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Theory of Electromagnetic Cyclotron Wave
Growth in a Time-Varying Magnetoplasma
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The time-dependent growth rate for parallel propagating electromagnetic cyclotron waves is derived for
a magnetoplasma which is characterized by a time dependent compressional perturbation superimposed on
an equilibrium configuration. Such perturbations are commonly observed in the Earth’s magnetosphere as a
consequence of resonant field line oscillations, solar-wind disturbances, and other phenomena. The time de-
pendencies of the magnetic field, thermal plasma density, energetic particle distribution function, and resonance
condition are first related through a single dimensionless time parameter b(t) using the ideal MHD assumption.
For cases in which the particle distribution can be described by F(a, E) = f (E)sin®E)q , the time dependent
wave growth rate is then given by v ~ ~o(l + T") where ~p is the equilibrium growth rate and T'(}) is a
function of the equilibrium parameters and the time parameter b. The term |T| is generally small compared
to 1, and the effect is a small modulation of the equilibrium growth rate by I". If the particle distribution
is locally near marginal stability, however, |I| is large compared to 1, and the growth rate modulation can
be much larger than for a distribution which is not near marginal stability. The results suggest that particle
populations which are near marginal stability may be strongly influenced by perturbations in the magnetic field
and plasma. Marginally stable distributions may thus play an important role in magnetospheric dynamics as
well as determination of radiation belt characteristics.

1. INTRODUCTION

Quasi-linear theories of wave-particle interactions have been
widely applied to describe equilibrium wave and particle distri-
butions throughout the magnetosphere [Kennel and Engelmann,
1966; Kennel and Petschek, 1966; Lyons and Thorne, 1973; Etch-
eto et al., 1973; Huang et al., 1983; Church and Thorne, 1983;
Cornilleau-Wehrlin et al., 1985; Korth et al., 1985; Schulz and
Davidson, 1988]. The equilibrium condition results from a bal-
ance between wave growth and particle scattering. An anisotropic
particle distribution causes wave growth; the waves in turn scat-
ter particles, reducing the anisotropy and the growth rate. The
equilibrium description is valid as long as time scales for tem-
poral changes in the magnetoplasma are long compared with the
time scales of the interaction process. The limiting time scale
is in general established by the particle lifetime, which is typi-
cally on the order of a few minutes [Kennel and Petschek, 1966;
Cornilleau-Wehrlin et al., 1985].

While equilibrium quasi-linear theories have been successfully
applied to many problems, the magnetosphere is ultimately a dy-
namic medium. Magnetic field and plasma fluctuations, caused by
phenomena such as solar wind driven disturbances, substorms, and
local instabilities, are commonly observed on time scales ranging
from less than one second to several minutes or longer. If the
time scale of a given fluctuation is shorter than the time scales as-
sociated with local wave-particle interactions, the equilibrium de-
scription is not fully valid. Present quasi-linear theories thus may
not accurately predict wave and particle distributions. This paper

describes a modification to the electromagnetic cyclotron wave
growth rate commonly used in quasi-linear theories to provide for

inclusion of time-dependent perturbations in the magnetoplasma.
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Energetic particles which undergo resonance with waves of fre-
quency w satisfy the resonance condition
w + 3]|Q;|

k

where v is the particle parallel velocity, k is the wave number,
; is the gyrofrequency of species j, and s specifies the order of
the resonance. For parallel propagating electron and ion cyclotron
waves, only the s = —1 principal cyclotron resonance contributes
to the interactions.

The growth rate for parallel electromagnetic cyclotron waves
is given by [Kennel and Petschek, 1966; Etcheto et al., 1973]
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is the critical anisotropy. The upper and lower signs correspond to
the right (R) and left (L) wave modes respectively. The terms F}
and 9F; /0« are evaluated subject to E) = Eg;, where Eg; is
the resonant energy, prior to integration. Note that the summation
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in equation (3) runs over all particle species while that in equa-
tion (2) includes only those species which satisfy the resonance
condition for the particular wave mode. The distribution function
F; is specified in terms of the particle energy E' and the pitch
angle o for the particular species. For ; € w < [Qe|, the R
mode corresponds to electron cyclotron or whistler waves. For
w < £;, the L mode corresponds to ion cyclotron waves. At low
frequencies (w < €;), the R mode becomes the magnetosonic
mode, and the L. mode becomes the Alfvén mode.

For the two cyclotron modes, the plasma is locally unstable
when the anisotropy A; is greater than the critical anisotropy 4; ,
leading to wave growth [Kennel and Petschek, 1966]. Enhanced
wave growth causes increased particle scattering and thus modifi-
cation of the particle distribution; this feedback process is gener-
ally described through use of a diffusion equation. The coupling of
the growth and diffusion processes constitutes the quasi-linear de-
scription of wave-particle interactions. In a bounded plasma such
as the magnetosphere, parallel propagating waves will be unstable
in a global sense only if the path-integrated gain is greater than
the integrated loss along the path and at the reflection points.

A few attempts have been made at applying the Kennel-
Petschek quasi-linear theory to situations in which the ambient
magnetic field amplitude has a time-varying component. Coroniti
and Kennel [1970] addressed the role of hydromagnetic waves in
controlling electron precipitation by introducing a small sinusoidal
magnetic field fluctuation into the Kennel-Petschek theory. They
found that such fluctuations can strongly modulate the whistler
mode wave amplitudes, leading to observable precipitation pulsa-
tions. Perona [1972], using a similar approach, added a pertur-
bation which was linear in time in an effort to explain observed
precipitation enhancements during SC.

In this paper, the effect of a time-dependent perturbation in the
magnetoplasma on the wave and particle populations is investi-
gated using the Kennel-Petschek approach. Perturbations in the
cold plasma density, energetic particle distribution, and resonance
condition are calculated based on the ideal MHD assumption given
an arbitrary compressional magnetic field perturbation. The nec-
essary modifications for extending the work to include nonparallel
propagation and changes in the magnetic field direction are also
discussed. The result of the derivation, an analytical form of
the time-dependent cyclotron growth rate for constant frequency
waves, provides significant insight into how wave and particle
populations respond to a time-dependent magnetoplasma,

2. APPROACH

Consider a general magnetoplasma which can be described in
terms of a time-dependent perturbation superimposed on an equi-
librium configuration. The magnetoplasma is characterized by a
set of parameters (e.g., magnetic field strength, thermal plasma
density) whose time dependence can be related through a singie
time-dependent variable given the ideal MHD assumption. Let
the magnetic field amplitude be described by

B@)=Bo(1+b) @

where By is the equilibrium amplitude and b(2) is a dimensionless
parameter containing the time dependence. The perturbation is as-
sumed to be entirely compressional for this analysis; the effect of
changes in field direction will be discussed in section 9. The ther-
mal plasma and energetic plasma may also be described in terms
of their characteristics in the equilibrium environment multiplied
by functions of b. It is thus possible to write the time-dependent
growth rate as ¥ = vo(1 +I'), where v is the equilibrium growth
rate and I'(d) is a function of the plasma and magnetic field pa-
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rameters in the equilibrium environment and the time parameter
b. The goal of this work is to determine the function I'.
Throughout the derivation, notation is critical for distinguishing
between the equilibrium and time-dependent environments. The
notation used is illustrated in Figure 1. The distribution function
and corresponding variables associated with the equilibrium envi-
ronment are denoted with a subscript 0 while those in the time-
dependent environment have no subscript. Additional notation is
required to distinguish between resonance conditions satisfied in
the equilibrium and time-dependent environments. Variables cor-
responding to particles which satisfy the resonance condition in
the equilibrium environment are denoted with overbars (e.g., Eq);
those which satisfy the resonance condition in the time-dependent
environment are denoted with double overbars (e.g., Eo).

Flo, E)

Folag, Eg)

a b

Fig. 1. Schematic representation of the variables used to describe the
particle distribution functions. The curves represent the surfaces in (o, E)
space which characterize the distributions in the equilibrium (Fp) and
time-dependent (F') environments. The points labeled 1 and 2 correspond
to the portions of the distributions which satisfy the resonance condition.

We first show that the time-dependent expressions for the par-
ticle pitch angle «, energy E, and distribution function Fj(a, E)
can be written in terms of the equilibrium quantities ag, Ep,
Fy (a0, Ep), and the time parameter b._These relations are then
used to derive an expression for Fj(a, E), the distribution func-
tion for resonant pamcles in the_time-dependent formulation, in
terms of the quantities Fj F; (oo, Ep) and b (see Flgure 1). By
assuming that FJo(ao, Ep) >~ Fjo(eo, Eo), F,o(ao, Eg) can be
related to Fj,(eo, Ep) through a Taylor expansion. A general
form of the dxstnbuuon function is then assumed to facilitate thu
evaluation of several integrals; the parameters characterizing the
function do not appear in the final solution. Finally, an expression
for the time-dependent growth rate is obtained which is written as
a function of equilibrium parameters and the time parameter b.

The calculation is done at constant wave frequency rather than
using a fixed value of normalized frequency w/|Q;| in order to
maintain the identity of a wave packet as €); changes with time.
For a given wave frequency w, the resonance condition will in
general be satisfied by physically different particles for different
values of b.

3. TIME-DEPENDENT ForRM
OF PHYSICAL PARAMETERS

Using the time-dependent magnetic field, the gyrofrequency
and the plasma frequency for each species are
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Q; =Qjo% =Q;,(1+b) ®)
wp; = uwp; (1 + )} ©

where the frozen-in flux condition has been used based on the
assumption of ideal MHD.

For this problem, we will consider only the contribution of beta-
tron acceleration in calculating changes in the particle distribution
(a rigorous discussion of the interaction between energetic parti-
cles and hydromagnetic waves has been given by Tamao [1984]).
Assuming conservation of the first adiabatic invariant and ignor-
ing the change in v)|, the pitch angle and the total particle energy
can be written

¢1)

E= %m (0"02 +v1 021 +b)) = Eo(1 +bsin®ag)  (11)

The refractive index for parallel propagating cyclotron waves
in a cold multicomponent magnetoplasma is given by [Stix, 1962]
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Using this form of the refractive index, the wave number can be
written

k=22 = kol +N)E (15)
and the resonant energy is
Er;j = Erj (1 +Vj) (16)
where
1
1—(1+N)2 £b);
ORI il an

1+Mi
The distribution functions are related through the Liouville the-
orem by

Fj(a, E) = Fj (o, Eo) (18)

where o and E are calculated from o and Ejp using equations
(10) and (11).

4. THE TIME-DEPENDENT DISTRIBUTION
FOR RESONANT PARTICLES

For resonant particles, the time-dependent distribution function
for each species can be written in terms of the equilibrium distri-
bution as

Fj(a, ) = F; o0, Eo) (19)
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Expanding Fj, in a Taylor series about Eg = Ey gives
- 25
Fjolao, Ep) ¢ Fj (oo, Eo) + (Eo — EO)a_Eo (20)
Eo=Eo

to first order in (Fg — Fo). The convergence and accuracy re-
quirements for this approximation are discussed in section 6. The
derivative 9F} /3a can be written in terms of equilibrium quan-
tities by expanding in the form
0F; _ 0Fj4 dag

da dagy da

9Fjy dEy
dEy da
Rewriting time-dependent quantities in terms of equilibriuin

equivalents and introducing the Taylor expansion form of Fj,
we have

(1)
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where the derivatives are evaluated at Ey = Eg.
For resonant particles in the time-dependent formulation, we
evaluate F' and 9F; /3« at Eg = Ep using

ERrjqo

(Eo — Eo) = (Bo — Eo) = K v

(23)
where
Ki=(1+V;® -1 24

We thus have the desired forms of the time-dependent distribution
function and its derivative,
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5. THE TIME DEPENDENT GROWTH RATE

The anisotropy function (equation (5)) for particles with parallel
energies given by Egp; = Ep; can now be written as
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In order to evaluate the integrals, we introduce a distribution
function of the form

Fjo(eo, Eo) = fo(Boksin0E0 g

This distribution is sufficiently general to allow satisfactory mod-
eling of distributions such as those measured by Cornilleau-
Wehrlin et al. [1985] while providing the explicit pitch angle
dependence which is.needed to obtain an analytical result. The
explicit pitch angle dependence allows the partial derivatives of
Jijo and ap with respect to Eg and ag to be changed to full
derivatives with respect to ag using the chain rule. The integrals
can then be evaluated using integration by parts. After somewhat
lengthy algebra, the anisotropy A;(ERr;) (equation (5)) becomes

(28)

= (2b + K; (245, - 3b — 1)A;
j Aj 1+ —
2(1-K; — K;Aj)A;j
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21 - Kj — K;Aj )A;
the resonant flux 5; (ER ;) (equation (4)) is
T w1+ K 1K~ K] G0)
and the critical anisotropy A; (equation (6)) is
—-w
Ajc—w_:h‘)m —AJCO(I_LJ) (31)
where the anisotropy terms A;, and A;, are defined as
% 8F, % Sina
Ajl = pw v 0’0/2/ pvw F}da (32)
% sina 0 F, % sma
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Y
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The multiplicative factor A(w) (equation (3)) is
A=Ayl +R) 35)
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The growth rate (equation (2)) can now be written
Y~y (1+T) 37)
where the modulation index I'(d) is
3
)= Z A+b)X1+RX1+K;)2A+GjH—1  (38)

1es j
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and
G = 5(=3Kj +2b — 3bK;)A; +(Lj + Kj — K;Li)Aj 4
A AJ c0
-,K,a +b)(A“ +4;,)
AJ c0
T2 KGR — KLy VA5 Aj g + PO KD
Aj — Aj c0

Note that f;; and a;y(E) do not appear explicitly in these
equations. Moreover, since the growth rate equation is linear
in Fj, any linear combination of functions of the type used in
equation (28) is acceptable for describing the particle distribution.
No small amplitude assumptions have been used other than those
directly implied by the Taylor series convergence and accuracy
conditions; the distribution function energy dependence must be
specified in order to identify these assumptions.

In general, |T'| is small compared with 1, and the resulting
growth rate is the equilibrium growth rate modulated by the term
T'. If, however, |T'| is large compared with 1, the growth rate can
be approximated by

v 2yl (40)

and is directly proportional to . This occurs when R, K; > 1 or
when G; > 1. The first condition corresponds to the appearance
of finite growth rates at the equilibrium cyclotron (w = ;) and
lower hybrid (w = Qr fr) frequencies for which the equilibrium
growth rates are zero. The second condition, which is a conse-
quence of E ~ Aj ,» implies that the time-dependent growth
rate may be much larger than the equilibrium growth rate at a
fixed frequency when the anisotropy is nearly equal to the critical
anisotropy. In the limit [4; ~ cal_— 0. however, the growth
rate remains finite because the term AJ AJ 0 in 49 cancels the
denominator of G;. This result indicates that the plasma can be-
come unstable even when the equilibrium anisotropy A; is less
than the critical anisotropy A; ..

6. VALIDITY AND ACCURACY

The validity of the analysis and the accuracy of the result are
determined by the accuracy of the Taylor series approximation.
The truncation error for the Taylor series for species j is

1 E
Rpn=—= [ F®VE)E - 2)ds
nl /g
0
where n is the order of the last term retained. For the n =1
approximation used here, we require

41)

oF(z)

3E (E - Ep)

E=Eq

|R1] <

42)

in order to get an accurate result.

For a single-species particle distribution with a power law en-
ergy dependence given by E~™, the accuracy condition has the
particularly simple form

1-mb—(1+8)™"™

p= m(l +b)

<1 43)

A plot of the function P for different values of m is shown in
Figure 2. The plot indicates that accurate approximations can be
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P
0.2 0.4 0.6 0.8

Fig. 2. The accuracy criterion for the Taylor series expansion plotted as 2 fanction of the magnetic perturbation p. Curves are
given for five values of the spectral index M. The accuracy criteriont requires P

made for relatively large values of [b|. For 8™ = 2 distribution,
for example, P is less than 0.2 over the rangeé —03<b< 0.6.
The theory is thus not strictly limited 10 small magnetoplasma
perturbalions.

7. SMALL VALUE APPROXIMATION

The growth rate simplifies considerably under the approxima-
don |A; b« This condition is not very restrictive since most
permrbaﬁons of interest have magnitudes much smaller than the
equilibrium field. Nevertheless, the unsimplified result given by
equation (37) can be used when the small value condition is not
satisfied. Figure 3 shows |A ,-bl plotted yersus b for five values of
{he normalized wave frequency. At2 frequency of w0l = 0.5,
for example, 2 i
petic field penurbat'\ons of several tens of percent of the total field
assuming that the energy depe
is such that the Taylor series condition is also satisfied.

Under these conditions, the modulation index T'(b) can be writ-
ten as

() = fb (44
where
5= @+ DAj = 165) — DAico
1es § Aj - AJ c0
; J— —_
ax; — DAjy + A _24; Ajp+]
’Z( ) X 31 J2 J c0 Jl) (45)

Aj —Ajco

for R mode waves and

220D\ 5 22+
(i) - (o 265) e

14X § )
p= 7 — A
1es j ‘e ic0
o }+Ajp = 2ot +1 6
Aj—Ajco
for L mode waves. At low frequencies (@ LI A= 1 and

B can be simplified further. Note that B is 2 function of the

equilibrium yariables only and contains no time dependence.

8. NUMERICAL EXAMPLE: A
SIMPLE DISTRIBUTION FUNCTION

The properties of the time-dependent growth rate can be illus-

trated by choosing & simple form for the distribution function and

calculating the growth rate. Consider 8 distribution of electrons
specified by
Fj (a0, Eo) = Eo~™sin’ @0 @n
-

0.8

~

ABS(ADP
0.2 0.4 0.8

0.5

Fig.3. Thetem L plouted as 2 function of the magnetic penurbaﬁon
p. Curves are given for five values of the normalized frequency w/1Qok
The validity of the small value approximation requires |A; gt

rameter @ is
put it should be remembered that doing s0 1
spectrum has no frequency dependence. F
is given by

A+ DAj ot 1

o 48)
Aj— Ajco

g = 12(1»,- _1)— @\ —Dm

Figure 4 shows plots of B versus E-— A; , for four values of the
spectral index m with curves parametric {n normalized frequency
w /1ol The curves for different yalues of m ar® qualitatively
similar. For large values of 14j — Aj b B is approximalely
constant with an asymptotic fimit of g =503} —1)-(@xj—1m-
For A; = Aj o nowever, 181 becomes Very large due 10 the
singularity at Aj = Aj oo

The effect of (his singularity on the growth rate is illustrated in
Figure 5 for m = 2. The figure shows the ime-dependent growth
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-10.
//

I

-0.8 o. 0.8 1.6
A—Ac

Fig. 4. The modulation coefficient 3 plotied as a function of the difference between the anisotropy A; and the critical anisotropy
Aj ¢ for four values of m. The curves are parametric in normalized frequency w/|Q, |-

rate v (given in units of |Q,-0|'1Tj'; these units were chosen because
they are independent of frequency and equilibrium growth rate
and are thus the same for each of the plots) and the growth rate
modulation index 8b plotted versus A_j— Aj ., for magnetic field
perturbations given by b =0.1, 0.01, —0.01, and —0.1. The curves
in each plot are parametric in normalized frequency w/[€2; o|. The
dashed lines correspond to the equilibrium growth rates.

A number of differences between the time-dependent and equi-
librium growth processes can be ascertained from these figures.
Most notably, positive growth rates now occur for equilibrium
anisotropies which are less than the critical anisotropy. This effect
is more pronounced for larger values of m and larger perturba-
tions b. For large values of |A_J - Aj col' the modulation index is
approximately 0, corresponding to a small modulation of the equi-
librium growth rate. As the difference between A_J and A; , is
reduced to 0, the modulation index approaches infinity. For exam-
ple, for m =2, b = 0.1, and w/|Q;¢| = 0.5, the modulation index
for Aj — Aj ., = 0.01 is 8 times that for A; — A; = 0.1. For
fixed values of the equilibrium growth rate, much larger fluctua-
tions in growth rate can occur for a marginally stable distribution
than for an unstable distribution.

9. DIsCcUSSION

9.1 Frequency and Time Scale Limitations

The validity of this analysis is restricted by limitations on the
perturbation frequency spectrum and duration. The frequency lim-
itation, specified by wp < |€;], is a consequence of the ideal
MHD assumption. In a practical sense, this limitation is not very
restrictive since higher frequencies correspond to ion and electron
cyclotron waves which have amplitudes that are generally negli-
gible compared with the ambient field. The duration limitation

is implied by the assumption that modification of the distribution
function by the enhanced wave scattering is negligible. To prop-
erly calculate the time evolution of the wave amplitude and diffu-
sion coefficient over time scales long enough for the distribution
to be modified, the time-dependent growth rate (equation (37))
must be solved simultaneously with a similarly modified form of
the diffusion equation as specified in the quasi-linear formalism.
This approach is necessary to provide a complete solution of the
problem.

9.2 Nonparallel Propagation and Field Direction Changes

The limitation to parallel propagating waves is very helpful be-
cause it allows for an analytical representation of the growth rate.
Parallel waves are also of particular interest in magnetospheric
physics. Nevertheless, modification of the analysis to include
nonparallel propagation is straightforward. For a wave normal
angle 8, the refractive index (equation (12)) is calculated using
the wave normal dependent form of the refractive index equation
[e.g., Stix, 1962], and the resonant energy (equation (16)) is multi-
plied by sin2|0|. The introduction of nonparallel propagation also
requires that the growth rate equation be modified to include the
8 # —1 resonances, although in many cases of interest the s = —1
term still dominates. The effect of a magnetic perturbation which
includes a field direction change can be interpreted as a compres-
sional perturbation accompanied by a change in the wave normal
angle 6.

The introduction of a nonzero wave normal angle, however,
implies that the wave will not remain associated with a particular
field line unless it is guided by ducting. In order to determine the
wave normal angle as well as the other quantities in the growth rate
equation as a function of time, explicit knowledge of the spatial
dependence of the magnetic field and plasma is required. The
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Fig. 5. The growth rate ~ and growth rate modulation index Ab for an m = 2 distribution function. The curves are plotted
as a function of the difference between the anisotropy A; and the critical anisotropy A, ., and are parametric in normalized
frequency w/|S, |. The dashed lines correspond to the equilibrium growth rates. Plots are shown for magnetic perturbations
specified by b =0.1, 0.01, —0.01, and —0.1. The growth rate is given in units of |Q, 7.

growth rate along a given ray path can then be determined using
ray tracing techniques and evaluating the equilibrium parameters
separately at each point in space.

In the particular case of ducted propagation, the waves are
guided approximately along field lines by field-aligned density
enhancements or depletions, and there is an upper limit on the

wave normal angle [Helliwell, 1965]. During a general magnetic
field perturbation, the waves remain associated with the same field
line, and the limiting wave normal angle is unchanged. If the den-
sity properties of the duct are known, the exact change in wave
normal angle may be determined using ray tracing techniques;
alternatively, the limiting wave normal angle may be used to pro-
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vide an upper limit. In most cases of interest, the assumption of
strictly parallel propagation provides a good approximation since
wave normal angles are small.

9.3 Properties of the Growth Rate

The form of the time-dependent growth rate (equation (37)) is
not a surprising result. Indeed, previous time-dependent analyses
of quasi-linear theory [Coroniti and Kennel, 1970; Perona, 1972]
have assumed a similar relationship and proceeded to solve the
coupled set of growth and diffusion equations. This derivation
provides a theoretical justification for the relationship and estab-
lishes the analytical form of T".

The existence of a special case for which || 3» 1 is less ob-
vious, however. Situations which fulfill the required condition
A_j & Aj,, can be ascertained from the form of the equation
for the equilibrium growth rate (equation (2)). In equilibrium,
the wave growth rate is determined strictly by the requirement
that the path-integrated growth rate equals the loss rate once the
conditions for instability have been satisfied. The loss rate is es-
tablished by processes external to the interaction, including iono-
spheric reflection, propagation, and Landau damping. The growth
rate is matched to the loss rate through the particle scattering
process which can modify both the trapped particle flux and the
anisotropy. One scenario in which the condition A_] ~ Aj co s
satisfied occurs when the diffusion process, in driving the growth
rate toward the marginal stability condition, forces the anisotropy
close to the critical value. Cornilleau-Wehrlin et al. [1985] have
presented GEOS 1 and GEOS 2 measurements of wave and par-
ticle distributions which indicate that the anisotropy can be con-
trolled by wave-induced diffusion when the instability condition
is satisfied. In the cases they examined, the frequency depen-
dence of the anisotropy A__, closely matched that of the critical
anisotropy A; ., and the difference between A;j and Aj,, de-
creased as the particle flux increased. Large trapped fluxes may
thus provide the conditions under which E ~ Aj co is most
likely. In this scenario, the bandwidth of the modulation, corre-
sponding to the wave frequencies for which the plasma is near
marginal stability, can be large. An alternate scenario which also
satisfies A; o Aj o is a band-limited wave spectrum for which
the plasma is unstable only up to some fraction of the relevant
particle gyrofrequency. A wave spectrum of this type occurs if
the equilibrium anisotropy is independent of frequency. In such
cases, the condition I & Aj,, is necessarily obtained over a
small bandwidth around the upper cutoff frequency of the wave
spectrum at which E = Aj o

9.4 Impact on Wave and Particle Populations

In the magnetosphere, particle populations for which I ~
Aj o is satisfied may be strongly influenced by perturbations in
the magnetic field and plasma. The large variations in growth
rate could significantly change the wave amplitude, resulting in
modification of the particle precipitation rate and consequently
the trapped radiation flux. If perturbations occur commonly over
time scales short compared with the time required for the distri-
bution to reestablish an equilibrium, the equilibrium state would
exist only infrequently. Marginally stable distributions could thus
play an important role in magnetospheric dynamics as well as
determination of radiation belt characteristics.

9.5 Experimental Evidence

There is experimental evidence that wave growth changes of
the type described in this paper occur as a result of the magne-
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tospheric compressions observed during sudden commencements
(SC). At geosynchronous altitude, the SC compressional perturba-
tion is typically 10 — 30% of the total field and can be somewhat
larger in particular cases. Changes in the characteristics of both
ULF [Tepley and Wentworth, 1962; Oguti and Kokubun, 1969]
and ELF/VLF [Morozumi, 1965; Gail et al., 1990b; Gail and
Inan, 1990] wave emissions are commonly observed during SC.
In an effort to explain the precipitation enhancements that usu-
ally accompany this wave growth, Perona [1972] developed a
simple time-dependent quasi-linear theory for SC using an ap-
proach similar to that of Coroniti and Kennel [1970]. A time-
dependent quasi-linear mechanism involving ion gyroresonance
has also been proposed to explain ULF emissions during SC [Ol-
son and Lee, 1983]. In Perona’s theory, the SC compression was
modeled by adding a small linear magnetic perturbation of the
form B = By(1 + 6t), where § is chosen such that B corresponds
to the new equilibrium value at ¢ = T (T was chosen to be 100
s near noon and 200 s near midnight). The growth rate was de-
termined to have the form v = yo(1 + §t)A/ Ay, a result which
is consistent with the growth rate obtained in section 7 for par-
ticular but reasonable combinations of m, A_j, and A; cor Using
this time-dependent growth rate and the diffusion equation, the
electron diffusion coefficient was then calculated as a function of
time. Despite the simplifying assumptions used in the theory, the
predicted wave amplitude has growth characteristics which are re-
markably similar to those of observed ELF/VLF emissions during
SC [Gail et al., 1990a]. In particular, the predicted growth rate of
1.5 dB/s, total growth of 30 dB, and growth duration of 20 s were
found to be comparable to the observed values of 0.3-2.7 dB/s,
12-29 dB, and 10-20 s. In addition, the Perona theory predicts the
occurrence of 3-4 cycles of damped oscillations with period 35-40
s as the wave amplitude reaches its maximum value, similar to
the observed 3-4 cycles of 60-90 s period oscillations.

9.6 Magnetospheric Applications

A time-dependent quasi-linear theory has potential applications
to many commonly observed magnetospheric phenomena which
are associated with dynamic processes. In addition to the SC dis-
cussed in section 9.5, potential applications include quasi-periodic
(QP) ELF/VLF emissions and triggering of chorus emissions.

QP emissions may be divided into several types depending on
their spectral structure [Sato and Fukunishi, 1981}, but it is gen-
erally believed that at least some QP types result from modulation
of the wave-particle interaction by micropulsations [e.g., Sato and
Fukunishi, 1981; Lanzerotti et al., 1986; Tixier and Cornilleau-
Wehrlin, 1986]. The compressional component of micropulsations
is typically 1 — 3% of the total field, but strongly compressional
pulsations can also occur with amplitudes as large as 10 — 30% of
the total field (M. J. Engebretson, private communication, 1989).
To explain the cormresponding precipitation pulsations, Coroniti
and Kennel [1970] developed a theory in which the micropulsa-
tions were modeled by a small sinusoidal compressional perturba-
tion of the magnetic field. The work presented here is qualitatively
consistent with the Coroniti and Kennel theory, but also indicates
that the growth rate could be directly proportional to the micropul-
sation amplitude when the plasma is near marginal stability. Such
a result could lead to much larger modulation effects in the wave
amplitude and precipitation flux than were obtained by Coroniti
and Kennel using the normal growth rate dependence.

The possibility that very large changes in growth rate can re-
sult from small changes in the magnetic field provides a potential
explanation for triggering of spontaneous emissions or chorus.
Spontaneous emissions are commonly believed to result from the
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coherent whistler instability [Helliwell, 1967] in which electrons
are phase bunched by the wave field and radiate coherently. Both
theoretical [Helliwell and Inan, 1982] and experimental [Helliwell
et al., 1980] work indicates that a minimum wave amplitude (trig-
gering threshold) is required of an input signal in order to initiate
the coherent instability. Occasional large, short duration increases
in the wave growth rate resulting from small fluctuations in the
magnetoplasma could increase the amplitude of incoherent waves
above the triggering threshold, although additional requirements
(such as coherence bandwidth [Raghuram et al., 1977; Chang et
al., 1980]) may need to be met in order to initiate the coherent
instability. The mechanism provides a deterministic alternative
to stochastic fluctuations [Koons, 1981] or power line radiation
[Helliwell et al., 1975; Luette et al., 1977; Luette et al., 1979] as
a trigger for spontaneous chorus emissions.

10. SUMMARY AND CONCLUSIONS

An equation has been derived describing the time-dependent
growth rate for parallel propagating electromagnetic cyclotron
waves in a magnetoplasma which is characterized by a time-
dependent compressional perturbation superimposed on an equi-
librium configuration. For the éeneral class of distributions de-
scribed by F(a, E) = f(E)sin®®)a, the growth rate is given by
v = 19(1 +T), where g is the equilibrium growth rate and I'(b)
is a function of the equilibrium parameters and a dimensionless
time parameter b(t). The term |I| is generally small compared to
1, and the effect is a modulation of the equilibrium growth rate
by the term I. However, when the particle distribution is locally
near marginal stability, |I7| is large compared to 1, and the growth
rate is directly proportional to T. The resulting growth rate mod-
ulation can be much larger than for a distribution which is not
near marginal stability, implying that marginally stable distribu-
tions may play an important role in magnetospheric dynamics as
well as determination of radiation belt characteristics.
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