunately becomes

extremely costly for large domains.

To avoid this problem, we use a divergence correction approach called hyperbolic

cleaning [Munz et al., 2000; Jacobs and Hesthaven, 2006]. The hyperbolic cleaning

method adds an additional scalar field φ to Maxwell’s equations as:

∂E

∂t
− 1

ε
∇×H + χ∇φ = −1

ε
J (4.7a)

∂H

∂t
+

1

µ
∇× E = 0 (4.7b)

∂φ

∂t
+ χ

(
∇ · E− ρ

ε

)
= −σφφ (4.7c)

It is clear that if ∇·E = ρ/ε, that is, if the divergence error is zero, then the scalar

field φ is also zero. Similarly, in the limit as χ→∞, the condition ∇ ·E = ρ/ε is met

exactly. The method effectively adds another propagating wave mode to the system,

whose purpose is to propagate the divergence error out of the system at a velocity χ.

The technique is quite similar to introducing a Lagrange multiplier to a mechanical

system for the purpose of enforcing some physical constraint (e.g., a hinge, a stop,

a wall, etc.). In this case, however, the extra equation introduced includes a time-

varying operator ∂/∂t in addition to the standard terms. While this method only

approximately enforces the constraint, in practice, if χ is a factor of five to ten larger

than the free-space speed of light, the fundamental physics of the plasma are still

captured [Munz et al., 2000].

Upwind flux for the augmented Maxwell system

Since we have added an additional mode and scalar field to Maxwell’s equations, the

numerical upwind flux also changes. The derivation of the upwind flux is given in

Section B.3. Note that we have explicitly accounted for the possibility of a spatially-

varying ε and µ to handle mixed simulations with both particles and mixed isotropic

materials. Additionally, our expression corrects a minor sign error and a missing
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factor of 1/2 in Jacobs and Hesthaven [2006]:

n̂ · (fE − f∗E) =
1

(Z+ + Z−)

(
αn̂ (n̂ · [E])− α[E]− Z+n̂× [H]

)
+ (4.8a)

1

2
χn̂ ([φ]− n̂ · [E]) (4.8b)

n̂ · (fH − f∗H) =
1

(Y + + Y −)

(
αn̂ (n̂ · [H])− α[H] + Y +n̂× [E]

)
(4.8c)

n̂ · (fφ − f∗φ) =
1

2
χ (n̂ · [E]− [φ]) (4.8d)

As before, the bracketed notation [u] means the field difference at the face of a given

element, [u] = u−−u+, where u− denotes the field values at a face interior to a

given element, and u+ denotes the field values at the face of the element’s immediate

neighbor. Z is the impedance, (µ/ε)1/2. Y is the admittance, (ε/µ)1/2. The term α

is variable, where α= 1.0 is full upwinding and α= 0.0 is the central flux.

Boundary conditions

We impose a boundary condition on the scalar field φ such that it is consistent with

PEC (perfect electrical conductor) boundary conditions imposed on the electric and

magnetic fields. In physical terms, if a single charge were placed near a perfectly con-

ducting boundary, the divergence correction field should establish an electric field E

consistent with placing an image charge of opposite sign mirrored across the bound-

ary. The boundary condition is imposed during the calculation of the flux terms f∗E,

f∗H , and f∗φ by setting the unknown fields E+, H+, and φ+ “beyond” the boundary to:

E+ = −E−

H+ = H−

φ+ = −φ− − 2 n̂ · E−

We note that it is unnecessary to explicitly include a mirror charge opposite any charge

near a conductive boundary as in Jacobs and Hesthaven [2006], provided the boundary

conditions on φ are appropriately handled. Using our boundary conditions, the mirror

charge emerges as a natural consequence of reflection of φ from the boundary.
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4.1.4 Time integration

The maximum timestep of the augmented Maxwell system is limited by the divergence

correction field velocity χ. Since χ should be set to on the order of ten times the

speed of light in free space for acceptable accuracy, the augmented Maxwell system

is also stiff, but in the DG (spatial) operator rather than in the plasma currents. We

use an approach identical to that described in Jacobs and Hesthaven [2009]. As in

Section 3.4.3, we split the right-hand side into a sum of two components:

du

dt
= f [im](u) + f [ex](u) (4.9)

In this case, however, f [im](u) is the DG operator itself:

f [im]

([
E

H

])
=

[
0 1

ε
∇×

− 1
µ
∇× 0

][
E

H

]

Since the upwind and central fluxes are both linear, the DG operator is also linear

and can be written simply as a large, sparse matrix, L, times the stacked vector of all

unknowns u:

f [im] (u) = Lu

The matrix L is large but very sparse and diagonally dominant. For context, we show

a typical sparsity pattern for the DG operator matrix in Figure 4.5. The off-diagonal

entries are the weights for the flux differences at the faces between elements while the

on-diagonal entries are the mass and stiffness matrices associated with each element.

At each Runge-Kutta stage, a system of the following form must be solved:[
I− (∆t)a

[im]
ii L

]
u(i) = r,

where a
[im]
ii is the weight for the ith implicit Runge-Kutta stage (See Appendix C

and Section 3.4.3) and r collects the right hand side terms for that stage. When
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Figure 4.5: Sparsity pattern for the DG operator matrix L for a 2D square domain discretized
into 112 triangles using a first-order (linear) DG discretization. Diagonal entries represent the
intra-element operations (the mass and stiffness matrices), while off-diagonal entries represent
the inter-element operations (the flux contribution at the element faces).

the matrix is small, we solve this system with the Mumps LU solver [Amestoy et al.,

2001, 2006]. For larger systems it is necessary to use iterative methods. We find

that the BiCGSTAB (BiConjugate Gradient STABilized) iterative method [van der

Vorst, 1992] with the Euclid preconditioner [Hysom and Pothen, 2000, 1999] performs

exceptionally well for this system, acceptably converging in fewer than 10 iterations

for moderately sized problems.

The particles are moved in the explicit part of the IMEX step, that is, no global

solve is required for the particle mover. We note that integrating the particle step

implicitly would be prohibitively expensive since the operator matrix would change

with every iteration.

4.1.5 Hybrid approach

Representing the entire distribution of both ions and electrons with particles can

be extremely slow. For certain types of problems, it is possible to reduce this cost

by using a so-called hybrid particle-in-cell method. If the number of hot particles

Nhot is much smaller than the number of cold particles Ncold, this approximation
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can significantly reduce the computational requirements (and consequently, the noise

levels) in PIC simulations.

In this approach, we split the distribution function into two parts, a hot component

handled using PIC and a cold component using a fluid or cold plasma method.

f = fcold + fhot

By linearity, it follows that the currents and charges from these two particle popula-

tions also sum:

ρ = ρcold + ρhot

J = Jcold + Jhot

An additional assumption we make is that there is no continuity law between

the two distributions, that is, a cold particle cannot become a member of the hot

population and vice-versa. Typically, this is a safe approximation to make if either

the hot particle number density Nhot is much less than the cold background density

Ncold, or if the two populations of particles are sufficiently separated from each other

in phase space. Under these assumptions, we can directly evaluate the cold plasma

current via the method described in Section 3.2.2 and evolve a population of hot

particles using the PIC technique.

One minor complication is that while Jcold is evaluated explicitly by our cold

plasma technique (Section 3.2.2), the cold space charge ρcold is not. For waves prop-

agating obliquely to the magnetic field B0, space charge can exist even in the cold

plasma approximation. Such a space charge is supported by a time-varying wave

electric field rather than a pressure (which is zero in the cold plasma approximation).

If we were to make the naive assumption that ρcold is identically zero everywhere,

this assumption would lead to an inconsistency for obliquely-propagating waves when

evolving the divergence correction field φ via Equation 4.7c.

Thus, for obliquely-propagating waves, it is also necessary to evolve an auxiliary
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PDE in order to determine the cold plasma space charge ρcold:

∂ρcold

∂t
+∇ · Jcold = −αρρ

The loss term αρ can be set to some small positive value to help ensure that large

deviations from quasi-neutrality do not accumulate with time.

4.2 Validation

In this section, we establish the accuracy of the DG-PIC technique and the DG-PIC

hybrid technique by comparison to analytical solutions. While plasma physics suffers

from a paucity of explicit solutions to many problems of interest, there nonetheless

exist some, valid for small signal amplitudes or under other approximations (e.g., the

cold plasma approximation), that can be used to validate the basic technique.

We are primarily concerned with the behavior of waves in a plasma, so we restrict

our discussion to propagation, growth, and damping of electrostatic and electromag-

netic waves for which analytical solutions exist. The properties of electromagnetic

wave propagation in the DG-PIC scheme are at present relatively poorly documented.

We seek to address this problem in this section. We begin with a short investigation

of the basic electrostatic behavior of the scheme in order to establish its long-term

stability properties.

4.2.1 Grid heating

PIC simulations often exhibit a slow rise in the total energy in the system caused by a

weak instability called grid heating. Grid heating represents a failure of the underlying

fixed grid to represent high spatial frequencies in the particle population. Essentially,

the error is caused by aliasing due to failure to sufficiently sample fluctuations on the

scale of the Debye length, manifesting as an exponential, nonphysical energy rise in

the system as a function of time.

In order to illustrate this failure, we choose parameters that are likely to give rise

to very strong grid heating. We choose an electron temperature less than an order

of magnitude smaller than in the next section and discretize the same domain using
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only 25 elements instead of 100. Under these conditions, we have approximately 23

Debye lengths per element, that is, the simulation is significantly under-resolved and

we would expect the artificial energy rise to be very large. Additionally, we initialize

the system with relatively few particles, in the range of 32 to 128 per element, in order

to ensure that grid heating manifests over a reasonable time scale. The results are

shown in Figure 4.6, where we plot the total energy (the sum of the particle kinetic

energy and the potential energy in the electric field) as a function of time for a number

of different parameters. The variable n denotes the number of particles per element.

R denotes the particle radius as a factor of the element size, that is, R= 1 means the

particle cloud radius is the same size as one element. Np denotes the polynomial order

of accuracy. Increasing the number of particles decreases grid heating slightly due to

the higher smoothness of the original distribution. Increasing the particle radius has

the same effect for the same reason. The most dramatic reductions in the magnitude

of the artificial energy rise, however, are realized by increasing the polynomial order

(and consequently, the number of unknowns per unit length) from Np = 3 to Np = 4.

Similar results are obtained by increasing the number of elements from 25 to 50. If

we increase all three parameters, the scheme exhibits practically zero energy rise over

100 plasma oscillations.

4.2.2 Conservation of momentum

In order to investigate global conservation of momentum, we initialize the system

with a cold, drifting electron plasma in a neutralizing (constant opposing current,

constant positive charge) background. A cold, drifting plasma is expected to be

physically stable for all wavenumbers. Failure of either conservation of energy or

conservation of momentum would manifest as an instability in this simulation, driven

by inaccuracies as the particles drift over the finite grid. We choose the drift velocity

such that a given particle makes approximately 16 transits of the domain over a period

of 200 plasma oscillation periods. Again, we use a relatively low number of particles

on a coarse grid, that is, the simulation is significantly under-resolved.

The results are shown in Figure 4.7. Grid heating is present, manifesting as a

very rapid initial phase of exponential growth in the total energy of the system. For
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Figure 4.6: Plot of the normalized total energy (TE = KE + PE) for a randomly-sampled
Maxwellian electron plasma against an immobile, neutralizing background. Four cases are shown
for various selections of the number of particles per element n, the relative particle radius R (as
a fraction of the average element size), and the polynomial order Np. These simulations are
deliberately under-resolved in order to clearly show the effects of grid heating, with on the order
of 20 Debye lengths per finite element.

reference, we plot this total energy in the left panel. The first phase of growth (from

approximately t= 0 to t= 60 plasma periods) is dominated by this exponential energy

rise. Later times are dominated by individual particle fluctuations, a consequence of

using too few particles. The instantaneous total momentum is dominated by small-

scale fluctuations due to the small number of particles. Initially these fluctuations

are on the order of the momentum of a single particle cloud. As the instability

progresses, however, the beam is heated, and these fluctuations in the instantaneous

total momentum grow larger, just as we would expect based on the corresponding rise

in the total kinetic energy. A global failure of conservation of momentum manifests

itself as a slow change in the average momentum of this beam as it transits through

the domain due to viscous losses or artificial gains, that is, the beam, en masse, either

slows down due to artificial numerical friction or speeds up for a similar reason.

In order to more clearly illustrate these long-term trends, we filter the instanta-

neous momentum using a rectangular window of width equal to 4 plasma oscillation

periods. The results are shown in the right panel, plotted as the fractional change
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Figure 4.7: Left: Fractional change in the total energy (TE = KE + PE) for a DG-PIC simula-
tion of a cold beam drifting against a neutralizing background. Two unstable and one effectively
stable case are shown. Right: The fractional change in the time-averaged total momentum
for the same simulation, plotted as a function of time. The time-averaged total momentum is
calculated by windowing the instantaneous total momentum with a rectangular window of size
equal to 4 plasma oscillation periods.

in the average total momentum as a function of time. Despite the fact that mo-

mentum is not explicitly conserved by the DG-PIC method, it nonetheless performs

adequately, showing only small fluctuations in the average momentum and no signifi-

cant long-term loss or gain trends, even in the very unstable cases. Further, increasing

the polynomial order from Np = 3 to Np = 4 stabilizes the simulation. No appreciable

energy rise or change in the average total momentum is observed.

4.2.3 Landau damping

One of the simplest waves in a plasma is the electrostatic oscillation at the plasma

frequency. If the plasma has a nonzero temperature, the plasma oscillation can be-

come a propagating mode. For a one-component plasma, the dispersion relation is

given by the following approximate expression, where ωr is the wave frequency:

ω2
r = ω2

p + 3k2vth (4.10)



CHAPTER 4. THE DG-PIC METHOD 129

The thermal velocity vth is:

vth =

√
kBT

m

Alternatively, the dispersion relation can be computed exactly by direct evaluation

of the linearized Vlasov equation as discussed in Section 2.2.2 and summarized in

Equations 2.27 and 2.28 for damping and growth, respectively.

For our validation, we load a periodic domain with a Maxwellian distribution with

a finite electron temperature T and compare the oscillation frequency and damping

rate to those expected from linearized Vlasov theory. Noting that the longitudinal

electron mode cannot affect the distribution perpendicular to the direction of propa-

gation, we use a purely one-component Maxwellian distribution function:

f(v) = N

(
m

2πkBT

) 1
2

exp

(
− mv2

2kBT

)
(4.11)

The linear Landau damping rate is derived by approximately solving Equation 2.27

under the assumption of small loss [Landau, 1946]. Assuming that the frequency ω

has a very small imaginary component ωi representing loss, the singularity at v=ω/k

is handled by integrating along a complex contour, where in typical derivations, the

contour is chosen to take a half-circle detour under the singularity, as opposed to

our full circle contour shown in Figure 2.3. Expanding the denominator in a series

and further assuming that kλD� 1 yields an approximate expression for the damping

rate:

ωi = −
√
π

8
exp

(
−3

2

)
ωp

(kλD)3
exp

(
− 1

2(kλD)2

)
(4.12)

This expression only holds for very small damping rates relative to the plasma os-

cillation frequency. As we show below, this expression is highly inaccurate over the

parameter ranges commonly chosen in PIC simulations, necessitating an exact evalu-

ation of Equation 2.27 for accurate comparison with theory. For high damping rates,

the correct contour is given by Figure 2.3, so the singularity then contributes a factor
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of 2πj as opposed to πj in the small ωi limit.

Direct evaluation of the electrostatic dispersion relation

We evaluate the integral in Equation 2.27 at some ω and k by numerically integrating

over some appropriate range of velocities. The trapezoidal rule works well for this

integration, but other approaches could also be used. The dispersion relation is then

solved as an optimization problem. In the half-plane ωi< 0, the dispersion relation

as a function of ω is smooth and well-behaved within the region of interest, so we can

solve the system by minimizing:

g(ω) = log |ε(ω, k0)| (4.13)

using a standard direct search method for unconstrained optimization over (ωr, ωi).

We have found that while the function is smooth and exhibits a clear minimum

for the Maxwellian distribution, the minimum can exist in a long, narrow valley in

(ωr, ωi) space when the loss rates are very small. Using the logarithm reduces the

relative narrowness of the valley, and this in turn helps reduce the overall number of

iterations in the optimization routine. The true root should be in the vicinity of real

and imaginary frequencies given by Equations 4.10 and 4.12 (the lossless longitudinal

wave frequency ωr0 and damping rate ωi0, respectively), so we choose those frequencies

as our initial guess (ωr0, ωi0).

Validation

We discretize a periodic domain using 100 finite elements and a fourth order polyno-

mial basis. To reduce the possibility of confounding numerical effects, we initialize

the system with a very large number of particles, 1024 per element for low damp-

ing rates and 8192 for very high damping rates. Based on our grid heating tests,

this should be more than adequate to control grid heating for the duration of the

simulation. The particles are loaded using a quiet start (ordered v-x space [Birdsall

and Langdon, 1985]) sampling. Each particle has the same charge-mass ratio but

a different cloud weight, so particles on the long tail of the Maxwellian contribute

proportionally less. The spacing in v space is chosen narrow enough to eliminate the
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Figure 4.8: Left: Log-log plot showing the approximate (Landau) damping rate, exact damping
rate, and the measured damping rates from DG-PIC simulation for a Maxwellian distribution.
Right: Same but for oscillation frequency.

multi-beam instability over the simulation time of interest. We simulate the system

over a range of λDk, from approximately 0.25 (weakly damped, ωi/ωp'−.002) to 1

(strongly damped, ωi/ωp'−1.0).

The system is initialized with very small sinusoidal perturbation on the electron

position, providing the initial (real) wavenumber k. The system is run long enough

to observe significant damping. The frequency of oscillation is determined by peak

detection, and the damping rate is determined by using an L1 norm log-linear fit to

the peaks.

The results are summarized in Figure 4.8. We show the Landau prediction and

the damping rate as predicted by exact numerical evaluation of the plasma dispersion

relation. The measured PIC simulation results are superimposed as discrete circles.

While PIC simulation and the exact solution agree quite well, the Landau linearization

(Equation 4.12) only agrees well at extremely low damping rates.

4.2.4 Cold plasma

The cold plasma approximation is a useful point of reference to investigate the basic

electromagnetic behavior of the DG-PIC scheme, since the approximation yields ex-

plicit, closed-form solutions for the dispersion relation. A particularly compact deriva-

tion is derived in Section 2.2.1. In a PIC simulation, a cold plasma is approximated by

setting all initial particle velocities to zero. In other words, we sample the distribution
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function:

f(vx, vy, vz) = Nδ(vx, vy, vz)

Charge neutrality is enforced by either using particles for both ions and electrons, or

by imposing a background, immobile charge present over all space. As is described

in Section 3.5, the numerical dispersion relation is computed by pinging the system

with a spatially and temporally-compact pulse, recording the fields as a function of

space and time, and then Fourier transforming into ω-k space.

Since all particles in this particular simulation have zero initial velocity, the only

other PIC parameters we must choose are the number of particles per meter per

dimension and the individual particle radius. The particle radius must be chosen

large enough so that it encloses some nonzero number of static grid points. If the

radius is too small, a particle apparently disappears and reappears as it traverses

the untracked space between grid points, resulting in an instability. If the radius

is too large, the particles instantaneously affect the electric and magnetic fields on

faraway grid points, which could manifest either as an instability or as a departure

from expected theoretical behavior.

Since a numerical instability corrupts any results to the point of uselessness, we

restrict ourselves to only a brief discussion of the finite particle size on the propagating

mode characteristics. Based on the results in the previous section, we first choose

particles with radius approximately equal to the grid size. The electron number

density and background magnetic field are identical to those used in Section 3.5:

N = 3.2 × 1010 m−3 and B0 = 4.34 × 10−5 T. Figure 3.14 shows the theoretical cold

plasma dispersion diagram for these parameters. Our results are referenced against

this diagram. The results are shown in Figure 4.9. The propagating modes match

quite closely with theory, effectively identical for k < 0.03 m−1 and diverging slightly

for higher wavenumbers.

If we increase the particle radius to a much higher value, say five times the grid

spacing, the scheme fails. We show these results in Figure 4.10. The propagating

modes are severely distorted, showing both spectral shifts and modes with negative
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Figure 4.9: Numerical dispersion relation for a magnetized plasma using the DG-PIC scheme
with small particles (radius equal to the element size), showing physical behavior. The left plot
is for propagation parallel to the background magnetic field while the right is for propagation
perpendicular to it. The parameters are identical to those used in Figure 3.14.

group velocities for some range of spatial frequencies, e.g., the uppermost branch in

the spatial frequency range 0<k< 0.035 m−1.

4.2.5 Cyclotron damping and growth

Landau damping, as discussed in Sections 2.2.2 and 4.2.3, is only one means by which

energy can be exchanged between a particle distribution and a wave. As discussed

in Section 2.2.3, an electromagnetic wave can also exchange energy with a particle

distribution through the cyclotron resonance interaction, leading to either damping

or growth, depending on the polarization of the wave and the particular character of

the distribution function.

For sufficiently unperturbed particle distributions, we can derive a dispersion re-

lation (Equation 2.29), yielding the oscillation frequency and the spatial or temporal

damping rate for a given electromagnetic wave. In principle, Equation 2.29 can be

solved exactly, but such a solution is complicated in practice by the infinite sum over

the resonances indexed by n. A particularly useful simplification is to assume the

wave propagates parallel to the background magnetic field. In this case, each term

in the sum over n vanishes except for the n=±1 resonances, yielding Equation 2.30.
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Figure 4.10: Numerical dispersion relation for a magnetized plasma using the DG-PIC scheme
with large particles (radius five times the element size), showing nonphysical behavior. Each
propagating branch is severely distorted, with some branches and ranges of frequencies exhibiting
negative group velocities (when ∂ω/∂k is negative). The left plot is for propagation parallel to the
background magnetic field while the right is for propagation perpendicular to it. The parameters
are identical to those used in Figure 3.14.

This simplification once again introduces a non-integrable singularity, which we han-

dle in the same way as in Section 2.2.2, yielding the following dispersion relation,

valid for parallel propagation in a hot magnetized plasma.

1−
c2k2
‖

ω2
− q2

mε0ω2

[∫ ∞
−∞

g(v‖)

v‖ − vres

dv‖ + 2πjH(−Im{ω})g(vres)

]
= 0, (4.14)

with g(v‖) defined in Equation 2.31, vres = (ω ± ωc)/k‖, and H(x) is the unit step

function. Note that the unit step function is used here to switch between the gain

and loss cases, i.e., when the singularity crosses the real axis and begins to deform the

integration contour as illustrated in Figure 2.3. In some cases, it is useful to evaluate

this dispersion relation for a particle distribution split into a hot and cold part, i.e.:

f(v‖, v⊥) = fh(v‖, v⊥) +
Nc

2πv⊥
δ(v⊥)δ(v‖)
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Which leads to the expression:

1−
c2k2
‖

ω2
− q2

mε0ω2

[∫ ∞
−∞

gh(v‖)

v‖ − vres

dv‖ +Nc
ω

ω ± ωc
+ 2πjH(−Im{ω})gh(vres)

]
= 0

Either of these expressions can be evaluated numerically as described in Section 4.2.3.

Similar to Landau damping, this expression can be further approximated using the

assumption of small growth or damping ωi relative to the wave frequency ωr, yielding

Equation 2.32.

Validation

We validate the hybrid DG-PIC scheme for cyclotron growth and damping by direct

comparison to linearized Vlasov theory, both to the approximate linearized cyclotron

growth/damping approximation and to the exact solution to the hot plasma dispersion

relation as described previously.

We discretize a 1D periodic domain into 8 grid elements with a fourth-order DG

approximation and fill this domain with a cold electron plasma with number density

Ncold. Within each element, we also sample an unstable hot electron distribution

with density Nhot in (vx, vy, vz) space using 801 particles in the direction parallel

to the magnetic field and 11 particles in each dimension perpendicular to it. The

background magnetic field and the free spatial domain are in the same direction, that

is, we simulate parallel propagation of whistler mode waves. The electron cyclotron

frequency and cold electron plasma frequency are 13.6 kHz and 27.3 kHz, respectively.

We use a bi-Maxwellian loss-cone distribution [Katoh and Omura, 2006] of the form:

fhot = αNhot exp

(
−

v2
‖

2v2
th,‖

)
1

1− β

[
exp

(
− v2

⊥
2v2

th,⊥

)
− exp

(
− v2

⊥
2βv2

th,⊥

)]
(4.15)

The parameter α is chosen so the distribution integrates to Nhot. The remaining

parameters are: vth,‖= 0.15c, vth,⊥= 0.20c, and β= 0.5.

We simulate this system for two choices of hot particle densities, one relatively

small with Nhot = 0.05Ncold, and one large with Nhot = 0.5Ncold. As with Landau

damping, the approximate linearized growth/damping rate given by Equation 2.32
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Figure 4.11: Normalized (with respect to the electron gyrofrequency ωc) electromagnetic cy-
clotron wave growth/damping rates plotted as a function of normalized (again with respect to
ωc) of the wave frequency ω. The plots show the exact damping rates calculated numerically
from Equation 4.14, the approximate damping rates expected from Equation 2.32, and the re-
sults from a hybrid DG-PIC simulation. The left plot is for a plasma with few hot particles
(Nhot = 0.05Ncold) while the right is for many (Nhot = 0.5Ncold).

is expected to be a close match to reality only for very small values of ωi, which we

demonstrate in our results.

We initialize the domain with a very small whistler-mode wave at a fixed wave-

length and allow the system to evolve long enough to measure the resulting temporal

wave frequency and temporal growth rate. We summarize our results in Figure 4.11.

For low damping and growth rates (left panel), the exact, approximate, and DG-PIC

results all match quite closely. For higher (but still linear) damping and growth rates

(right panel), the approximate expression begins to diverge. In both cases, the DG-

PIC results and the exact dispersion relation agree closely, validating the basic hybrid

DG-PIC scheme for cyclotron growth and damping.

4.3 Summary

In this chapter, we have described an efficient, parallel implementation of a hybrid

PIC scheme on unstructured grids in the DG framework. We have made a number of

contributions to the basic DG-PIC scheme, with particular emphasis on its efficient

parallel implementation on distributed clusters and its performance for simulating

electromagnetic wave propagation and growth.
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Specifically, we have described a method to accelerate the element containment

search by use of a pre-computed plaid grid or kd-tree, additionally resolving any

geometric ambiguities that may arise without resorting to voting strategies that would

require inter-node communication. We have also devised a method to accelerate the

particle projection step on completely unstructured grids, again specifically targeting

distributed environments where inter-node communication costs may be high.

Our hybrid DG-PIC approach incorporates both fluid and particle descriptions of

a plasma in one scheme. The hybrid approach reduces the noise and computational

requirements when simulating problems for where there exists a clear separation be-

tween a background, cold magnetized plasma (simulated using the fluid technique)

and a hot unstable component (simulated using the PIC technique). We have demon-

strated the correctness of this approach by direct comparison to theory, showing that

the scheme correctly reproduces cyclotron growth rates predicted by the linearized

Vlasov equation.



Chapter 5

Scattering from ionospheric

disturbances

Having established the basic validity and flexibility of the DG technique for simu-

lating wave propagation in cold magnetized plasmas, we now turn our attention to

simulating physical problems of interest.

This chapter discusses the application of the DG technique to modeling VLF wave

scattering from lightning-induced ionospheric disturbances. This chapter extends

the work of Lehtinen et al. [2010], who used a linearization to estimate the VLF

scattered fields from relatively mild lighting-induced ionospheric disturbances. Since

our technique is not limited to mild perturbations, we can investigate the much higher

limits (for very strong lightning discharges) of this particular scattering mechanism

and its impact on VLF wave propagation in the Earth-ionosphere waveguide.

Portions of this chapter have been published in the Journal of Geophysical Re-

search as Foust et al. [2011b].

5.1 Background

Lightning discharges can modify the ionosphere via a number of different mechanisms.

Due to the impulsive, energetic nature of a lightning return stroke, a large electromag-

netic pulse (EMP) is radiated from a lightning channel. The fields associated with this

EMP are intense enough to cause significant heating and ionization of the ionosphere
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above the discharge [Inan et al., 1991; Cheng et al., 2007b; Marshall et al., 2008a,

2010]. A number of secondary effects are also present. For instance, the amount of

charge removed by a lightning return stroke creates a large quasi-electrostatic (QE)

field above a lightning discharge, which can further modify the levels of ionospheric

ionization [Pasko et al., 1995, 1998]. In either the QE or the EMP cases, the magni-

tude of the change in the ambient electron density can be on the order of a few percent

to over a hundred percent, peaking in an altitude range of approximately 80 to 100

km and extending over radial distances of over 100 km [Inan et al., 1991; Taranenko

et al., 1993; Cheng et al., 2007b; Marshall et al., 2010]. Due to the abrupt onset

of such disturbances, their altitudes near the VLF reflection height, and their rela-

tively wide spatial extent, these ionospheric disturbances are expected to modify the

properties of VLF waves propagating within the Earth-ionosphere waveguide. This

modification can be observed by a ground-based receiver as a phase or magnitude per-

turbation on a received narrowband signal observed shortly after a causative lightning

discharge. Indeed, this connection was observed quite early [Armstrong, 1983]; how-

ever, the exact nature of the disturbances and their effects on received VLF signals

was not elucidated until later modeling efforts [Inan et al., 1991; Taranenko et al.,

1993; Cheng et al., 2007b; Marshall and Inan, 2010].

We discuss one particular class of VLF signal disturbances, termed early VLF

events. Early VLF events are abrupt changes in the amplitude of a received nar-

rowband VLF signal following a lightning discharge. They are characterized by their

abrupt onset (<20 ms) after a causative lightning discharge (hence the term early)

and their relatively slow recovery time (10-100 seconds). Initially, a number of dif-

ferent causative mechanisms were postulated [Inan et al., 1991; Pasko et al., 1998;

Moore et al., 2003]. Recent modeling efforts have shown that EMP-induced iono-

spheric disturbances may be consistent with some such events [Cheng and Cummer,

2005; Cheng et al., 2007b; Marshall and Inan, 2010]. A recent review article [Inan

et al., 2010] summarizes what is known (as of 2010) of these lightning-ionosphere

interactions, among others.

Previous work by Marshall and Inan [2010] used a 2D finite difference model to

show that the EMP from strong (but realistic) lighting discharges, with E100 (defined
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in Uman and McLain [1970] as the magnitude of the electric field as observed on

the ground at 100 km from a discharge) in the range of 7 to 40 V/m, can perturb

the ambient electron density enough to cause measurable (>1 dB) perturbations on

the amplitude of a received narrowband VLF signal. Later work by Lehtinen et al.

[2010] used the Born approximation to approximate the scattered field in a medium

of homogeneous, horizontally stratified layers. This work revealed the full three-

dimensional structure of the scattered field from a lighting EMP-induced density

perturbation for a range of incidence angles. The technique used in Lehtinen et al.

[2010], however, assumes that the scattered field is much smaller than the incident

field and as such is unsuitable for the whole range of density perturbations considered

in Marshall and Inan [2010]. In addition, the technique cannot account for multiple

scattering or modes propagating exactly parallel to the stratified layers, necessitating

the use of a more general solution method for strong perturbations. The magnitude,

angular extent, and shape of the scattered field and amount of transverse variation

for intense, spatially complicated disturbances were previously unknown.

We extend the work of Lehtinen et al. [2010] and Marshall and Inan [2010], using

a fully three dimensional continuum electromagnetic DG solver to solve for the VLF

scattered fields from an EMP-induced ionospheric disturbance. As a continuum,

time-domain method, backscattering and multiple scattering are implicitly handled.

The only significant limitation is that the wavelengths of interest must be sufficiently

sampled. For the case considered in this chapter, the free-space wavelength is equal

to 12.5 km but in the ionosphere drops to less than 2 km for propagation parallel to

the magnetic field.

5.2 Scattering model

Waves radiated by an antenna at VLF frequencies (3-30 kHz) are effectively guided

between the ground and the conductive lower ionosphere and propagate efficiently over

very long distances with modal attenuation rates of only a few dB per megameter

[Davies, 1990, pp 367]. Assuming a smooth ionosphere, the mode excitation factors

and attenuation rates can be computed as described in Lehtinen and Inan [2008, 2009];

Lehtinen et al. [2010]. The modal structure is relatively simple at large distances
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from the antenna with the bulk of the contributions to the Poynting flux being in the

QTM1 and QTM2 modes [Lehtinen et al., 2010]. Any perturbation along this path,

in the form of modified ground conductivity, ionospheric electron density, or collision

frequency, scatters the incoming fields, potentially creating strong perturbations on

the received signal amplitude of a coherent signal at a receiver some distance away

from the transmitter.

5.2.1 Simulation domain

We carry out the simulation on a box-shaped domain of size 900 km by 400 km

on the ground and 100 km in height (Figure 5.1). We subdivide this domain into a

number of horizontal layers (in order to enforce a conformal mesh) with layer thickness

approximately proportional to the characteristic length scale in the medium, which

we define as the wavelength of a whistler-mode wave propagating parallel to the

background magnetic field B0. We truncate the upper part of the domain with

an absorbing boundary. The input to the domain is a sum of plane wave sources

at one face (x=−200 km), extending from the ground up through the ionosphere.

The waves propagate in the +x̂ direction, interacting with a scattering region in

the ionosphere centered at (x= 0, y= 0), propagating forward and finally terminating

at another absorbing boundary placed at x= 700 km. To avoid numerical difficulties

with terminating very oblique waves and since the bulk of the scattered wave energy is

in the forward direction [Lehtinen et al., 2010], we use a periodic boundary condition

along the ŷ dimension at y=−200 km and y= 200 km. The lower boundary is

perfectly reflecting. We then mesh the domain using Gmsh [Geuzaine and Remacle,

2009], with average element size again proportional to the characteristic length scale,

yielding a domain with approximately 2.5 million tetrahedrons. For the fourth order

results in this paper, this translates to 35 points per element for a total of ∼87 million

unknowns per field.

5.2.2 Plasma parameters

The background number density, collision frequency, and magnetic field are as de-

scribed in Lehtinen et al. [2010]. We restrict ourselves to a small number of test
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Figure 5.1: Diagram of the simulation domain for the VLF scattering problem, top and side
view. The scatterer is located at position x= 0, y= 0. Absorbing boundaries are placed at the
top and end of the domain. A waveguide mode (or multiple modes) propagating in the +x̂
direction are sourced at the input plane indicated. The boundaries in the transverse direction
are periodic.

cases. In particular, we restrict ourselves to scattering from ionospheric disturbances

created by relatively large lighting discharges. We use the lighting discharge cases

described in Marshall et al. [2010] and Lehtinen et al. [2010]. For context, in Figure

5.2 we show the ambient electron density and the height-integrated change in the

electron density distribution for two of the strong discharges considered in Marshall

et al. [2010]. The 40V case refers to the density perturbation induced by a large,

vertically-oriented lightning discharge. The number 40 refers to the E100 parameter.

The 10H case refers to a horizontally-oriented inter-cloud, multiple stroke (60 dis-

charges in total) lightning discharge with E100 = 10 V/m. The background magnetic

field is taken to be:

B0 = B0(cos θ sinφ x̂ + sin θ cosφ ŷ + cosφ ẑ), (5.1)

where B0 = 5× 10−5 T, φ= 45◦, and θ= 270◦.

5.2.3 Incident source

Since we are computing the scattered field from a narrowband transmitter some large

distance away (>1 Mm) from the scatterer we are modeling, it more efficient to use
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Figure 5.2: (a) The ambient electron density as a function of altitude. (b) Height-integrated
electron density perturbation in m−2 for a single vertical lightning discharge with E100 = 40 V/m.
(c) Height-integrated electron density perturbation for 60 horizontal discharges with E100 = 10
V/m.

an approximate method to propagate the fields from a VLF transmitter in the Earth-

ionosphere waveguide out to some distance, and then use the field amplitudes at that

distance as our incident source to the DG domain, as illustrated in Figure 5.3.

Figure 5.3: Illustration of the combined propagation and scattering model. A VLF transmitter
is located some distance from an ionospheric perturbation. These fields are propagated a distance
d in the Earth-ionosphere waveguide using a full-wave method to the edge of the simulation
domain, providing the incident source terms for the DG simulation. The full 3D scattered fields
are computed in the DG domain (denoted with a dashed box).

The propagation method we use is a modal technique described in Lehtinen et al.

[2010]. The method uses a full-wave technique to compute a set of height gains

(that is, the mode structure as a function of altitude) and mode amplitudes at some

arbitrary distance from a vertical dipole source. At the scatterer, we assume the

cylindrical wavefronts are quasi-planar and then compute a set of equivalent source

currents for the given mode (or sum of modes) along a large plane (shown in Figure
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5.1) on one side of the domain, where n̂ is the normal to the incident source plane,

using the convention that the waves propagate in the same direction as n̂:

Js = n̂×H (5.2)

Ms = −n̂× E

As observed by Lehtinen et al. [2010], the dominant contributions at large distances

from the VLF source are in the quasi-TM1 (QTM1) and QTM2 modes. For this study,

we separately compute the scattered fields for these two pure modes, and we repeat

the computation for the full mode sums at selected distances d from the transmitter.

We use the full mode sums because the individual waveguide modes can interact to

significantly affect the apparent magnitude of the scattered field as observed from

a fixed reference point on the ground [Marshall and Inan, 2010]. Since amplitude

and phase measurements are typically observed by at most only a few VLF receivers

within the scattered field of a small disturbance, it is important to also consider the

behavior of typical systems under these more realistic propagation conditions.

5.3 Results

We apply our model to a number of representative test cases, two pure waveguide

modes and mode sums at three distances. We run the simulation until convergence,

or approximately 4 ms in physical time.

We first simulate two simple pure-mode cases. For a relatively smooth ionosphere

and far from the source, the bulk of the wave power will be in the QTM1 and QTM2

modes, so we consider these two modes separately. We simulate scattering from these

pure modes for two large vertical lightning discharges (E100 = 30 V/m and E100 = 40

V/m) and two multiple-stroke, horizontal inter-cloud discharges (60 flashes at E100 = 7

V/m and E100 = 10 V/m [Marshall et al., 2008a; Marshall and Inan, 2010]. The

vertical discharge creates a flattened ring-shaped disturbance, peaking between 80 km

and 90 km altitude, while the horizontal discharges create very localized, oval-shaped

disturbances. We source an incident QTM1 or QTM2 mode at one end of the domain

and run the simulation until steady-state is reached. Equivalent complex fields are
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computed by finding the sine and cosine parts, found by advancing the steady-state

simulation results one quarter wavelength in time at the transmitter frequency (24

kHz). We compute a reference simulation without an ionospheric disturbance and

use this to compute the scattered amplitude (in dB) and (unwrapped) phase:

∆Ascattered = 20 log10

|Eperturbed|
|Eref |

(5.3a)

∆φscattered = ∠(Eref)− ∠(Eperturbed) (5.3b)

The scattered fields for the vertical 40 V/m discharge are shown in Figure 5.4 for

QTM1 and QTM2 modes. The results are qualitatively similar to those in Lehtinen

et al. [2010, Figure 5] but with a larger amplitude due to the larger magnitude of the

disturbance. The peak amplitude perturbation for the QTM1 case is approximately

0.07 dB, with a phase perturbation of 0.5 degrees. The scattered fields for the QTM2

mode are larger in magnitude, on the order of 0.25 dB in amplitude and 1.2 degrees

in phase. The smaller response of the QTM1 mode is primarily due to its incidence

angle, since grazing incidence does not interact as strongly with the scatterer. Most

Figure 5.4: Top: Scattered fields for a pure 24 kHz QTM1 mode incident on a vertical (E100 =
40 V/m) lightning EMP-induced ionospheric disturbance (shown in Figure 5.2). The left panel
shows the vertical electric field magnitude response in dB at the ground, while the right is the
phase response in degrees (defined in Equation 5.3). Bottom: Same, but for QTM2.

striking is the extreme spatial variation in the magnitude of the scattered field, where
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the distance from the strongest peak to a null in the scattered field is on the order of

50 km. Also of particular note is the phase response. With some exceptions [Moore

et al., 2003, Figure 8], [Johnson et al., 1999, Figure 4], published plots showing

early VLF events tend to emphasize the importance of the amplitude response of a

received VLF narrowband signal [Johnson and Inan, 2000; Marshall et al., 2008b;

Johnson et al., 1999; Marshall et al., 2006; Moore et al., 2003]. Noting, however, that

for these simple single-mode cases, the phase response exhibits strong peaks where

there is a null in the magnitude response (and vice-versa), the phase response is also

an important quantity.

The results for the 60-stroke horizontal 10 V/m discharges are shown in Figure

5.5. The horizontal discharges produce a larger perturbation than the vertical, on

the order of 0.3 dB with a maximum phase perturbation of approximately 2 degrees

for the QTM1 mode and nearly 1 dB and 6 degrees in phase for the QTM2 mode.

We also conducted simulations for a 30 V/m vertical discharge and a multiple-stroke

Figure 5.5: Top: Scattered fields for a pure 24 kHz QTM1 mode incident on a horizontal,
multi-stroke (E100 = 10 V/m ×60) lightning EMP-induced ionospheric disturbance (shown in
Figure 5.2). The left panel shows the vertical electric field magnitude response in dB at the
ground, while the right is the phase response in degrees (defined in Equation 5.3). Bottom:
Same, but for QTM2.

7 V/m horizontal discharge. The results (not shown) have similar qualitative shapes

but smaller perturbation magnitudes, with QTM1 scattering magnitudes on the order

of 0.02 dB for the vertical discharge and 0.04 dB for the horizontal discharges. The
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QTM2 cases (again, not shown), are also qualitatively quite similar but larger in

magnitude, a more measurable 0.25 dB maximum for the vertical 40 V/m discharge

(1.5 degrees in phase) and 0.8 dB for the 60-flash horizontal 10 V/m discharge (6

degrees in phase).

For reference, we also show the ambient reference electric field magnitudes as

observed on the ground as a function of distance in Figure 5.6 for the cases shown in

Figure 5.7. Nulls are visible in the 1000 km case, but the other cases are comparatively

smooth.

Figure 5.6: Vertical reference electric field magnitude as observed on the ground for the cases
shown in Figures 5.7 and 5.8, normalized to their values at x=−200 km, plotted for scatterers
located at 1000 km, 2000 km, and 3000 km from the transmitter.

For our second set of trials, we use the full mode sums for a VLF transmitter

located at some distance from the ionospheric disturbance. As noted by Marshall

and Inan [2010], the presence of modal nulls can significantly alter the magnitude

of the observed VLF scattered field. As such, we conduct six additional trials for

strong scatterers located at fixed distances of 1 Mm, 2 Mm, and 3 Mm from a VLF

transmitter. The intent of these trials is to show the shape of the scattered field under

more realistic (multi-mode) conditions and to demonstrate that scattered fields with

very complicated spatial structure can occur for some configurations, particularly

when many waveguide modes are present. The results are summarized in Figures 5.7

and 5.8.

The maximum disturbance measured in these trials is quite large, 5 dB for a light-

ning discharge 1 Mm away from the VLF transmitter. The horizontal discharges show
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Figure 5.7: Scattered fields as observed on the ground for a disturbance located at a distance
from a 24 kHz transmitter. The disturbance is caused by a vertical (E100 = 40 V/m) lightning
EMP-induced ionospheric disturbance (shown in Figure 5.2). The left panels show the vertical
electric field magnitude response in dB at the ground, while the right is the phase response in
degrees (defined in Equation 5.3). We plot three cases for perturbations located at 1 Mm, 2 Mm,
and 3 Mm distance from a vertical VLF antenna.

relatively less transverse variation in the shape of the scattered field, so 2D simula-

tions with cylindrical symmetry could provide reasonable estimates to these scattered

fields. The vertical discharges, however, again show strong transverse variation. At

larger distances, the QTM1 and QTM2 modes begin to dominate and the scattered

fields begin to more closely resemble the single-mode scattering patterns in Figures

5.4 and 5.5. We note that this idealized model assumes perfect uniformity along the

path from the transmitter to the lighting-induced plasma perturbation. In reality, the

presence of any density irregularities or variations in the ground conductivity along

a path excites additional modes. Any such variation from smooth, ambient far-field

conditions such as interference nulls, unmodeled scattering from irregularities, or the

presence of additional modes may significantly influence the measured magnitude of

the scattered field from a single, stationary ground observer. As such, we can say
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Figure 5.8: Scattered fields as observed on the ground for a disturbance located at a distance
from a 24 kHz transmitter. The disturbance is caused by a horizontal, multi-stroke (E100 = 10
V/m ×60) lightning EMP-induced ionospheric disturbance (shown in Figure 5.2). The left panels
show the vertical electric field magnitude response in dB at the ground, while the right is the
phase response in degrees (defined in Equation 5.3). We plot three cases for perturbations located
at 1 Mm, 2 Mm, and 3 Mm distance from a vertical VLF antenna.

that scattering from lightning-induced electron density perturbations may be con-

sistent with some observations of early VLF events, but it is not possible to make

strong inferences about the precise shape and magnitude of the scatterer from a single

ground-based measurement.

5.4 Summary

In this chapter, we have modeled scattering of VLF wave energy from lightning EMP-

induced ionospheric disturbances over a large 3D volume using our DG framework. As

a high order method with geometric flexibility, DG is an ideal tool for direct simulation

of wave phenomena in strongly inhomogeneous environments such as the Earth’s lower

ionosphere. Using a grid with finer sampling only where it is required, e.g., near the

VLF reflection height (∼85 km at night) allows the accurate simulation of domains
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much larger than that currently possible using low-order techniques on structured

grids. Further, the technique is not limited to small scattered field amplitudes as in

Born approximation approaches, thus serving as an independent validation of those

methods.

We have shown that the spatial structure of the VLF scattered field from a light-

ning EMP-induced ionospheric disturbance can be quite complicated, showing rapid

variations in the phase and amplitude over a scale of tens to hundreds of kilometers.

These simulations demonstrate that scattering from such perturbations may be con-

sistent with observations of so-called early VLF events, with magnitude changes on

the order of 0.1 to 1 dB in common conditions and up to 5 dB under some circum-

stances, consistent with results from the 2D modeling of Marshall and Inan [2010].

The bulk of the scattered wave energy is in the direction forward of the perturbation,

but the fine-scale structure can be complicated, particularly when signal amplitudes

are measured within 700 km of the perturbation. We have further shown that the

phase response may also be an important factor to consider when measuring field

perturbations from lightning-induced density perturbations.

However, the strong spatial variability in the scattered field and its dependence

on ambient conditions further suggests that while some scattering of VLF transmitter

signals due to lightning discharges is commonplace, the likelihood of making successful

observations of such an event via amplitude and phase measurements of a received

narrowband VLF transmitter signal is strongly dependent on the position of the

receiver relative to the induced perturbation and the transmitter. This result suggests

that the correct approach for analysis of such events is statistical. A large number

of similar events caused by similar lightning discharges is necessary to support or

invalidate a particular scattering mechanism.



Chapter 6

DG-PIC simulation of spontaneous

VLF emissions

This chapter describes DG-PIC simulations of spontaneous emissions in an inhomoge-

neous magnetized plasma. Specifically, we aim to simulate the spontaneous generation

of VLF chorus and hiss waves in the magnetosphere. The intent of this chapter is

not to validate or invalidate any particular theory of chorus generation. Rather, we

show that DG-PIC is a useful and flexible framework in which to investigate how the

properties of the medium affect the generation of VLF waves.

We use this framework to show that for sufficiently unstable electron velocity dis-

tributions in an inhomogeneous background magnetic field, we can spontaneously,

consistently, and naturally generate rising, quasi-periodic emissions that show good

qualitative agreement with chorus waves. Further, our simulation shows that the sim-

ulated chorus amplitudes are quite small in the generation region (near the magnetic

equator), with amplitudes increasing exponentially as the chorus elements propagate

away from the equator, finally reaching saturation some distance away as the trapped

energetic particle flux becomes smaller.

We postulate, based on these results, that while nonlinear mechanisms clearly play

a role in the generation of chorus elements, consistent, for example, with the results of

Omura et al. [2008], the primary factor determining whether or not a chorus element

can be observed is almost entirely due to simple linear amplification as the wave
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propagates away from the equator. This conclusion supports work by Jordanova

et al. [2010], who showed that global simulations of anisotropic ring current electron

populations produced linear growth rates that were well correlated with the observed

distribution of chorus waves.

We begin with a brief discussion of prior work in modeling these phenomena,

followed by a description of our 1D model. We then discuss the computational limits

of performance of the PIC scheme, which motivates our choice of parameters for the

simulation work in the following section.

6.1 Background and prior work

Attempts at simulating spontaneous and triggered emissions from the magnetosphere

date back to the 1970s [Nunn, 1974]. The problem, however, is extremely difficult to

solve in the most general case. As such, computational and theoretical approaches

usually begin with drastic simplifications in order to make the simulation more feasi-

ble. Three basic approaches are common in the literature.

A theoretical approach is to solve for the time evolution of a single particle tra-

jectory in phase space in an inhomogeneous (but smooth) background, subject to

forcing by an external wave. We have described this approach in Section 2.3.4. This

method provides insight into the processes that may drive an instability and deter-

mine the frequency-time characteristics of chorus wave packets. However, it provides

no insight into how the external forcing wave forms, how deep a particle trap may

become, or how waves with particular frequency-time characteristics may be preferen-

tially selected and amplified. Additionally, the inhomogeneity parameter S proposed

by Omura et al. [2008] has an explicit dependence on the perpendicular velocity v⊥ of

a given particle. It is unclear what effect including a range of perpendicular velocities

would have on the underlying theory or the conclusions drawn.

A more direct approach due to Nunn [1990] attempts to evolve an electron distri-

bution function directly in phase space using a first-order finite-volume style method

coupled with a drastically-simplified narrowband version of Maxwell’s equations. By

dropping the displacement current and assuming quasi-monochromaticity of a wave

and smoothness of both the wave field and background plasma, the author reduces the
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full set of Maxwell’s equations to a simple set of equations describing the time evolu-

tion of the amplitude and phase of a narrowband wave packet as it progresses through

a system. While this method describes the time evolution of a single monochromatic

wave as it propagates through an unstable medium, the modeler must a priori impose

an input wave frequency and an expected bandwidth before the simulation can even

be started. While we acknowledge that the approach is extremely efficient, we do not

consider it general enough to simulate spontaneous emissions in an unstable plasma

unless one resorts to making a number of ad-hoc assumptions about the background

wave environment.

The most direct approach is the PIC method, which self-consistently solves the

time evolution of a population of test particles. This method is typically very compu-

tationally expensive so authors who use this approach also make some approximations

to make the method more feasible. The approach of Katoh and Omura [2006], for

instance, is to sample only the hot particle distribution using the PIC method while

using a cold fluid approach to handle the background, cold plasma. The authors

additionally assume strictly parallel propagation along a magnetic field line, which

allows the electrostatic component of the electric field (the component parallel to the

background magnetic field) to be dropped.

Our approach is most similar to that of Katoh and Omura [2006], the major

difference being the field solver. We use a high order DG method to evolve the fields,

while they use an FDTD method. As discussed in Chapter 4, the DG-PIC scheme

has excellent stability and noise properties, and thus we expect at least moderate

improvements in the overall quality of the solution for a lower cost (i.e., fewer particles

per wavelength). Additionally, we drop the nonlinear convective acceleration term

when evolving the cold background plasma. This term is typically small relative to

the other terms, and including it would unnecessarily complicate the overall scheme.

6.2 Computational model

The basic computational domain is illustrated in Figure 6.1.

The domain is one-dimensional, where the spatial dimension h is assumed to lie

exactly along a magnetic field line intersecting the magnetic equator at some fixed
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Figure 6.1: Simulation domain for the chorus simulation.

distance L (in Earth radii) from the center of the Earth. Electrons stream in the

open boundaries at the left and right while internal, untrapped electrons are free to

stream out.

Physically, this one-dimensional simulation can only represent waves that are con-

fined to parallel propagation along a magnetic field line, a situation that only occurs

in a so-called duct, or magnetic field-aligned density irregularity that can guide waves

along its length, much as an optical fiber guides waves in its high-refractive index

core [Smith, 1961]. There is abundant observational evidence that the magnetosphere

is permeated by density irregularities with a wide range of scale sizes including those

supporting ducted VLF propagation [Carpenter et al., 2002; Koons, 1989; Haque et al.,

2011].

In order to keep the problem tractable and reduce the computational require-

ments, we additionally exaggerate the spatial dimension h by some factor α. This

exaggeration increases the apparent inhomogeneity of the magnetic field and exagger-

ates the inhomogeneity parameter S (Equation 2.43) by roughly an equivalent factor,

in turn affecting the frequency-time rate at which growth is maximized. The end

result is that the simulation time is reduced to approximately one week rather than

months.

6.2.1 Mirror force

A one-dimensional simulation implicitly assumes that there is no transverse variation

in any of the field quantities or in the background magnetic field. In order to model

a trapped particle population, however, it is necessary to add a mirror force back

into the system so particles that should be trapped within some range of magnetic
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latitudes are actually trapped. This force does not exist in the absence of transverse

variation but is necessary to match the real physics of the problem.

The relativistic mirror force is computed as follows [Northrop, 1963], where h is

the free spatial coordinate along the field line:

Fmirror = −1

2

p2
⊥

m0B

∂B

∂h
(6.1)

This force is added to the Lorentz force (Equation 4.1) acting in a direction parallel

to the background magnetic field.

6.2.2 Particle loading

We pre-load the domain by first defining an equatorial bi-Maxwellian particle dis-

tribution with three configurable parameters: a loss cone parameter β, a parallel

thermal momentum pth,‖, and a perpendicular thermal momentum pth,⊥:

f0(p‖, p⊥) = αNhot exp
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th,‖

)
1
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[
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This distribution is illustrated in Figure 6.2 for a typical choice of parameters, plotted

in velocity space (see Equation 4.3).

Figure 6.2: Normalized hot particle distribution function for vth,‖= 0.17c, vth,⊥= 0.23c, and
β= 0.6 plotted as a fraction of the speed of light c. High values of β (close to 1.0) give larger deple-
tions at low perpendicular particle velocities. The distribution approaches a plain bi-Maxwellian
distribution as β→ 0.
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To fill the rest of the domain, we assume bounce-adiabatic invariance [Northrop,

1963] and that the particle population is stably trapped, giving the distribution func-

tion as a function of the spatial dimension h:

f(p‖, p⊥, h) = f0

(√
p2
⊥

(
1− B0

B(h)

)
+ p2

‖,

√
p2
⊥
B0

B(h)

)
, (6.2)

where B0 is the equatorial magnetic field magnitude and B(h) is the field magnitude

as a function of the distance h along the field line.

6.2.3 Particle sampling

The particle-in-cell method requires that we choose a finite number of particles to

sample a given continuous distribution f . Choosing the actual sample locations and

weights, however, is far from straightforward. Our ultimate goal is to draw from the

distribution in such a way that the sample distribution (i.e., PIC particles) converge

to the continuous distribution f as the number of samples N grows very large. While

there are many sampling techniques that have this property, not all have identical be-

havior in PIC simulations. For instance, ordered sampling leads to instabilities in PIC

simulations due to the presence of nonphysical correlations in the phase space den-

sity (either temporal or spatial). Randomized sampling, by contrast, leads to stable

schemes, but the resulting noise levels may be excessively high for some applications.

Cold start sampling

Weighted cold start sampling uses an ordered grid of sample points, where each par-

ticle is weighted by f and normalized by the ratio of PIC particles to real particles.

Such a distribution has extremely favorable noise properties but is unfortunately only

marginally stable and will eventually thermalize to a random distribution. One way

to see this is to treat the system as a system of beams. By Equation 2.40, we can

easily verify that almost any multi-beam system is unstable for some range of spatial

frequencies. As such, we restrict the use of cold-start sampling to simple linear growth

and damping rate calculations, where only a few periods of oscillation are required to

determine the rates to fairly high accuracy.
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Uniform weighted random sampling

Another strategy is to define a range of velocities over which samples exist and draw

from a uniform random distribution within this range. Each sample is then weighted

by the particle distribution function f and then normalized by an appropriate ratio

such that the particle distribution integrates to the true particle density Nhot. This

sampling strategy tends to lead to noisy PIC simulations but does not suffer from the

multi-beam instability that plagues cold start sampling. As such, it is appropriate

for simulating systems for very long time intervals. The disadvantage is that some

particles begin with large weights and thus artificially represent very many physical

particles while others start with small weights and thus represent many fewer. While

this scheme can accurately represent a given distribution at the start of a simulation,

as time progresses, the larger weight particles may drift into regions of phase space

far from their initial positions. This drift incorrectly biases the distribution towards

the heavy particles, leading to excessive numerical noise.

Metropolis sampling

Metropolis-Hastings sampling is a technique to draw samples from a given distribution

f . The procedure begins with a sample ut representing the current state. A candidate

sample uc is drawn from another distribution g with the same domain as f and is

then either accepted (in which case it becomes the new ut) or rejected (in which case

the old sample ut is re-used). Algorithm 3 given below describes the method in detail.

Metropolis sampling is fast but tends to generate samples with undesirable cor-

relations in velocity space, leading to noisier PIC simulations. If the variance σ2 is

too small, for instance, successive samples will be strongly correlated. If the variance

is too large, the rejection rate will be too high, which in the Metropolis algorithm

means that many identical samples may be generated in a row. In a PIC simulation,

it is computationally wasteful to generate identical samples from a given distribution,

since each of the identical particles will follow precisely the same trajectory (within

roundoff error) as time progresses.
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Algorithm 3 Metropolis sampling a particle distribution f .

1: ut ← Draw an initial sample (anything in the domain of f)
2: loop
3: up ← Draw from normal distribution with mean ut and variance σ2

4: α← min(1, f(up)/f(ut))
5: u← UniformRandom(0, 1)
6: if (u < α) then
7: ut ← up
8: else
9: ut ← ut

10: end if
11: Consume sample ut

12: end loop

Rejection sampling

Rejection sampling is another method for sampling from a given distribution f . The

method requires that we can draw from another distribution g such that Mg (where

M is some scaling constant) dominates f everywhere. The technique is straightfor-

ward: given a sample up drawn from such a distribution g, the sample is accepted if

uMg(up)<f(up), where u is drawn from the uniform distribution U(0, 1).

Rejection sampling produces high-quality random samples but can be extremely

slow and requires that we can find a simple distribution g (and scaling constant

M) such that Mg dominates f everywhere. This scaling constant is not always

straightforward to compute in practice, but since we are using an explicit expression

for f , this is not an issue for our simulations.

In our simulations, we use cold start random sampling to investigate the satu-

ration thresholds for linear growth, since these simulations require very low noise

levels. For simulations of nonlinear phenomena over very long time periods, we use

rejection sampling. Cold start sampling over such long time intervals would require

prohibitively large numbers of particles in order to avoid the multi-beam instability.
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6.2.4 Boundary conditions

The domain is terminated on each end by an open boundary. The wave fields are

truncated using a pure PML, implemented using Equation 3.39. The aforementioned

PML instability (Section 3.2.3) when truncating arbitrary anisotropic media never

manifests in one dimension and, further, does not appear for the purely parallel

modes (with respect to the background magnetic field) considered in this simulation.

The particle boundaries are handled with a simple inflow-outflow condition. Any

particle that travels outside of the domain is discarded. Fresh particles are fed in each

end to replenish the lost particles using a first-order advection method, illustrated in

Figure 6.3.

Figure 6.3: Illustration of particle boundary conditions for the chorus simulation. The hor-
izontal axis is the spatial dimension h while the vertical is the particle velocity along h. The
outer boundaries of the 1D domain are indicated in blue, where we inject a set of new particles
(shaded region) after each timestep ∆t. Using first-order advection, all new particles will be
contained within the triangular shaded regions indicated. The injected particles are thus found
by sampling the positive part of f (on the leftmost boundary) and the negative part of f (on
the rightmost) over these shaded regions.

6.3 Saturation and noise

In any real system, a given electromagnetic wave cannot be amplified indefinitely.

Not only is the free thermodynamic energy in a given system finite, but there are

also other physical processes that tend to limit the energy that can be extracted

from a system at a given frequency. While many physical processes can lead to
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saturation, in the context of this work, we are primarily concerned with the linear

saturation amplitude for a uniform, infinite magnetized plasma, which we define as

the amplitude where linear cyclotron growth stops for a given whistler mode wave

propagating in an infinite, uniform domain.

Direct prediction of the saturation amplitude is exceedingly complicated. Concep-

tually, we can say that saturation is due an increase in entropy. The wave grows as free

energy in the anisotropic distribution function is converted to electromagnetic energy,

eventually reaching a point where the available energy for wave growth is completely

depleted. However, this simple picture is complicated by the strong wave amplitudes

and consequent large perturbations to the electron distribution. The Landau and cy-

clotron growth rates were originally derived by linearizing the Vlasov equation, that

is, by assuming that any perturbation to the electron distribution function f is small.

If the original particle distribution anisotropy is sufficiently destroyed, then by defi-

nition the perturbation is not small and the assumptions made to derive the growth

rate no longer apply. Further, we cannot reasonably expect linearity to hold as the

wave amplitude grows arbitrarily large, since large field values should significantly

alter the particle distribution from its equilibrium state. Thus, while our intuitive

expectation is that wave growth must stop at some amplitude, linear Vlasov theory

cannot predict where this termination of growth should happen.

We can gain some insight, however, into the large-amplitude behavior by con-

sidering particle traps. Large wave amplitudes effectively split the particles into two

non-interacting populations: a population trapped in the wave field and an untrapped

population freely gyrating around the background magnetic field, as illustrated in Fig-

ure 2.4. The trapped population, while initially ordered with respect to the phase of

the driving wave, does, with a timescale on the order of a trapping period (Equation

2.42), become mixed in phase space (i.e., disordered) such that the distribution within

the trap effectively thermalizes and the anisotropy is lost. Since the two populations

are still isolated from each other, if the trap is deep, then the presence of the trap

can also act to suppress linear growth at nearby frequencies. In other words, energy

cannot be extracted arbitrarily over the entire available frequency band.

We also note that the number of interacting particles increases along with the
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linear growth rate. At infinitesimal linear growth rates, only particles exactly in res-

onance with the wave, i.e., those for which the parallel velocity equals vres, contribute

to wave growth:

vres =
ω ± ωc
k‖

, (6.3)

where the sign ± is positive for the right-hand circularly polarized whistler mode

wave, and ωc is negative by convention for electrons.

At moderate growth rates, however, particles not exactly in resonance with the

wave can also contribute strongly to linear growth. Mathematically, we can interpret

this result as the action of the singularity in Equation 2.31. In the small-growth limit,

the singularity contributes an arbitrarily large weight to those particles with parallel

velocities within a vanishingly small neighborhood about the resonant velocity vres.

However, as the linear growth rate becomes larger, the singularity shifts further off

the real axis (see Figure 2.3), weighting an ever-larger region of parallel velocities

about vres.

Analytically predicting the saturation amplitude from these principles is unfortu-

nately exceedingly difficult, but the basic physical processes at work can nevertheless

be described. A newly-trapped population of particles becomes phase-mixed (disor-

dered) on a timescale on the order of one trapping period. This disordered population

of particles can no longer coherently exchange energy with the wave and thus cannot

contribute to linear growth. This phase mixing is, fundamentally, what causes sat-

uration in a uniform domain. However, the situation is greatly complicated by the

fact that the wave is growing and thus the depth of the trap is also increasing. As

time progresses, the trap grows larger and an ever-increasing number of particles fall

into the wave potential well. Since these newly-trapped particles are not yet entirely

phase-mixed, they can still contribute to linear growth for a time (on the order of a

trapping period) and linear amplification of the wave continues.

As just discussed, the range of parallel velocities at which particles can significantly

contribute to linear growth increases with the growth rate itself. Linear wave growth

therefore continues until the “width” of the trap in v‖-space eventually grows so large
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that it envelops the entire range of parallel velocities that could have contributed to

linear growth. It is when this stage is reached that linear growth stops, since all of the

particles that could have contributed to wave growth are trapped and phase-mixed.

We can therefore conclude that the ultimate achievable depth of the trap (and thus,

the saturation amplitude) depends on the linear growth rate itself.

6.3.1 Determination of linear saturation amplitudes

Determining the linear saturation amplitude is essential to obtaining correct results

from a chorus PIC simulation. Since chorus simulations must be run for very long

periods of time relative to the cyclotron period, quiet start particle distributions

cannot be used because the number of parallel velocity samples required to maintain

stability over very long time integrations becomes prohibitively expensive. Since we

are therefore restricted to only random samples, we must ensure that the artificial

noise floor introduced by the particle sampling is far enough below the amplitudes of

interest. If the numerical noise level were larger than the saturation amplitude, then

we would have no hope of obtaining a physically meaningful solution.

Given how complicated this situation is to treat analytically, we instead turn to

direct simulation to determine the saturation amplitude on a uniform domain and

use the results as a guide to help choose the appropriate sampling parameters and

linear growth rates for a simulation on a non-uniform domain.

We first assume an infinite, uniform domain and a single frequency of interest,

which makes the system equivalent to a simple 1D periodic domain, one wavelength in

size. On this domain, we sample the unstable distribution function given by Equation

4.15 using quiet start sampling. Quiet start sampling is required because we wish to

determine the saturation level in the absence of any confounding noise effects that

random sampling might introduce. To eliminate the multi-beam instability over the

simulation time of interest, we use a large number of particles in the parallel velocity

direction (on the order of 1000) and relatively few in the perpendicular direction.

We then initialize this system with a small amplitude whistler mode wave. The

complex characteristics (i.e., the polarization vectors) are determined using the pro-

cedure described in Section 2.2.1. Given the characteristics E and H associated with
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this mode, the initial conditions for the cold plasma state vector x at the frequency

s=−jω are found by solving Equation 3.22b for x:

x = C−1(J− DE)

= C−1(↔σ(s)E− DE)

The simulation is then run through the linear growth phase until saturation (when

growth stops). A high-growth example showing these two phases is shown in Figure

6.4. The linear growth phase is clearly visible as an initial period of exponential

amplification (a straight line on this log-scale plot). This phase is followed by satu-

ration which is characterized by mildly-damped long-period amplitude oscillations.

Figure 6.4: Simulation showing linear growth and saturation in an infinite domain. The cold
plasma density N is 37 cm−3 and the background magnetic field is 0.49 µT (at the magnetic
equator at L= 4). The distribution function is given by Equation 4.15 with parameters vth,‖ =
0.1c, vth,⊥= 0.25c, β= 0.6, and Nhot = 0.1N .

In the frequency domain, these long-period oscillations appear as sidebands. The

bandwidth about the center frequency is approximately equal to the trapping fre-

quency (Equation 2.42) if v⊥ is set to some representative perpendicular velocity

(e.g., the perpendicular thermal velocity) and Bw is set to the wave amplitude at

saturation, Bsat:

ωsat '
√
kv⊥|q|Bsat

m
(6.4)
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After saturation is reached, the trapped electrons can still oscillate at the trapping

frequency ωtr for a few periods, modulating the monochromatic input wave, resulting

in sidebands and long-term amplitude oscillations. The oscillations eventually decay

as the trapped population becomes phase-mixed and effectively thermalizes.

As discussed in the previous section, the saturation amplitude is sensitive to both

the hot particle density and the anisotropy parameter A (Equation 2.34), as shown

in Figure 6.5.

Figure 6.5: Simulations showing linear saturation in an infinite domain. The cold plasma
density N is 37 cm−3 and the background magnetic field is 0.49 µT (at the magnetic equator at
L= 4). Left: Effect of varying the hot particle density Nhot as a fraction of the cold density N
at a fixed anisotropy of A= 1.9. Right: Effect of varying the anisotropy at a fixed hot particle
density Nhot = 0.05N .

6.3.2 Discussion

The results in the previous section suggest that the PIC method, when applied to the

chorus growth problem, is only a practical choice for a specific range of parameters,

namely cases with very large linear growth rates. Particle noise is the limiting factor

for most PIC simulations, particularly in electromagnetic wave-dominated problems

such as the one discussed in this chapter. Because the number of PIC particles is

finite and much less than the number of actual particles in the system, the noise levels

are also larger than in nature. While this problem can be mitigated somewhat by

using smoother particle shape functions, doing so only changes the noise by a small

multiplicative factor. The largest gains are realized by increasing the number of PIC
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particles Np, but the reduction in noise is unfortunately relatively meager with the

noise level going down as N
−1/2
p .

In the context of this work, this result means that we must choose between either

using an enormous number of particles or increasing the linear growth rate. Increas-

ing the number of particles reduces the electromagnetic noise levels, increasing the

usable dynamic range of the simulation but at great computational cost. Artificially

increasing the growth rate increases the saturation amplitude, which increases the

usable dynamic range of the simulation without additional cost.

This tradeoff is the fundamental reason that (to date) successful PIC simulations of

chorus growth have all used extremely large linear growth rates. Our technique shares

the same limitations, so our simulations also use artificially large anisotropies and

particle fluxes far larger than those commonly found in the radiation belts. While the

basic physics of the process remains unchanged, the timescales and wave amplitudes

are exaggerated from those found in nature.

6.4 Spontaneous emissions

We now turn our attention to simulated spontaneous emissions. We discretize a one-

dimensional domain along a magnetic field line within a region near the magnetic

equator as in Figure 6.1 and pre-load it with an unstable electron distribution. Our

parameters of interest are the cold particle density N , the equatorial hot particle

density Nhot, the PIC particle density Np, the inhomogeneity exaggeration factor α,

the anisotropy factor A, and the L value. The L value specifies a dipole magnetic

field line by the radial distance (in Earth radii) from the center of the Earth to the

point where the field line crosses the magnetic equator.

The peak linear growth rate γ is derived from the parameters above and can be

specified in natural units (Nepers/s) or in dB/s. For computational tractability, it

is necessary to exaggerate two of these quantities beyond their natural values. First,

we set the inhomogeneity exaggeration factor α= 8 for most simulations. This has

the effect of scaling the inhomogeneity factor S (Equation 2.43) by approximately

the same factor, which in turn would be expected to increase the frequency-time slew

rate of rising emissions by approximately the same factor [Katoh and Omura, 2011].



CHAPTER 6. SIMULATION OF SPONTANEOUS EMISSIONS 166

Second, we must exaggerate either the hot particle density or anisotropy factor in

order to increase the linear growth rates. In both cases, the effect is to increase the

dynamic range of the simulation enough so the features of interest are not swamped

by numerical fluctuations introduced by finite particle sampling. We determine the

linear saturation amplitudes as described in Section 6.3.1 and use this as a proxy for

the behavior of the inhomogeneous system. Heuristically, we have found that good

results are obtained if the quiescent noise levels are approximately 20 dB down from

the linear saturation amplitude at the magnetic equator.

Increasing the linear growth rate, coupled with the fact that we are not modeling

any spreading loss or loss from imperfect guiding along magnetic field-aligned density

irregularities (i.e., ducting loss), means that our typical wave amplitudes are also

much higher than those encountered in nature.

Even with these approximations in place, the typical computation time for a single

simulation is prohibitive, on the order of two weeks on 16 Intel E5530 quad-core CPUs

operating at 2.40 GHz. As such, we limit ourselves to a few representative samples

of interest.

6.4.1 Results

In Figure 6.6, we show the results of a simulation that produces spontaneous chorus-

like rising emissions. The magnetic field inhomogeneity is exaggerated by a factor of

eight (α= 8), which has the effect of scaling the length and time scales of interest

by approximately the same factor. We additionally scale the temporal linear growth

rate in order to preserve the unscaled system’s spatial linear growth rate, that is, if

the unscaled system had a linear growth rate of 100 dB/Mm, then the scaled system

should have a linear growth rate of 800 dB/Mm.

For context, we plot the normalized linear growth rate for Figure 6.6 as a function

of (scaled) distance along the magnetic field line in Figure 6.7. The maximum linear

growth rate at the equator is 6000 dB/s, which in unscaled units is approximately

equivalent to 750 dB/s.

The simulations clearly show many of the characteristic features of chorus emis-

sions, including the rising tones and quasi-periodic behavior. Rising emissions are
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Figure 6.6: Chorus simulation results, showing time-frequency spectrograms at selected dis-
tances h along the magnetic field line. The domain is 1D about the magnetic equator at L= 4.
The magnetic field inhomogeneity (i.e., the spatial dimension) is exaggerated by a factor of 8.
The total length of the domain is 500 km (or 4000 km unscaled). The cold plasma density is 37
electrons cm−3. The hot plasma density is 1.85 electrons cm−3 with anisotropy factor of 1.00,
corresponding to a linear growth rate of 6000 dB/s (750 dB/s in the unscaled system). The total
simulation time extends to approximately 60 ms (500 ms in the unscaled system).

triggered slightly upstream from the equator then amplified as they propagate through

the equator and out of the domain. Our simulations have not yet produced falling

emissions or hooks. We speculate that these phenomena require smaller growth rates

that are difficult to successfully simulate using the PIC technique. We postulate that

a direct Vlasov technique would be successful at simulating such phenomena.

The frequency-time sweep rate of the resulting emissions is approximately 201

kHz/s, which in unscaled units would correspond to a sweep rate of 25 kHz/s. Even in

unscaled units, this is extremely rapid, but is expected given the high equivalent scaled

linear growth rate of 750 dB/s and the correspondingly higher saturation amplitudes

[Katoh and Omura, 2011]. As demonstrated in Section 6.3.1, the PIC method is
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Figure 6.7: Linear growth rates for the scaled system simulated in Figure 6.6 plotted at selected
distances from the magnetic equator. The units are normalized to the cyclotron frequency ωc.
The four selected distances are in scaled units, that is, h= 500 km represents 4000 km in real
space. The linear growth rate drops off rapidly after approximately 1000 km due to the reduction
in the trapped particle flux, but is relatively constant over the simulation domain used to generate
Figure 6.6.

fundamentally noise-limited to these extremely large linear growth rates.

6.4.2 Spectral properties

According to the theory of Omura et al. [2008], particle trapping is expected to play

a dominant role in the development of chorus waves. Trapping is what separates

the electron distribution into two discrete populations, enabling the formation of a

resonant current whose phase (relative to the wave magnetic field) can vary depending

on the local frequency-time slope of the wave field ∂ω/∂t and the local slope of the

background magnetic field ∂B0/∂h (Equation 2.43). This resonant current acts to

preferentially amplify background noise with specific frequency-time characteristics,

forming chorus seeds which are made visible through subsequent amplification as the

seeds propagate away from the generation region.

For such amplification to happen, however, the wave amplitudes must be suffi-

ciently high so that particles can remain trapped by the wave potential well at an

amplitude called the trapping threshold. In a uniform medium, the trapping threshold
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is always met regardless of the wave amplitude, that is, there will always be some

population of particles that can be stably trapped by the wave. If there are gradients

in the background magnetic field, however, the wave amplitude required to stably

trap a population of particles increases [Bell and Inan, 1981]. The trapping threshold

is also dependent on the equatorial pitch angle of the particle (the angle between

the perpendicular component of the particle’s velocity and the background magnetic

field), the wavenormal angle with respect to the magnetic field [Bell, 1984], as well as

the local frequency-time characteristics of the wave of interest [Omura et al., 2008].

For this study, it suffices to say that the trapping thresholds are typically lowest

near the magnetic equator where the local gradients in the magnetic field are zero

and increase sharply away from the equator. This dependence means that the wave

amplitudes required to induce nonlinear effects related to trapping are unlikely to be

encountered except within a few degrees of the magnetic equator. However, at least

some linear amplification is still required to produce wave amplitudes large enough to

initially exceed the trapping threshold and trigger nonlinear effects. Further, chorus

elements are initially triggered near the equator where the trapping threshold is low

but propagate away from the generation region into a region where the required

amplitudes are too large to continue trapping particles. These two observations,

that trapping requires an initial phase of linear growth and that chorus elements are

linearly amplified as they propagate away from the generation region, suggests that

there should be a relationship between the spectra of individual chorus elements and

the linear growth spectrum.

A sample illustrating this relationship is shown in Figure 6.8, which shows the

theoretical equatorial linear growth rate plotted as a function of frequency (left panel)

and the observed time-averaged chorus spectra for forward propagating modes (right

panel), plotted at three points across a domain 1000 km in size.

At h=−500 km (in red), the observed wave spectrum is relatively small in am-

plitude, diffuse, and unstructured, characteristic of numerical particle noise. As the

waves propagate towards the equator (h= 0 km), a wide band of wave energy between

approximately 0.2 and 0.8 (in normalized frequency) develops, peaking at approxi-

mately 0.35. This peak coincides almost exactly with the peak in the linear growth
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rate plotted in the left pane. At low frequencies, between the range of 0.2 to 0.35,

the observed chorus spectrum and the linear growth rate match quite closely, indi-

cating that linear growth is the predominant process driving wave growth within this

frequency band. In the range of 0.35 to 0.80, however, there is a distinct flatten-

ing or broadening of the spectrum, caused by nonlinear amplification and generation

of rising chorus elements. These elements are initiated near the peak in the linear

growth rate (approximately at a normalized frequency of 0.35) and thereafter rapidly

increase in frequency.

At the other extreme of the domain (h= 500 km), the upper end of the spectrum

in the frequency range of 0.5 to 0.8 shows clear evidence of erosion, trending towards

closer agreement with the linear growth rate spectrum shown in the left panel. This

result suggests that as chorus waves propagate away from the generation region near

the equator, linear growth again begins to dominate the amplification process.

Figure 6.8: Comparison of the equatorial linear growth rate and the observed chorus amplitude
spectra at selected locations within a 1000 km domain. The magnetic field is chosen at L= 4. The
magnetic field inhomogeneity is exaggerated by a factor of 8. The cold plasma density is 37 cm−3.
The hot plasma density is 0.2 cm−3 with an anisotropy factor of 2.0. Left: normalized equatorial
linear growth rate (with respect to the cyclotron frequency) plotted as a function of normalized
frequency (again with respect to the cyclotron frequency). Right: time-averaged spectra for
waves propagating in the positive direction, plotted at three positions, at wave initiation (−500
km), at the equator (0 km), and at the other extreme end (500 km).
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6.5 Summary and commentary

While not specifically documented here, we conducted other trial simulations for

a variety of parameters, some successfully producing coherent, rising emissions and

others producing only hiss-like noise. We have made a number of number of interesting

observations from these trials.

First, provided that the hot plasma distribution is sufficiently smooth and the lin-

ear growth rates are sufficiently large, these simulations consistently and reproducibly

generate spontaneous, coherent chorus-like emissions. When the linear growth rates

are smaller, the emissions became more unstructured and incoherent, more closely

resembling hiss emissions instead of chorus emissions, suggesting that both large lin-

ear growth rates and (spatially) smooth hot electron distributions are prerequisites

for coherent chorus generation.

While these simulations are practically limited to relatively large growth rates,

they nonetheless provide useful insight into the chorus generation process. First,

rising chorus emissions seem to be generated predominantly upstream of the magnetic

equator. They are subsequently amplified to detectable levels as they approach and

pass through the equator. The repetition rate and frequency-time sweep rate both

increase as the linear growth rate increases. Further, the linear growth rate can be

used to predict many of the gross features of chorus emissions. The frequency of peak

linear growth coincides with the peak in the chorus spectrum, and the frequency of

peak linear growth is also a fairly reliable predictor of the chorus initiation frequency.

These observations suggest that linear growth plays a strong role both in the initial

amplification of broadband seed waves to the high amplitudes required to initiate

nonlinear growth, and in the subsequent amplification of chorus elements as they

propagate away from the equatorial generation region.

While nonlinear growth and triggering clearly plays a role in this process, these

results suggest that linear growth rate calculations can serve as an excellent predictor

of both the spectra of chorus elements as well as their intensity, sweep rates, and

generation locations.



Chapter 7

Summary and Suggestions for

Future Work

In this chapter we discuss the limitations of this work and make suggestions for future

improvements. We present a number of advances in numerical modeling techniques for

nonlinear and linear plasmas, but a number of open modeling and science challenges

still remain. Plasma physics remains, and will remain for the foreseeable future,

difficult to understand by analytical techniques alone. The sheer variety of phenomena

commonly encountered in space and laboratory plasmas, coupled with the pervasive

presence of nonlinearities that defy analytical treatments, makes numerical modeling

an important component of any investigation into plasma behavior.

We have described the application of a relatively new numerical method, the

discontinuous Galerkin (DG) method, to modeling wave propagation and nonlinear

growth in strongly inhomogeneous plasmas in the near-Earth space environment. The

DG method combines the best features of the finite volume and finite element methods

to yield an accurate and local technique for solving hyperbolic partial differential

equations. While the DG method is well-known in the fluid dynamics communities,

its adoption in other fields has so far been slow. This work aims to demonstrate that

applying DG to wave propagation in plasmas is straightforward and leads to highly

flexible numerical schemes, largely freeing the modeler from the constraints imposed

by lower-order methods on rectilinear grids.

172
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The DG method, however, should not be considered just one technique but a

general approach or philosophy for solving partial differential equations. The DG

cold plasma and DG-PIC hybrid methods described here are by no means unique.

We now discuss some ways in which the technique could be extended or adapted.

7.1 Adaptivity

The scheme described here is static. The modeler must decide in advance, based

on some physical intuition or prior simulations, how many elements per unit space

are required to obtain an accurate solution. While the DG method greatly simplifies

this process by providing a variable order of accuracy, the modeler must nonetheless

decide on a set of parameters and make some educated decision about how much

accuracy is necessary for the given problem.

Adaptivity, either grid-based adaptivity or adaptivity in the polynomial basis,

simplifies this process. The modeler, instead of deciding on a grid, may decide on an

acceptable relative error tolerance, and the scheme adaptively adds elements or in-

creases the polynomial order where required to meet that tolerance. Parallelizing such

a scheme can be quite difficult. First, every data structure must be dynamic, which

is particularly difficult to handle efficiently for implicit time-stepping schemes since

the matrices must be rebuilt and refactored frequently, potentially every timestep.

Second, without some means to balance the load between different computational

nodes, an adaptive scheme may very quickly become unbalanced, wasting resources.

7.2 DG Basis

The DG basis used here, the interpolating polynomial basis, is not the only possible

choice. While it leads to intuitive, efficient schemes, it nonetheless imposes a specific

form that the solutions are expected to take. With prior knowledge about the problem

at hand, however, a more intelligent basis could be chosen. A so-called plane-wave

basis is one such example. Instead of approximating the solution on each element

using interpolating polynomials, we could instead approximate the solution using

a family of plane waves of varying wavelength and direction. For fixed-frequency
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radio wave propagation at VLF in the ionosphere, such an approach could entirely

remove the spatial sampling restriction. For instance, if a section of space contained

ten wavelengths of a wave at a given frequency, we would, at minimum require 20

unknowns per dimension per wavelength in order to even sample the solution, without

even considering convergence or accuracy. With a plane wave basis, on the other hand,

we would only require a direction, a wavelength, and an amplitude.

The disadvantage of such an approach is that a plane wave basis does not span

a continuous solution space very efficiently, meaning that many plane waves may be

required to adequately approximate a solution. Because of this requirement, efficient

schemes using a plane wave basis typically require some way to adaptively choose the

best basis to represent the solution at a given time and given point in space. The

question of how to efficiently select a subset of such a family of plane waves is an

entire dissertation topic in its own right.

7.3 Higher-order fluid moments

A major assumption in the treatment of waves in plasmas is that a plasma consists

of only a cold and hot component. This assumption is typically adequate for radio

propagation in magnetospheric plasmas but fails when plasma heating or coupling

between the two populations becomes significant. A multi-moment approach (Section

2.1.5) can be used to handle temperature effects, but we have not attempted to derive

the DG scheme here. Including temperature effects introduces additional spatial

derivatives and a nonlinear flux term, requiring a reformulation of the numerical

fluxes as well as minor changes to the scheme itself. Additionally, the question of how

to appropriately handle nonlinear fluxes in a high-order DG scheme is still somewhat

of an open research topic. Many of the strong results that exist for finite volume

schemes with nonlinear fluxes do not, unfortunately, carry over directly to DG.

7.4 PIC

The particle-in-cell method is not particularly well-suited to simulating very low-

amplitude, weakly growing waves. Simulating such long-time phenomena requires
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random particle samples in order to avoid a non-physical multi-beam instability. Un-

fortunately, randomly-sampled PIC schemes have very high artificial noise levels,

which can easily swamp quiet phenomena of interest. While PIC is a good choice for

modeling spontaneous emissions, the high noise levels spoil attempts to model trig-

gered emissions, which are narrowband chorus-like emissions initiated by a monochro-

matic pump wave. Hybrid Vlasov or direct Vlasov simulation are the only reasonable

choices to simulate such quiet phenomena over very long timescales. Unfortunately,

direct discretization of even 1D domains is often prohibitively expensive unless adap-

tive techniques are used or other simplifying assumptions are made (e.g., reducing

Maxwell’s equations to a set of narrowband wave equations). Researchers who do

attempt direct discretization of the Vlasov equation typically must use first-order

adaptive finite volume methods. There is no fundamental reason, however, that the

DG method could not be used to solve the conservative form (Equation 2.12) of the

Vlasov equation directly. Using the DG method directly on the 6D Vlasov equation

seems an interesting and fertile area for research. However, many difficult problems

remain: how to efficiently discretize a 6D space, how to choose a suitable basis, how

to handle adaptivity, and how to derive an efficient numerical flux for the Vlasov

equation.



Appendix A

Solution to the inverse cold plasma

dispersion relation

Using the procedure outlined in Section 3.2.1, we rewrite the frequency domain de-

scription relating the cold plasma current Ji to the electric field E for the ith plasma

species as a first-order ODE:

dxi
dt

= Aixi + BiE

Ji = Cixi + DiE

For the sake of example, we will restrict ourselves to a two-component plasma

characterized by conductivity tensors ↔σ1(s) and ↔σ2(s), where the subscript denotes

the plasma species, that is, realization generates the matrices (A1,B1,C1,D1) from the

plasma conductivity tensor ↔σ1(s) for species 1 and (A2,B2,C2,D2) from ↔σ2(s). The

additional vectors x1 and x2 represent the internal plasma states for each species.

Physical meaning can be ascribed to these state vectors by recalling that the plasma

current Ji for a species i is equal to Cixi + DiE.

Making the substitutions ∂/∂k→ jk and ∂/∂ω→−jω, the governing equations
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for a cold plasma are:

jk×H− (C1x1 + D1E)− (C2x2 + D2E) = −jωε0E

jk× E = jωµ0H

A1x1 + B1E = −jωx1

A2x2 + B2E = −jωx2

The extension to any number of species follows straightforwardly. Rewriting the

cross product with k as a matrix-vector product as in Section 2.2.1, the system can

be rewritten as a block matrix equation:
−(D1 + D2) jkK̂ −C1 −C2

jkK̂ 0 0 0

B1 0 A1 0

B2 0 0 A2




E

H

x1

x2

 = ω


−jε0I 0 0 0

0 jµ0I 0 0

0 0 −jI 0

0 0 0 −jI




E

H

x1

x2


The task is to find the nontrivial ω and the associated vectors E, H, x1, and x2 for

which this equation holds. This is a generalized eigenvalue problem of the form:

Av = ωBv

However, it is simpler (and more numerically robust) to solve if we use the fact that B

is diagonal and nonsingular and thus simply inverted, yielding the simple eigenvalue

problem:

(
B−1A

)
v = ωv

Numerically solving this system with an eigenvalue solver, then, solves the dispersion

relation simultaneously for all ω in terms of a given k. As before, an added advantage

is that we also obtain the characteristic vectors E and H associated with these modes.
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Derivation of the upwind flux

B.1 Two-characteristic derivation

We consider a linear system of the form:

∂u

∂t
+∇ · (Au) = 0

Applying the product rule, we rewrite this system as:

∂u

∂t
+ A · (∇u) = g

We drop the additional terms g since they do not directly affect the analysis of the

characteristics. Explicitly:

∂u

∂t
+ Ax

∂u

∂x
+ Ay

∂u

∂y
+ Az

∂u

∂z
= 0

For convenience, we reduce the system to one dimension by projecting along a direc-

tion n̂:

∂u

∂t
+ (n̂ · A)

∂u

∂n
= 0
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Or explicitly:

∂u

∂t
+ (nxAx + nyAy + nzAz)

∂u

∂n
= 0

Defining Â = n̂ · A, we have:

∂u

∂t
+ Â

∂u

∂n
= 0

The characteristics of the system along a direction n̂ are then just the eigenvalues

and eigenvectors of the matrix Â: (λ1, λ2) and (v1,v2).

The upwind flux is derived by solving a Riemann problem at the boundary between

two elements. The Riemann problem is a type of initial value problem that begins

with an initial discontinuity and then asks for the solution at some t= t0 later. This

is usually illustrated graphically in the x-t plane as shown in Figure B.1. The solution

Figure B.1: Graphical illustration of the two-characteristic Riemann problem. The initial
conditions are discontinuous at x= 0 and t= 0. The initial value left of the discontinuity is u−

and right of the discontinuity is u+. At t> 0, two discontinuities will propagate to the left and
the right at the characteristic velocities λ1 and λ2.

to the Riemann problem is found by solving:

λ1(u∗ − u−) = n̂ · f∗ − n̂ · f−

λ2(u+ − u∗) = n̂ · f+ − n̂ · f∗

If the equations are still hyperbolic, the intermediate flux n̂ · f∗ is a good estimate of

the value at the interface between two elements. Solving the first equation for n̂ · f∗,
we have:

n̂ · f∗ = n̂ · f− − λ1(u− − u∗)
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Suppose we draw a horizontal line in Figure B.1 at some time t= t0. Starting from the

left, we are in a region of u−. Progressing rightward, there is a jump in the solution

from u− to u∗ when we encounter the mode traveling at velocity λ1. Progressing

further rightward, there is another jump as the solution changes from u∗ to u+ when

we encounter the second characteristic traveling at velocity λ2.

The Riemann problem can be solved by observing that the jump magnitudes are

proportional to vi, the eigenvector associated with the eigenvalue λi. Thus, we need

to find the unknown jump magnitudes (α1, α2) by solving:

(u+ − u∗) + (u∗ − u−) = α1v
−
1 + α2v

+
2

Or, since the sum collapses:

u+ − u− = α1v
−
1 + α2v

+
2

The superscripts on v reflect the fact that the characteristics themselves may be

different on either side of the boundary. The unknown intermediate field u∗ is found

by starting at the left and summing rightward over each of the jumps until we reach

the intermediate solution u∗:

u∗ = u− + α1v
−
1

B.2 Solution for the Maxwell system

For the Maxwell system, if u = (Ex, Ey, Ez, Hx, Hy, Hz), then the matrix Â is:

Â =



0 0 0 0 nz/ε −ny/ε
0 0 0 −nz/ε 0 nx/ε

0 0 0 ny/ε −nx/ε 0

0 −nz/µ ny/µ 0 0 0

nz/µ 0 −nx/µ 0 0 0

−ny/µ nx/µ 0 0 0 0


(B.1)
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The nonzero eigenvalues (λ1, λ2, λ3, λ4) of A are (−c−,−c−, c+, c+), where c is the

speed of light in the medium, (µε)−1/2. We have sorted the eigenvalues into left-

propagating modes to the left of the interface (superscript “−”) and right-propagating

modes to the right of the interface (superscript “+”), where in general we assume that

|c−| 6= |c+|. The eigenvectors (with an arbitrary scale factor) associated with these

eigenvalues are:

v−1 =
(
nxnyZ

−, −(n2
x + n2

z)Z
−, nynzZ

−, −nz, 0, nx
)

v−2 =
(
−nxnzZ−, −nynzZ−, (n2

x + n2
y)Z

−, −ny, nx, 0
)

v+
3 =

(
−nxnyZ+, (n2

x + n2
z)Z

+, −nynzZ+, −nz, 0, nx
)

v+
4 =

(
nxnzZ

+, nynzZ
+, −(n2

x + n2
y)Z

+, −ny, nx, 0
)

The eigenvectors can be clearly interpreted as the two polarizations of waves propa-

gating in the +n̂ direction and two in the −n̂ direction. Proceeding as in the previous

section, we solve the following system to find the unknown jump magnitudes αi:

u+ − u− = α1v
−
1 + α2v

−
2 + α3v

+
3 + α4v

+
4

The intermediate values uα, uβ, and u∗ are found as before by summing over the

weighted characteristics from left to right or from right to left. The jumps and fluxes

are as before, but now with four jumps:

−c−(uα − u−) = n̂ ·
(
fα − f−

)
−c−(u∗ − uα) = n̂ · (f∗ − fα)

c+(uβ − u∗) = n̂ ·
(
fβ − f∗

)
c+(u+ − uβ) = n̂ ·

(
f+ − fβ

)
Combining all this information, we can solve for n̂ · f∗. After a great deal of manipula-

tion, we finally arrive at our solution for the upwind flux along the normal, which we
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have written in the form required by the strong form of the DG scheme, n̂ · (f − f∗):

n̂ · (fE − f∗E) =
1

ε−(Z+ + Z−)

(
n̂ (n̂ · [E])− [E]− Z+n̂× [H]

)
(B.2)

n̂ · (fH − f∗H) =
1

µ−(Y + + Y −)

(
n̂ (n̂ · [H])− [H] + Y +n̂× [E]

)
(B.3)

The bracketed notation [u] denotes the field difference, [u] = u−−u+. Note that an

unsuperscripted f is the flux interior to the element.

B.3 Solution for the augmented Maxwell system

For the Maxwell system augmented with the hyperbolic divergence cleaning field

(Equation 4.7), if u = (Ex, Ey, Ez, Hx, Hy, Hz, φ), then the matrix Â is:

Â =



0 0 0 0 nz/ε −ny/ε χnx

0 0 0 −nz/ε 0 nx/ε χny

0 0 0 ny/ε −nx/ε 0 χnz

0 −nz/µ ny/µ 0 0 0 0

nz/µ 0 −nx/µ 0 0 0 0

−ny/µ nx/µ 0 0 0 0 0

χnx χny χnz 0 0 0 0


(B.4)

The eigenvalues (λ1, . . . , λ7) of Â are (−χ,−c−,−c−, 0, c+, c+, χ), where χ is the

speed of the divergence cleaning mode. We have sorted the eigenvalues into left-

propagating modes to the left of the interface (superscript “−”) and right-propagating

modes to the right of the interface (superscript “+”), where in general we assume that

|c−| 6= |c+| but χ has the same value everywhere. The eigenvectors (with an arbitrary
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scale factor) associated with these eigenvalues are:

v−1 = (−nx,−ny,−nz, 0, 0, 0, 1)

v−2 =
(
nxnyZ

−, −(n2
x + n2

z)Z
−, nynzZ

−, −nz, 0, nx, 0
)

v−3 =
(
−nxnzZ−, −nynzZ−, (n2

x + n2
y)Z

−, −ny, nx, 0, 0
)

v4 = (0, 0, 0, nx, ny, nz, 0)

v+
5 =

(
−nxnyZ+, (n2

x + n2
z)Z

+, −nynzZ+, −nz, 0, nx, 0
)

v+
6 =

(
nxnzZ

+, nynzZ
+, −(n2

x + n2
y)Z

+, −ny, nx, 0, 0
)

v+
7 = (nx, ny, nz, 0, 0, 0, 1)

We continue as in Appendix B.2, yielding the upwind fluxes:

n̂ · (fE − f∗E) =
1

ε−(Z+ + Z−)

(
n̂ (n̂ · [E])− [E]− Z+n̂× [H]

)
+ (B.5)

1

2
χn̂ ([φ]− n̂ · [E])

n̂ · (fH − f∗H) =
1

µ−(Y + + Y −)

(
n̂ (n̂ · [H])− [H] + Y +n̂× [E]

)
(B.6)

n̂ · (fφ − f∗φ) =
1

2
χ (n̂ · [E]− [φ]) (B.7)

Note that an unsuperscripted f is the flux interior to the element.
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Runge-Kutta coefficients

C.1 Low-storage RK4

Following are the coefficients for a fourth-order low-storage RK method due to Car-

penter and Kennedy [1994]. The algorithm is given in Chapter 3, Equation 3.48.

a1 = 0 b1 = 1432997174477
9575080441755

c1 = 0

a2 = − 567301805773
1357537059087

b2 = 5161836677717
13612068292357

c2 = 1432997174477
9575080441755

a3 = −2404267990393
2016746695238

b3 = 1720146321549
2090206949498

c3 = 2526269341429
6820363962896

a4 = −3550918686646
2091501179385

b4 = 3134564353537
4481467310338

c4 = 2006345519317
3224310063776

a5 = −1275806237668
842570457699

b5 = 2277821191437
14882151754819

c5 = 2802321613138
2924317926251

C.2 IMEX RK4

Following are the coefficients for an implicit-explicit RK method described in Kennedy

and Carpenter [2003]. Specifically, we use their ARK4(3)6L[2]SA method, a 6-stage,

fourth order IMEX RK method with a singly diagonally implicit stage. The algorithm

is given in Chapter 3, Equation 3.51.

The coefficients are given in matrix form, so that aij is the (i, j)th entry of the

matrix and bj is the (j)th entry of b.
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C.2.1 Explicit stage coefficients

a[ex] =



0 0 0 0 0 0
1
2

0 0 0 0 0
13861
62500

6889
62500

0 0 0 0

− 116923316275
2393684061468

− 2731218467317
15368042101831

9408046702089
11113171139209

0 0 0

− 451086348788
2902428689909

−2682348792572
7519795681897

12662868775082
11960479115383

3355817975965
11060851509271

0 0
647845179188
3216320057751

73281519250
8382639484533

552539513391
3454668386233

3354512671639
8306763924573

4040
17871

0


C.2.2 Implicit stage coefficients

a[im] =



0 0 0 0 0 0
1
4

1
4

0 0 0 0
8611
62500

− 1743
31250

1
4

0 0 0
5012029
34652500

− 654441
2922500

174375
388108

1
4

0 0
15267082809
155376265600

− 71443401
120774400

730878875
902184768

2285395
8070912

1
4

0
82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4


C.2.3 Common coefficients

b =
[

82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4

]
c =

[
0 1

2
83
250

31
50

17
20

1
]
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Bécache, E., S. Fauqueux, and P. Joly (2003), Stability of perfectly matched layers,

group velocities and anisotropic waves, Journal of Computational Physics, 188, no.

2, 399–433.

Bell, T. F. (1984), The nonlinear gyroresonance interaction between energetic elec-

trons and coherent VLF waves propagating at an arbitrary angle with respect to

the Earth’s magnetic field, Journal of Geophysical Research, 89, 905–918.

Bell, T. F. (1986), The wave magnetic field amplitude threshold for nonlinear trapping

of energetic gyroresonant and Landau resonant electrons by nonducted VLF waves

in the magnetosphere, Journal of Geophysical Research, 91, 4365–4379.

Bell, T. F., and U. S. Inan (1981), Transient nonlinear pitch angle scattering of

energetic electrons by coherent VLF wave packets in the magnetosphere, Journal

of Geophysical Research, 86, 9047–9063.

Bell, T. F., U. S. Inan, M. Platino, J. S. Pickett, P. A. Kossey, and E. J. Kennedy

(2004), CLUSTER observations of lower hybrid waves excited at high altitudes

by electromagnetic whistler mode signals from the HAARP facility, Geophys. Res.

Lett, 31 (6), 6811.

Bell, T. F., U. S. Inan, D. Piddyachiy, P. Kulkarni, and M. Parrot (2008), Effects of

plasma density irregularities on the pitch angle scattering of radiation belt electrons



BIBLIOGRAPHY 188

by signals from ground based VLF transmitters, Geophysical Research Letters, 35,

19,103.

Bérenger, J.-P. (1994), A perfectly matched layer for the absorption of electromagnetic

waves, Journal of Computational Physics, 114, 185–200.

Bilitza, D., and B. W. Reinisch (2008), International Reference Ionosphere 2007:

improvements and new parameters, Advances in Space Research, 42, 599–609.

Birdsall, C. K., and A. B. Langdon (1985), Plasma physics via computer simulation,

McGraw-Hill.

Bittencourt, J., and M. Chryssafidis (1994), On the IRI model predictions for the

low-latitude ionosphere, Journal of Atmospheric and Terrestrial Physics, 56 (8),

995–1009.

Bortnik, J., R. M. Thorne, and N. P. Meredith (2008), The unexpected origin of

plasmaspheric hiss from discrete chorus emissions, Nature, 452, 62–66.

Bortnik, J., L. Chen, W. Li, R. M. Thorne, N. Meredith, and R. B. Horne (2011),

Modeling the wave power distribution and characteristics of plasmaspheric hiss,

Journal of Geophysical Research, 116.

Brunini, C., A. Meza, F. Azpilicueta, A. Diaz, and M. A. van Zele (2004), A new

ionosphere monitoring technology based on GPS, United Nations Programme on

Space Applications, 15, 51–64.

Burtis, W. J., and R. A. Helliwell (1976), Magnetospheric chorus - Occurrence pat-

terns and normalized frequency, Planetary and Space Science, 24, 1007–1024.

Bush, V., and H. Hazen (1931), The differential analyzer: a new machine for solving

differential equations, Journal of the Franklin Institute, 212 (4), 447–488.

Carpenter, D. L., et al. (2002), Small-scale field-aligned plasmaspheric density struc-

tures inferred from the Radio Plasma Imager on IMAGE, Journal of Geophysical

Research (Space Physics), 107, 1258.



BIBLIOGRAPHY 189

Carpenter, M. H., and C. A. Kennedy (1994), Fourth-order 2N-storage Runge-Kutta

schemes, Nasa TM, 109112 (TM 109112).

Chapman, S., and V. C. A. Ferraro (1931), A new theory of magnetic storms, Ter-

restrial Magnetism and Atmospheric Electricity (Journal of Geophysical Research),

36, 77–97.

Cheng, Z., and S. A. Cummer (2005), Broadband VLF measurements of lightning-

induced ionospheric perturbations, Geophysical Research Letters, 32, L08,804.

Cheng, Z., S. A. Cummer, H.-T. Su, and R.-R. Hsu (2007a), Broadband very low fre-

quency measurement of D region ionospheric perturbations caused by lightning elec-

tromagnetic pulses, Journal of Geophysical Research (Space Physics), 112 (A11),

A06318.

Cheng, Z., S. A. Cummer, H.-T. Su, and R.-R. Hsu (2007b), Broadband very low fre-

quency measurement of D region ionospheric perturbations caused by lightning elec-

tromagnetic pulses, Journal of Geophysical Research (Space Physics), 112 (A11),

A06,318.

Chevalier, M. W., and U. S. Inan (2004), A PML using a convolutional curl operator

and a numerical reflection coefficient for general linear media, IEEE Transactions

on Antennas and Propagation, 52, 1647–1657.

Chevalier, T. W., U. S. Inan, and T. F. Bell (2008), Terminal Impedance and Antenna

Current Distribution of a VLF Electric Dipole in the Inner Magnetosphere, IEEE

Transactions on Antennas and Propagation, 56, 2454–2468.

Chevalier, T. W., U. S. Inan, and T. F. Bell (2010), Fluid simulation of the collisionless

plasma sheath surrounding an electric dipole antenna in the inner magnetosphere,

Radio Science, 45, RS1010.

Chew, W. C., and W. H. Weedon (1994), A 3D perfectly matched medium from

modified Maxwell’s equations with stretched coordinates, Microwave and Optical

Technology Letters, 7, 599–604.



BIBLIOGRAPHY 190

Church, S. R., and R. M. Thorne (1983), On the origin of plasmaspheric hiss - Ray

path integrated amplification, Journal of Geophysical Research, 88, 7941–7957.
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