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Space-Time Evolution of Whistler Mode
Wave Growth in the Magnetosphere
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A new model is developed to simulate the space-time evolution of a propagating coherent
whistler mode wave pulse in the magnetosphere. The model is applied to the case of single
frequency (2-6 kHz) wave pulses injected into the magnetosphere near L ~ 4, using the VLF
transmitting facility at Siple Station, Antarctica. The mechanism for growth is cyclotron resonance
between the circularly polarized waves and the gyrating energetic electrons of the radiation belts.
Application of this model reproduces observed exponential wave growth up to a saturated level.
Additionally, the model predicts the observed initial linear increase in the output frequency versus
time. This is the first time these features have been reproduced using applied wave intensities
small enough to be consistent with satellite measurements. The center velocities of the electrons
entering the wave pulse are selected in a way which maximizes the growth rate. The results
show the importance of the transient aspects in the wave growth process. The growth established
as the wave propagates toward the geomagnetic equator results in a spatially advancing wave
phase structure due mainly to the geomagnetic inhomogeneity. Through the feedback of this
radiation upon other electrons, conditions are established which result in a linearly increasing

output frequency with time.

1. INTRODUCTION

The main focus of this paper is the modeling and simula-
tion of the growth of ducted, single frequency whistler mode
waves through cyclotron resonance with radiation belt elec-
trons. The growth of single frequency waves is commonly
seen to occur on signals from ground based, VLF (very low
frequency) transmitters, including signals from the Stan-
ford University VLF transmitter at Siple Station, Antarc-
tica (L ~ 4) [Helliwell and Katsufrakis, 1974, 1978]. The
Siple transmitter and the geomagnetically conjugate receiv-
ing station at Roberval, Quebec (now at Lake Mistissini,
Quebec), are used to investigate a broad range of topics.
While this paper is concerned with single frequency waves,
the results can be applied to signals of slowly varying fre-
quency [Helliwell, 1970; Carlson et al., 1985] and even to
broadband ‘noise-like’ signals [Helliwell et al., 1986].

Two characteristic measures of wave growth are growth
rate and saturation level. The growth itself can be some-
what irregular but in many cases is exponential, with growth
rates between 25 dB/s and 250 dB/s, and 20-35 dB of total
growth to saturation [Stiles and Helliwell, 1977]. Satellite
data on the unamplified signal strength are limited and no
in situ measurement of the amplitude of a ducted signal has
yet been made. Satellite based field strength measurements
of nonducted Siple signals place the input field strength at
L ~ 4.5 between 0.01 pT and 0.3 pT [Inan et al., 1977;
Rastani et al., 1985]. The actual field strength necessary
for wave growth within a duct is of interest since there is a
power threshold below which temporal wave growth is not
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observed [Helliwell et al., 1980]. Since temporal growth of
a coherent signal can be reduced when a noisy interfering
signal is added [Raghuram et al., 1977], it could be that a
critical signal-to-noise ratio must be exceeded before tempo-
ral wave growth is possible. Another possible explanation
is related to the nonlinear dynamics of the wave particle in-
teraction. Several theoretical works have assumed a priori
that only electrons trapped in the wave potential well con-
tribute significantly to the wave growth [Das and Kulkarni,
1975; Dowden et al., 1978; Nunn, 1971, 1974, 1984; Rouz
and Pellat, 1978; Sudan and Ott, 1971]. The trapping re-
gion is confined and centered on the geomagnetic equator
by the inhomogeneity. If a minimum trapping region length
were required for wave growth to occur, then this would
imply a threshold mechanism since the physical length of
the trapping region increases with increasing wave intensity.
However, the satellite based field strength measurements
and ground based experiments suggest that trapping may
not be required for wave growth to occur. In one threshold
study, Helliwell et al. [1980] found that as little as 1 W of ra-
diated power from the Siple Station VLF transmitter could
stimulate growth and triggering. Computer simulations also
indicate that both trapped and untrapped electrons can con-
tribute significantly to wave growth [Omura and Matsumoto,
1982]. A possible saturation mechanism related to the onset
of trapping [Helliwell and Inan, 1982] results in a saturation
intensity consistent with both the total growth and applied
field measurements.

Experimental measurements of whistler mode wave
growth have produced data on both the amplitude and phase
evolution of a received signal. While the spectral charac-
teristics of these signals have been known for many years,
most studies have examined only signal amplitudes versus
frequency and time and have not considered the signal’s
phase. Recent work has begun to include phase analysis
[Paschal, 1988; Paschal and Helliwell, 1984; Dowden et al.,
1978; Rietveld et al., 1978; Rietveld, 1980]. Phase mea-
surements of signals from VLF transmitters [Dowden et al.,
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1978; Paschal, 1988; Paschal and Helliwell, 1984] show that
pulses with temporal growth exhibit a relative phase ad-
vance with time and thus a positive frequency offset from
the transmitted signal, often starting at the very beginning
of the pulse.

One of the pulses analyzed by Paschal and Helliwell
[1984] is reproduced in Figure 1 which shows the dynamic
frequency-time spectrum, amplitude in a narrow band cen-
tered on the carrier, and phase versus time relative to the
carrier. In addition to an exponential wave growth (36 dB/s)
up to a saturated level, Figure 1 shows an initial frequency
offset (1.1 Hz), advance in phase during wave growth, and
the triggering of a rising emission. The instantaneous fre-
quency relative to the applied frequency is plotted in Fig-
ure 2 and indicates that prior to triggering, the phase ad-
vance versus time is nearly parabolic since the frequency
increase rate is nearly constant at ~ 10 Hz/s. At the point
of triggering, the rate of frequency increase jumps up to the
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rising emission df/dt of ~ 700 Hz/s. Measurements made
of a few more pulses which showed exponential wave growth
accompanied by a nearly constant rate of frequency increase
gave pre-triggering rates of frequency increase as high as 60
Hz/s.

Cyclotron resonance as a mechanism for whistler mode
wave growth was first suggested by Brice [1963] and Dungey
[1963] and has been the basis for most theoretical treat-
ments and simulations which followed. A review of the early
ideas is given by Helliwell [1965] and a review of attempts to
understand coherent effects in whistler mode wave-particle
interactions prior to 1979 is given by Matsumoto [1979].
Helliwell [1967] proposed a phenomenological theory for
the growth and triggering of coherent whistler mode waves
which utilized both nonlinear currents and the inhomogene-
ity. Helliwell’s theory included a nonlinear saturation mech-
anism and linked the frequency evolution to the inhomogene-
ity of the geomagnetic field. Figure 3 summarizes the role
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Fig. 1. Displays of a 1 second, 2 kHz Siple pulse received at Roberval (from Paschal and Helliwell [1984]). The
spectrogram (bottom panel) shows a triggered rising emission. The magnitude plot (top panel) indicates a 36
dB/s growth rate up to a saturated level after ~ 20 dB of total growth. The phase relative to the transmitted
phase (middle panel) shows an initial frequency offset of 1.1 Hz from the transmitted signal. The phase advance
with time, prior to triggering, is nearly parabolic indicating a linear increase in frequency with time.
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Fig. 2. Frequency versus time for the pulse in Figure 1 calcu-

lated from the slope of the phase curve. Prior to triggering, the
frequency increases nearly linearly with time at ~ 10 Hz/s. At
the point of triggering, the rate of frequency increase jumps up
to the rising emission df /dt of ~ 700 Hz/s.

of the inhomogeneity, indicating that coherent VLF waves
propagating along the geomagnetic field will interact signif-
icantly with the energetic electrons around the geomagnetic
equator if the signal is constant in frequency. However, if
the wave frequency is increasing or decreasing with time,
then the interaction region will be located downstream or
upstream of the geomagnetic equator, respectively. Second
order resonance, described in the next section, is the mech-
anism governing this relationship between a signal’s df/dt
and the interaction region location. Helliwell’s theory has
proved to be a useful tool for interpreting experimental re-
sults [Carlson et al., 1985; Dowden, 1971a,b; Dysthe, 1971;
Helliwell, 1970; Helliwell et al., 1986a,b].

Most other studies of gyroresonance interaction were per-
formed within the framework of a linear or quasilinear
approach (for reviews see Liemohn [1974], or Matsumoto
[1979]) with the most notable being the work by Kennel and
Petschek [1966]. However, there is general agreement that
the emission triggering process involves both the nonlinear-
ity and the inhomogeneity [Matsumoto, 1979)]. Several theo-
retical works and models of gyroresonance interaction have
specifically included the geomagnetic inhomogeneity [Bell,
1984, 1986; Bell and Inan, 1981; Carlson et al., 1985; Das
and Kulkarni, 1975; Dowden, 1971a,b; Dowden et al., 1978;
Dysthe, 1971; Helliwell, 1967, 1970; Helliwell and Inan,
1982; Helliwell et al., 1986a,b; Karpman et al., 1974a,b,
1975; Matthews et al., 1984; Matsumoto and Omura, 1981,
1983; Murdoch, 1983; Neubert et al., 1987; Nunn, 1971, 1974,
1984; Omura, 1985; Rathmann et al., 1978; Roux and Pellat,
1978; Sudan and Ott, 1971; Vomvoridis and Denavit, 1979,
1980; Vomuoridis et al., 1982]. In order to gain more insight
or test theories, a few researchers have turned to computer
simulation. Some whistler mode wave growth simulation ef-
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forts include, in some form, the geomagnetic inhomogeneity
[Omura, 1985; Omura and Matsumoto, 1982; Rathmann et
al., 1978; Vomvoridis and Denavit, 1980].

While most treatments attempt to explain the overall
frequency characteristics of amplification and emissions,
Paschal and Helliwell [1984] noted that only those by Nunn
[1974], Dowden et al. [1978], and Helliwell and Inan [1982]
discuss the phase behavior. Each of these results appear
to be consistent with the general phase advance during the
growth of a transmitted pulse. However, both Nunn and
Dowden require unsubstantiated loss mechanisms for sat-
uration. While Nunn and Helliwell and Inan discuss the
phase evolution in detail, Nunn produces an initial phase
decrease before phase advance, and Helliwell and Inan pro-
duce an initial phase advance followed by phase retardation.
The data, on the other hand, exhibit a generally advancing
phase during wave growth and prior to the termination of
the applied pulse.

The primary objective of the simulation and modeling
presented here is to identify the aspects of the wave-particle
interaction that lead to the features described above and
shown in Figure 1. These features include exponential wave
growth, saturation, and a linear increase in frequency with
time, all resulting from applied wave intensities of less than
0.3 pT.

The wave growth model developed in this paper is quite
similar to the feedback model of Helliwell and Crystal[1973]
and to the long-time-scale algorithm [Omura and Mat-
sumoto, 1982; Rathmann et al., 1978]. Unique to this model
are a few approximations including some afforded by using
an applied wave frequency half that of the equatorial elec-
tron gyrofrequency. Also unique to this model is the use of a
time varying energetic electron distribution designed to com-
pensate for the necessity to artificially limit the distribution.
Previous simulation efforts have limited the energetic elec-
trons by including mono velocity electrons, a Maxwellian
distribution of electroms, or only trapped electrons. One
problem with mono velocity or Maxwellian distributions is
that their center velocities have been fixed, causing the wave
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Fig. 3. Sketch of ducted VLF propagation from Siple Station,
Antactica, and Roberval, Quebec (from Helliwell [1986]). As sug-
gested by Helliwell [1967] the interaction region is centered on
the equator for constant frequency signals (represented by the
sketched waveform), and upstream or downstream of the equator
for falling or rising frequency signals, respectively.
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to drift out of resonance with the electrons as the frequency
of the wave changes. An ideal solution would include a range
of electrons so broad that the wave would always resonate
with electrons without “seeing” the edges of the distribution.
However, for a short wave pulse (0.25 s) propagating through
the equatorial region (2000 km), the range of electron veloc-
ities might have to be greater than 10% of the center ve-
locity of the distribution (in terms of the electron velocity
component parallel to the earth’s magnetic field). The com-
putation time required makes such a simulation prohibitive.
As a compromise, the center velocity of the distribution in
our model varies in accordance with second order resonance
theory in order to stay in resonance with the wave.

The next section reviews the basic theory of whistler
mode wave propagation, wave-particle interactions, and
wave growth. Section 3 develops the model used in sec-
tion 4 to simulate whistler mode wave growth. And finally,
in section 5, the main results are summarized. A more de-
tailed development of the work presented in this paper can
be found in Carlson [1987] including the computer program
source code used for the simulations.

2. THEORY

In the following, a model of the inner magnetosphere is
developed upon which group velocity, phase velocity, wave
number, gyrofrequency, plasma frequency, and other param-
eters are based. These parameters are used in the equations
of motion, to obtain electron trajectories, transverse cur-
rents, and stimulated whistler mode radiation. The numer-
ical techniques employed are also discussed.

Whistler Mode Wave Propagation

The model of the magnetospheric medium is chosen to
represent a typical ducted path for signals from the Siple
Station transmitter. The waves will be assumed to be lon-
gitudinally propagating with the wave vector, k, parallel to
the static magnetic field Bg. All wave and medium param-
eters are assumed to be uniform over any plane perpendic-
ular to the static magnetic field (i.e. one-dimensional). The
strength of the static magnetic field versus position z, along
the field is taken to be the same as a dipole geomagnetic field
having an equatorial radius four times the earths’ radius
(L = 4). While a one-dimensional, z dependent static mag-
netic field does not satisfy Maxwell’s equation V-B =0,
the effects of this approximation upon wave propagation and
electron motion can be neglected. The z dependence of the
cold plasma density is calculated using a ‘DE-1’ diffusive
equilibrium model [Angerami and Thomas, 1964] with an
equatorial number density of Neq = 400 el/cma.

For ducted whistler mode propagation, the magneto-
spheric medium is believed to vary so slowly that the WKB
approximation [Budden, 1961] can be used. Accordingly, in
the equations for wave propagation employed here, we as-
sume that the WKB approximation is valid. Even for the
wave growth calculations, when the wave frequency becomes
a function of space and time, the wave is assumed to prop-
agate as a single frequency wave. Expressions for the wave
number (assuming fp >> fj), phase velocity, and group
velocity, are respectively

_ 2nfp f
== Ta-7 (1)
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vp=2L (2)
vg =2"p(1 _f/fH) 3)

where f, fy, and fp are the wave, electron gyrofrequency
and plasma frequency respectively, and c is the free-space
velocity of light. While %, vp, and vy all depend upon z, the
(2) has been dropped for convenience in the above expres-
sions and in many of the following expressions. The wave
field components are also functions of z. It is assumed that
the wave energy is confined to the duct and is uniformly
distributed over any cross-section of the duct. For a dipole
field, the cross-sectional area of a field aligned duct is in-
versely proportional to the dipole field intensity. For this
model, the wave intensity associated with a wave group, in
the absence of wave growth or damping, is related to the
equatorial wave intensity of the same group by [Inan et al.,

1982]
_ kfg
By = Buegy /—keq fim ()

where the ‘eq’ subscripts denote equatorial values. While
this factor is included, its effect is neglegible for the condi-
tions encountered in this paper.

Energetic Electron Distribution Function

The magnitude of currents and stimulated fields calcu-
lated from electron trajectories depend upon the number of
energetic electrons involved in the interaction and on the
distribution of these electrons in velocity and configuration
space. Although there are several ways to represent this in-
formation [Roederer, 1970], the velocity space distribution
function f(v,a) is well suited to wave-particle interaction
studies.

The velocity space distribution function f(v,a) has di-
mensions of m~® s3 ster™! so that the number density of
electrons is determined by integrating over velocity space.
The velocity space volume element, given in terms of veloc-
ity, pitch angle, and gyrophase, is v?sinadvdadd. Since the
distribution function is assumed to be uniform in gyrophase,
integration over @ yields 2x. Thus, the number density of
electrons at any point in space is

N(z)= 21r//f(v,a)'vzsina dvda (m—s) (5)

Choosing the limits of integration in (5) gives the number
density within the selected region of velocity space.

It is convenient to work only with the equatorial distribu-
tion function f(v, ceq) rather than having to know f(v,) at
every point along the field line. An adiabatic transformation
of (5) involves only sin ada and gives

N(z)= %a/ / £(v,aeq)

(6)

) v2 sin(2aeq)
\/JTHeq — farsin? Qeq
The model for f(v, aeq) used in this paper is [Inan, 1977]
f(v, aeq) = Av™"g(aeq) (M

where A and n are constants and g(aeq) represents the pitch

d’vdaeq
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angle dependence. Observed distributions are convention-
ally described using the differential energy spectrum which
has units m™2 s7! ster™! keV~}. The constant A is related
to the differential energy spectrum ®p, of electrons at a
given energy Ey (keV) and with o = 90° by

2 5
m Yo 2
A= <I>E0 (_mcz) (—702 — I)EO”/

where mc? is the rest energy of the electron and vy = (1 —
v? /cz)_l/ 2 is the relativistic constant associated with Ejp
[Chang, 1983; Chang and Inan, 1983].

(8)

Dynamics of Near Resonant Particles

The magnetically trapped particles which make up the
hot plasma, gyrate about the geomagnetic field while bounc-
ing between conjugate mirror points. Compared to the size
of the wave-particle interaction region, any cross-field drifts
are believed to be insignificant and are neglected. Thus,
the electron motion can be described by simple gyro motion
centered on a single field line. For more details of charged
particle motion see Hess [1968), Roederer [1970], and Artsi-
movich and Lukyanov [1980].

A framework useful for describing electron motion is de-
fined in Figure 4 in which the electron velocity vector v is
expressed in a cylindrical coordinate system, with velocity
components perpendicular, v, and parallel, v, to the ge-
omagnetic field By, gyrophase angle 6, and pitch angle a.

The whistler mode wave propagating in the same direc-
tion as the geomagnetic field is right-hand circularly polar-
ized while counterstreaming electrons trace out left-handed
helices. Cyclotron resonance occurs when the Doppler-
shifted wave frequency seen by an electron matches the elec-
tron gyrofrequency. In the vicinity of this resonance, an
electron sees a slowly varying or stationary wave field. As-
suming longitudinal propagation, the cyclotron resonance

Fig. 4. Sketch showing the relationship of the electrons’ veloc-
ity vector to the geomagnetic field Bg. Defined are the total
velocity v, pitch angle o, parallel velocity Y| perpendicular ve-
locity v, and gyrophase §. Due to the v xBg force F, the
electron gyrates about the geomagnetic field at the gyrofrequency
fr = (2n)~1dg/dt.
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condition is

v"zvR=2—:-(fTH—f) 9

where v is the relativistic constant and vy is the resonance
velocity. For the cases considered here, ¥ =~ 1 since the
energies of resonant electrons are typically < 50 keV.

Figure 5 defines some angular relationships, at any point
in space, useful for describing cyclotron resonant wave-
particle interactions. All angles are positive in the direction
of wave rotation. B;, and E;, represent the components of
the single frequency, externally applied field which has prop-
agated into the interaction region. B, is governed only by
cold plasma propagation making it useful as a reference wave
structure. The total wave field, By and Ey, makes an angle
¥ with the reference field. Each electrons’ cyclotron phase
¢ is measured from —By .

4 B, @V, z

O B,, k n

I

Fig. 5. Sketch defining the angular relationships, at any point
in space, between the waves, electrons, and currents. B;, and
E;, are the applied wave field. B, and E,, are the total wave
field vectors. Each electrons’ cyclotron phase ¢ is measured from
—B,,. Associated with the net perpendicular velocity of a group
of electrons Xv,, is the resonant current Jg. Jp and Jg are
the components of J g parallel and perpendicular to By,, respec-
tively. AB; is the sheet current radiation associated with, and
orthogonal to, Jg. The angle between B, and E,, deviates from
90° by 60 and is related to the instantaneous growth rate.

In the interaction model developed by Helliwell [1967] the
length of the wave-particle interaction region, for a fixed fre-
quency wave, maximizes at the equator. To visualize this,
assume adiabatic electron motion. When d¢/dt = 0, the
resonance condition (9) is satisfied and the wave and the
electron are said to be in first order resonance. The effective
length of resonance (i.e. the length of the region over which
¢ varies by 7 [ Helliwell, 1970]) maximizes when d2¢/dt* =0,
a condition known as ‘second order resonance’. The second
order resonance location depends upon the local change in
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wave frequency with time, 8f/8t. In other words, second or-
der resonance occurs if the variation of the electron parallel
velocity v) along the electron orbit is matched by the vari-
ation of vg. For constant frequency signals, second order
resonance occurs with electrons resonant at the magnetic
equator. Electrons with Yleq > YReq experience first order
resonance on either side of the magnetic equator while, for
electrons with v)¢q < VReq, (9) is not satisfied anywhere. A
more general description of second order resonance is given
by Helliwell, [1970] or Carlson et al., [1985].

Changes in wave amplitude or frequency are a direct re-
sult of Lorentz wave forces altering the particle distribution,
resulting in a net particle current and hence radiation. The
equations of motion for an electron with a center of gyra-
tion fixed to a single field line and including the Lorentz
wave force terms are

ad = Q’B_,,J_sinqg _ 0.’ of
dt m 2fg 0z

dvi _ _eBu ('v" + vp)sin¢ + 2L 9n

d ~  m 2fy 0z

(10a)

(10b)

4 _ k(vR - v") - %(v" + vp) c:i¢ - % (10¢)
dz
dt

Except for the addition of dy/dt, these equations are sim-

ilar to those derived elsewhere [Dysthe, 1971; Inan, 1977].

In order to compute electron trajectories, these equations

must be integrated. The method used in this paper is a

fourth-order predictor-corrector method developed by Ral-

ston [1978]. This method, employed by Inan [1977], was
chosen to have both reasonably small error and numerical
stability.

By including the di/dt term, the equations of motion
become valid for a time dependent wave structure so long
as the wave frequency and wave number change slowly. In
such a case, time and position dependent offsets Aw, Ak,
and Awvp arise relative to the reference or unperturbed quan-
tities w, k, and vp. The phase velocity offset is neglected
since it appears only as a small correction to the perpen-
dicular Lorentz force terms in equations (10b) and (10c) or
equivalently,

(10d)

=

v +vp +Avp o) +vp (11)
The expression for d¢/dt, including Aw and Ak is
9 oy - (w+Aw) - (k+Ak)
dt I 12
B cos¢ (12)
- (1)" + ‘Up) oL

which is exactly equation (10c) since

dy 0y  OYdz

dt ~ ot (13)
The previous discussion neglects the effect of Avp upon
wave propagation since it is assumed that all wave energy
propagates at the reference phase and group velocities. How-
ever, given two waves at slightly different frequencies, an
observer moving at the phase velocity of one of the waves
experiences a rotating wave field. To derive a general expres-
sion for this phase rotation, start with the following WKB
description of the wave phase
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z

€(w,2,t) = jwdt - /kdz
0

0

(14)

Converting this into the frame of the phase velocity of a
reference wave gives

Eref(“” z) = §(w, z,1)

dt ="F(wrefyz)

2
= / (i — k) dz
Vp
0
Taking the derivative of equation (15) with respect to w
gives the relative phase delay which, when multiplied by the
frequency separation, approximately gives the amount of ac-
cumulated phase rotation of the second wave that the ob-

server would record as a function of position and frequency
separation,

(15)

dere f
st oo
0

Figure 6 shows the relative phase delay df,.s/dw as a
function of the normalized frequency and parametric in Neq
for waves which have propagated across the interaction re-
gion (taken to be from 250 to —250 km at L = 4). The rel-
ative phase delay is converted into a phase shift with units
of degrees/Hertz in order to make it easier to apply. For
example, if f/fgeq = 0.375, Neq = 400 el/cma, and the
frequency separation is 10 Hz, the observed relative phase
shift would be ~ 33°. Thus, to minimize the error associated
with propagating all energy at frequency-independent group
and phase velocities, the applied frequency should be either
near the equatorial half gyrofrequency, where vp = vy, or
the simulations should be limited to cases of small frequency
deviation. In this paper, f/ fHeq = 0.5 for the applied wave.

Wave Growth

The equations of motion (10) show that the Lorentz forces
can accelerate the electrons and can also alter the electron’s

Eod
— -250 km
N 1 1
T A (G5 —3) 22
[=2]
Qe
=
£
K=
n
) w
(23
o
=
o

! L 1
0.1 0.2 0.3 0.4 0.5

f/fHeq

Fig. 6. The relative phase shift for two waves, 1 Hz apart, af-
ter propagating from —250 to 250 km, plotted versus normalized
wave frequency and parametric in equatorial electron density Neq.
This is the total shift in phase of the higher frequency wave, rel-
ative to the lower frequency wave, as measured by an observer
moving at the phase velocity of the lower frequency wave.
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instantaneous gyrofrequency, depending upon the cyclotron
phase ¢. Changes in particle velocity, and hence energy, are
due exclusively to the wave electric field while the changes
in o and ¢ are due to both By and Ey [Inan, 1977). For
this reason, By and E, work together to set up conditions
for wave growth and damping. The vxBy force tries to
pull all of the electrons into a position such that the v, ’s
are antiparallel to By . Since By can not do any work on
the electrons, this is accomplished by exchanging parallel
and perpendicular electron kinetic energies. This amounts
to translating the electron helices in space with respect to
their adiabatic helices so that their cyclotron phases tend
to become bunched rather than uniformly distributed. This
condition is refered to as phase bunched. Phased bunched
electrons constitute a transverse right-hand polarized cur-
rent Jp, which radiates, and thus alters, the whistler mode
wave frequency and amplitude. For small pitch angle elec-
trons, the bunching effect of By, becomes negligible and the
stimulated currents, although small, are mainly due to Ey
acceleration.

For some electrons, the bunching force is strong enough
to cause the electron’s v, to oscillate about —By. The
frequency of this oscillation is called the trapping frequency

and is given by
_ eBw
wy = w - kvy (17)

and the maximum velocity deviation of a trapped electron
from vpg is called the trapping velocity and is given by
2wy

k
More detailed discussions of trapping can be found in Dysthe
[1971], Nunn [1971], and Matsumoto [1979].

As long as the field seen by some of the electrons is ap-
proximately stationary, the interaction can yield significant
phased bunched currents. The phase bunched current can
be represented by a current sheet given by the vector sum
of all perpendicular velocities within a slab of thickness Az.
The current per unit slab thickness is thus given by

Tr(z,t) = —e / / / v (z,8)f(v, a)v sinadvdadd (A/mz)

¢ a v

(19)
Each current sheet launches a wave in both directions. All
such current sheets act like an end-fire antenna array in that
there is substantial addition of coherent radiation only in the
direction of wave propagation (opposite to vy) [Brice, 1963;
Helliwell and Crystal, 1973]. The field radiated from the
current sheet in the direction of wave propagation is

(18)

vt =

AB4(z,1) = 22 [JR(Z +Az/2,t)><n]Az (20)

where n is the unit vector in the k direction and the point z
is taken just outside the current sheet centered at z+ Az /2.
These vector relationships are shown in Figure 5. The total
radiation at a given point in space is

Bu(z,1) = Bin(z,1) + Bs(z,) + ABy(z,8)  (21)

which is the sum of the externally applied or input wave
B;,, the stimulated radiation associated with the local cur-
rent sheet ABs, and the radiation that has propagated to
this point in space from other current sheets B;. Since Az
is not vanishingly small, (21) implies a discrete method of

15,079

updating the total wave field. For a wave propagating in the
—z direction,

Bu(z — Az,t + At) = By(2,t) + ABs(z,1) (22)

where At = Az/vy. In other words, the wave would be
propagated, then updated by adding AB;, then propagated,
and so on. Equation (22) is the basis for the wave growth
model detailed in the next section.

From equations (22) and (20) an expression can be derived
for the growth rate defined as

1 dBy
" By dt
The resonant current Jg can be decomposed, as shown in
Figure 5, into two components J g and J g, which are parallel
and perpendicular to By, respectively. From (20), Jg will
generate a AB; antiparallel to By, while Jg will generate
a AB; perpendicular to By in the direction of Ey. Thus,
for ABs << By, Jg changes the wave amplitude and Jg
changes the wave frequency which makes
1 AB;:-By HO JE
= Y VI =—=—"—vg=
BZ At 2 4B,
This same expression can be derived more rigorously from
Maxwells equations and the linearized momentum equation
for the cold electrons [Omura and Matsumoto, 1982].

The electric field component E,;, can be calculated from
Maxwells equation. For a growing wave, it is clear from
Maxwells equations that the angle between By, and Ey de-
viates from 90°. The deviation angle 88, indicated in Fig-
ure 5, is given by

(23)

(24)

68 = tan"! (I‘/w)

From the “reference” simulation presented in a later section,
an extreme value for §8 of 0.17° was calculated by substitut-
ing into (24), the peak magnitude of Jg for Jg, the applied
wave intensity B;, for By, and the equatorial group veloc-
ity for vg. The actual deviation angles for the simulations in
this paper will be closer to 0° and thus, its effect in the cal-
culation of Jg is negligible [Omura and Matsumoto, 1982].

Small deviation angles is also a necessary, though not suf-
ficient, criterion for the applicability of cold plasma theory
to wave propagation. From Maxwell’s equations, the total
current must be parallel to By,. The total current J is the
vector sum of the resonant current Jg and the cold plasma
current J¢, given by

(25)

_ By
T ko

Since Jp << J¢ in the simulations to follow, the effect
of Jp on wave propagation can be neglected. Thus, for

the purposes of propagating the wave, cold plasma theory
applies (i.e. J =J¢ and By 1 Ey).

Ic (26)

3. SIMULATION MODEL

The previous section detailed the basic equations relating
to the wave growth process. However, in order to feasibly
perform wave growth simulations, the simulation parame-
ters must be constrained (the typical simulation in this pa-
per consumed about 5 hours of VAX/780 CPU time). In
paticular, the interaction region must be truncated, the wave
update method simplified, and the electron distribution Lim-
ited. These impositions are discussed briefly in this section,
and in more detail by Carlson [1987].
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Interaction Region

The space-time relationships of the model are summarized
in Figure 7. Wave-particle interactions are computed in the
region between the upstream and downstream boundaries
zup and z4own, respectively. The wave enters the region at
the downstream boundary and exits at the upstream bound-
ary. As the leading edge of the wave propagates across the
region, electrons are injected into the leading edge at Az
km spacings. However, after the leading edge crosses the
upstream boundary, electrons are injected at the upstream
boundary at At second intervals (defined later). Short ar-
rows in Figure 7 indicate these particle injection points. Let-
ting z; represent the position at which the sth set of electrons
enters the wave, then

_ [ zaown — 1Az
zi =
Zup

for zgown — 1Az > 2up

otherwise (27

Calculations performed in the next section were carried out
using 2zdgown = 2150 km, zyp = —1350 km, and Az =
(2down — zup)/285 ~ 12.3 km.

In order to avoid ‘step responses’ caused by injecting elec-
trons at the boundary, an upstream boundary taper is ap-
plied to the wave field. A similar spatial taper is applied
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Fig. 7. Summary sketch of the space-time relationships of the

transient model. The wave enters at the downstream boundary
Zdown, and exits at the upstream boundary zup. Electrons are
injected (arrows) into the wave at the leading edge and at the
upstream boundary. An upstream boundary taper is applied to
the wave field and a downstream taper is applied to the phase
bunched currents as indicated by the weighting factors (top). The
current is calculated by summing the v ’s at equally spaced 7’s.
The radiation from these currents propagates forward and is seen
by the next set of injected electrons.
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to the phase bunched currents near the downstream bound-
ary in order to reduce the phase noise in the stimulated
radiation near this boundary. This phase noise, without the
downstream current taper, can excite numerical instabilities
which propagate through the region, destroying the coher-
ent wave growth. These tapers are depicted as weighting
factors at the top of Figure 7.

Wave Field Update

A few approximations involving the wave update process
can greatly reduce the computer resources required to per-
form a simulation. As discussed in the last section, choos-
ing the applied wave frequency to be one-half the equatorial
electron gyrofrequency allows, to a good approximation, all
of the radiation to be propagated at the group and phase
velocity of the applied wave. Thus, stimulated radiation can
simply be added to the applied wave and then propagated
without incurring a phase shift. In other words, radiation
added to the wave r-seconds into the pulse remains at -
seconds into the pulse as the wave propagates. As indicated
in Figure 7, 7 is defined at any position z to be the time
since the arrival of the wave leading edge.

Regarding feedback, it can be assumed that radiation
from electrons injected into the wave at earlier times only
feeds back on subsequently injected electrons. Conversely,
electrons will not see any radiation from electrons injected
at the same time or at later times. This approximation is
Jjustified since AB; << By.

Calculating the current (19) and stimulated radiation (20)
requires the integration over v within each spatial cell at
each instant. However, electrons injected at the same point
in space and time arrive at some downstream point in space
with a range of times. This “fan out” is illustrated in Fig-
ure 7 and is due to the spread in Y| and o« of the injected
electrons and also due to cyclotron phase dependent wave
forces (For electrons with vjjeq = YReq 2nd aeq of 6° and
72°, the fan out is less than 4 ms at the equator if injected
at zyp). One way to get the electron distribution at a point
in space and time is to look at the trajectories of two sets of
electrons with the same unperturbed distributions, but with
two different injection points, and interpolate. This tech-
nique was actually employed but only to verify the accuracy
of a simpler approach. This simpler approach determines
the electron velocities at equally spaced 7’s by interpolating
along each particle’s trajectory. The current is then calcu-
lated by summing the v, ’s at each 7 for all electrons enter-
ing the wave at the same injection point, even though these
electrons are at different points in space and time. Electrons
entering the wave at the same injection point are taken to
represent all of the electrons which would have entered the
wave since the previous injection. Incorporating this ap-
proximation into the combined form of equations (19) and
(20), the stimulated radiation versus 7 from the electrons
entering the wave at the :th injection point becomes

AB,;(T)=—%///[v“(r)xn]v"i(T)At,-

¢ v

-f(v,a)v*sinadvdads (T)

(28)

where ‘v”i(T)Ati and At; are the spatial and temporal sep-
arations, respectively, of an electron from its previously in-
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jected counterpart. When the electrons are injected into the
leading edge

1 1
At; = Az (”"(Zi) + vg(z,-)) (29)
however, when the electrons are injected at the upstream
boundary

2Az
vg(zup)
since the leading edge is advanced an equivalent of two Az
steps per injection in order to keep At; about the same in
both cases.

When the trajectories are calculated for all of the elec-
trons injected at the ith injection point, AB,;(7) is com-
puted and added to the applied wave, giving the applied
wave to be used at the (i + 1)th injection point

Buwit1(7) = Buwi(r) + ABsi(7) (31)

Therefore, the wave update equation (22) has been recast
into a form which is easier to compute.

At; = (30)

Energetic Electron Distribution

In terms of the comparisons of our model results with ex-
perimental data, probably the most important determinant
is the energetic electron distribution function. Computer
processing time limitations allow only narrow v)| ranges to
be considered. However, during the course of the interac-
tion, the central ) is varied in a way which maximizes the
wave growth rate. The fact that the simulations reproduce
some of the observed features suggests that the particles se-
lected in this way are the ones that contribute most to the
growth process. That a narrow range of electrons domi-
nantly contribute to the wave growth is consistent with ex-
perimental data, which indicates that coherent signals with
frequencies separated by ~ 100 Hz or more appear to grow
independently [Helliwell, 1983].

The generalized form of the distribution function used is

f(v,0) = Av"8g(a)h(v, a) (32)
or equivalently, in terms of ) and v
f(’U", 'UJ_) = A(v"2 + vlz)_4g(v" , ‘UJ_)h('U")

where g(a) (equivalent to g(v",-vJ_)) is a pitch angle
anisotropy factor and A(v)) (equivalent to h(v,a)) is the
Y| sampling function. For the results in the next section,
g9(a) =1 and h(y)) = 6 (v" - V"(z,')) where Vj|(z;) is de-
termined by a selection function. A ’distribution function
of this form is generally able to excite whistler mode waves
[Bell and Buneman, 1964].

As mentioned in the introduction, the purpose of the se-
lection function is to vary the center velocity of the electron
distribution so that the wave and electrons stay in reso-
nance. The V| determined by the selection function should
ideally supply the “primary” wave-particle interactions. In
our model of the wave growth process, the primary wave-
particle interaction is first-order resonant as the wave prop-
agates toward the equator, but switches to second-order res-
onant as the wave approaches and crosses the equator and a
fixed interaction region is established. Therefore, the selec-

(33)
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tion function needs to involve two cases. The first case se-
lects electrons which, if unperturbed, satisfy the first-order
resonance condition after moving a fixed distance z,pfs,
from the injection location. The second case selects electrons
which, if unperturbed, would satisfy the second-order reso-
nance condition at a fixed location zy;,, with a wave whose
frequency is changing at a constant rate. In the simulations
to follow a zsp;y; of 200 km was chosen as representative of
the first-order resonant interaction region location, relative
to the point at which the electrons entered the wave. From
second order resonance theory zs;; is related to df /dt. An
approximate expression for this relationship is

L ()

Zfig dt — km

(34)

Choosing a value of z;;; which maximizes the wave growth
rate is the basis of a maximum likelyhood technique de-
scribed in the next section. The first case of the selection is
used until z; + 25555 = 25is, after which the second form of
the selection function is used. More specifically, the parallel
velocity at the zth injection point is

Vi(=:) =

Crvr(z; + Zshift) for z; + zshifr 2 2fiz

Cs ("’R(zfix) —(- if,':,,)A'v") otherwise

(35)
where iy, is the injection point index at which z; + z,p;5: =
Zfiz, C1 and C; are cosine ratios given by

__ cos(ala)
G cos (a(z; + zshigt))

cos (a(z;))
cos (a(z5iz))
which adiabatically translate the resonant velocities to in-
jection parallel velocities, and Av" is the shift in parallel
velocity required for the injected electrons to stay in res-
onance with a wave whose frequency changes at the rate
df /dt. Auv)| is approximated by

(36)

(37)

dvReq
I (38)

1 1 27 fHeq) af
~ A — 1 — (39
‘ (vgeq + 'U_Req) keq ( + 2f dt ( )

In this formulation Aw) is constant. However, in an ex-
act solution, Ay would be slowly changing. When using
a broad v|| sampling function rather than a delta function,
the same selection function would be used and would apply
to the center of h(y)).

A‘U" jad Ai,'

4. REsuLTS

In this section the model is tested using input parameters
consistent with experimental observations. The energetic
electron flux is set to give a total growth of ~ 38 dB and
a growth rate of ~ 150 dB/s. These values of growth and
growth rate are slightly larger than what is usually observed.
However, since saturation occurs within a shorter period of
time, shorter wave pulses can be used resulting in reduced
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CPU time. Also, the growth tends to be more exponential
and the amplitude fluctuations reduced, as the growth rate
is increased. The actual input parameters used are given in

Table 1.

TABLE 1. Simulation Parameters

Parameter Value

f 1 / 2 fu eq
Bineq 0.01 pT
n 8

o 6°-72° by 3°

@5, 1.7 X 10° (m2s ster kev)~!
Ey 1 keV
Zup -1350 km
Zdown 2150 km
Az ~ 123 km
Zfiz 30 km
Zahift 200 km
Downstream current taper 200 km
Upstream field taper 300 km
Pulse duration 500 ms
Front end taper 50 ms
Injection points 506
Electrons/Injection 276
Electrons 139656

As a check, the model was tested by reproducing some of
the results published by Helliwell and Crystal [1973] for a
homogeneous static magnetic field. However, all of the re-
sults presented here include the inhomogeneity of the dipole
magnetic field. Also, it is interesting to note that the results
of Helliwell and Crystal [1973] were obtained using a 16-port
model. Their concept of a port, although not exactly equiv-
alent, is analogous to the number of spatial steps used in the
present model which, for most of the results presented here,
employed 200-300 steps. This larger number of spatial steps
is required to adequately sample the spatial rotations in the
current caused by the inhomogeneity. Using the parameters
given in Table 1, simulations are performed. Magnitude and
phase surfaces of the total wave field, including wave growth,
are shown in Figure 8 and the associated magnitude and
phase surfaces of the phase-bunched current are shown in
Figure 9. The phase in Figure 8 is the phase of By, relative
to B;, while the phase in Figure 9 is the phase of Jg rel-
ative to By . The magnitude surface in Figure 8 shows the
leading and trailing edges propagating through space with
increasing time. The leading edge is slightly shaped in or-
der to approximate an actual pulse and to reduce the step
response of injected electrons. In contrast, the trailing edge
is abrupt since it represents the point at which electron tra-
jectory calculations are terminated rather than the trailing
edge of the actual pulse. These surfaces show that the cur-
rent, and hence stimulated radiation, is generally confined
to the equatorial region, between —500 km and 500 km. Ex-
amination of By (t) at the upstream boundary shows that
the output wave field grows exponentially up to a saturated
level while the phase advances quadratically with time and
thus, the frequency increases linearly with time. Further-
more, the phase surface clearly shows an upstream temporal
phase advance evolving from the downstream spatial phase
advance due to the geomagnetic inhomogeneity.
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Fig. 8. Magnitude and phase surfaces of By, from the wave
growth simulation using the parameters in Table 1. The phase
surface is the phase of By, relative to B,,,. Exponential growth,
saturation, and parabolic phase advance are seen at the upstream
boundary while the applied wave is seen at the downstream
boundary. Wave growth is confined to the equatorial region. The
temporally advancing output phase results from the spatially ad-
vancing wave phase, induced by the geomagnetic inhomogeneity
in the downstream region, feeding back on the resonant electrons.

The lack of wave growth in the downstream region re-
sults from the effects of phase mixing in this inhomogeneous
region. The enhanced level of noise-like stimulated radia-
tion at high 7’s in this downstream region is associated with
the currents near the downstream boundary and does not
appear to be growing in the region away from this bound-
ary. The possibility of a buildup of noise in the downstream
region being related to some of the observable physical phe-
nomena (e.g. saturation, triggering, sidebands) should be
recognized.
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Fig. 9. Magnitude and phase surfaces of the current J g, which
is responsible for the wave growth seen in Figure 8. The phase
surface is the phase of J g relative to By,. The confinement of the
current to the equatorial region results from the phase mixing
effects of the inhomogeneity.

A ridge of wave growth along the leading edge of the wave
shows the effect of introducing the electrons into the wave.
This ridge grows by ~ 8 dB and is due to the fact that,
as electrons are introduced into the wave, they all experi-
ence the same ‘kick’ regardless of the leading edge position.
Hence, Jp starts out aligned with By and then rotates, de-
pending upon v|| and the inhomogeneity. Therefore, at small
r’s (i.e. before this ‘step response’ phase mixes away), ra-
diation grows coherently as the wave propagates. Further
discussion regarding this ‘step response’ is given later in as-
sociation with the phase retardation of the wave field near
the leading edge.

Comparison of the wave growth predicted by this model
with experimental observations can be made by looking at
the output field at the upstream boundary By (z = 2up, t).
Figure 10 gives plots of the output wave magnitude and
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Fig. 10. Output wave magnitude and phase (top panel, solid
and dotted respectively) versus time corresponding to By, at the
upstream boundary of Figure 8. The magnitude plot (referenced
to Bip = 0.01 pT) shows ~ 8 dB of spatial growth resulting from
the ‘step response’ current, followed by ~ 150 dB/s exponential
growth up to a saturated level of ~ 38 db. The phase is advancing
at a nearly parabolic rate. Also shown is the instantaneous fre-
quency (bottom panel) calculated by taking the derivative with
respect to time of the wave phase in the upper panel. This curve
has been smoothed slightly by convolving with the 3 point se-
quence {0.25, 0.5, 0.25}. The frequency versus time shows a
nearly linear increase in frequency at ~ 30 Hz/s.

phase (top panel), and frequency shift (bottom panel) ver-
sus time. The magnitude plot clearly shows the ~ 8 dB
of spatial growth resulting from the ‘step response’ current,
followed by ~ 150 dB/s exponential growth up to a sat-
urated level of ~ 38 dB. The exponential growth results
from the self sustaining feedback process. The saturation
appears to result from fully bunching most of the electrons
within the equatorial interaction region. While this effect
provides a plausible mechanism for saturation were the avail-
able particles limited to those considered in the simulation,
it is not known whether the experimentally observed satura-
tion would be due mainly to the same phenomenon. As the
wave intensity increases, it would be expected that particles
in an increasingly wider v range would be significantly per-
turbed which might provide continuing energy to the wave.
Simulation results are given later from a first attempt at in-
cluding a range of parallel velocities. While this simulation
yielded a comparable saturation level (~ 36 dB), a limited
v)| range was utilized and the v spacing was fairly coarse
(approximately equal to the trapping velocity). Therefore,
the mechanism for saturation remains to be confirmed.
The wave phase in Figure 10 is oscillatory, but gener-
ally retarding prior to the onset of parabolically advancing
phase. This retarding phase results directly from the step
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response current being initially aligned with By, generating
a lagging B, which retards the wave phase and is reinforced
by feedback to subsequent electrons. However, if a wider
range of v)’s were included, this would promote more rapid
phase mixing of the step response current which is expected
to reduce the time over which the wave phase is retarding.
In the limit as the v range is increased to a full distribu-
tion, the phase could start advancing instantaneously from
some new offset reference. In other words, the initial phase
retardation could actually be the hot plasma contribution to
the refractive index. This would explain why phase retar-
dation like that shown in Figure 10 is not commonly seen in
the actual measurements. Also, if an actual phase retarda-
tion existed over a time less than that shown in Figure 10,
then it would be difficult to detect using presently available
methods (E. W. Paschal, private communication, 1987).

Taking the derivative with respect to time of the wave
phase gives the instantaneous frequency shown in Figure 10.
This curve has been smoothed slightly by convolving with
the 3 point sequence {0.25, 0.5, 0.25}. Examining the fre-
quency versus time plot after the advancing phase is estab-
lished, shows a nearly linear increase in frequency at ~ 30
Hz/s, consistent with the chosen v selection function and
second order resonance theory.

Mazimum Likelihood Test

The 30 Hz/s frequency drift rate not only compares to
measured drift rates, but also satisfies a maximum likeli-
hood test. The maximum likelihood test is an answer to
the following question: At what frequency drift rate do the
energetic electrons give up their energy at a maximum rate?
The results from several simulations performed using differ-
ent zy;;’s are superimposed in Figure 11 and clearly show
a df /dt dependent growth. To better see which df /dt gives
the fastest growth, amplitude versus df /dt, parametric in 7,
is plotted in Figure 12. This figure shows a well defined peak
in the amplitude versus df /dt curves at a df /dt of ~ 30 Hz/s.
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Fig. 11. Output magnitude (solid) and phase (dotted) from sev-

eral simulations, with different injection ) selection functions
designed to support df/dt’s of -40, 0, 20, 30, 40, 60, 80, 120,
and 200 Hz/sec. These curves indicate that one selection func-
tion yields a higher average growth rate than the others. This is
the basis for a maximum likelihood test which suggests that the
selection function resulting in the fastest growth, represents the
dominant mode of growth. The results are better displayed in
Figure 12 in which amplitude versus df /dt are plotted parametric
in time.
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Fig.12. Output amplitude of the simulations of Figure 11 versus

df /dt parametric in 7 (the time from the leading edge). df /dt is
the rate of frequency increase in the injection velocity selection
function. The peak in the curves at a df /dt of ~ 30 Hz/s indicates
the fastest growing case and should therefore be the dominant
mode of growth. This outlines the maximum likelihood test for
determining the injection v selection function and the mode of
growth.

Thus, Figure 12 indicates that ~ 30 Hz/s is the maximum
likelihood rate of frequency increase and should be the domi-
nant mode of growth. So not only does this model reproduce
the proper frequency advance but, for the same parameters,
it maximizes the rate at which energy is extracted from the
energetic electrons.

Self Ezcited Emissions

The maximum likelihood test described above can be ap-
plied to experimentally observed self excited emissions trig-
gered by short pulses. Termination of an applied signal can
result in a triggered rising or falling emission but most likely
a faller, especially if the pulse terminates before saturation.
Rising emissions can also be triggered prior to termination
but generally after saturation or coincident with the end of
growth. Falling emissions can be triggered not only by the
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termination of monochromatic waves but also by the beating
of two monochromatic waves at closely spaced frequencies
[Helliwell et al., 1986a]. The falling emission, or ‘faller’,
is established after a rapid increase in frequency associated
with a band limited impulse coincident with pulse termina-
tion. However, application of the maximum likelihood test,
using a 100 msec applied pulse, showed no evidence of a
dominant emission form. By second order resonance theory,
a falling emission is generated by an interaction region that
drifts upstream of the equator. The possibility of this drift
is not included in the injection velocity selection function as
given in equation (35). From second order resonance theory,
an interaction region drifting at a nearly constant rate will
result in a wave frequency changing at nearly a parabolic
rate.

Parameter Dependencies

In the following simulations we investigate the depen-
dence of wave growth upon other parameters. While the
assumed df /dt should be based upon the maximum likeli-
hood test outlined above, for all of the following simulations
a 30 Hz/s df/dt is assumed. The parameters to be varied
include the applied wave intensity, energetic electron flux,
pitch angle distribution, and parallel velocity range. Am-
plitude and phase versus time are plotted parametric in the
varied parameter. All of these plots include the 30 Hz /s case
shown in Figure 11 for comparison and hereafter refered to
as the “reference” case. A summary of the dependence of
growth rate and saturation level upon the varied parame-
ter is given in Table 2. The growth rate and saturation
level values are estimates made from the amplitude versus
time plots. This table also includes the results from the self
excited emission case (100 ms pulse) and the 30 Hz/s, or
“reference”, case (‘Table 1 parameters).

TABLE 2. Growth Rate and Saturation Levels

Case Growth Rate Saturation Level
(dB/s) (dB)
Table 1 parameters 156 38
100 msec pulse 143 38
B,, = 0.001 pT 151 38
By, = 0.1 pT 163 38
Flux Doubled 268 43
Flux Halved 58 24
9(@) 186 39
a=z=0.2,y=12
g(a) 214 40
a=z=0.2,y=2
Broad h(v)) 79 36

Dependence on Applied Wave Intensity

Amplitude and phase versus time, parametric in applied
wave intensity B;,, are given in Figure 13. Again, these rep-
resent the wave magnetic field at the output, or upstream
side of the interaction region. In addition to the reference
case (Table 1 parameters) with a B;, of 0.01 pT, applied
wave intensities of 0.001 and 0.1 pT are included in Fig-
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Fig. 13. Output amplitude (solid) and phase (dotted) versus
time, parametric in applied wave intensity [referenced to B,, =
0.01 pT). The applied wave intensities of 0.001, 0.01 (reference
case, same as Figure 10), and 0.1 pT are labeled 1, 2, and 3 re-
spectively. These curves indicate that growth rate and saturation
level are not significantly dependent upon applied wave inten-
sity. The phase curves show that the phase tends to advance
more slowly for higher B,,’'s. This same trend is associated with
increasing growth rate in later figures.

ure 13. In accord with the results of Helliwell and Crystal
[1973] for a homogeneous medium, Figure 13 indicates that
growth rate and saturation level are not significantly depen-
dent upon applied wave intensity. These results imply that
growth would result even from an infinitesimally small in-
put wave suggesting that the amplitude threshold for wave
growth phenomena might be associated with the interfer-
ing noise that is always present in the magnetosphere. The
phase curves in Figure 13 show that the phase tends to ad-
vance more slowly for higher B;,’s. This same trend is as-
sociated with increasing growth rate in the figures to follow.

Dependence on Energetic Electron Fluz

Figure 14 shows the effect varying the energetic electron
flux has on growth. In addition to the reference case, two
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Fig. 14. Output magnitude (solid) and phase (dotted) paramet-

ric in energetic electron flux. In addition to the reference case (2,
same as Figure 10), two other cases are shown having half (1) and
twice (3) the energetic electron flux as the reference case. The
growth rate and saturation level both increase with increasing
flux while the phase tends to advance more slowly with increas-
ing growth rate.
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other cases are shown having half and twice the energetic
electron flux as the reference case. In the self excited homo-
geneous case (Helliwell and Crystal, 1973), the saturation
level increases with increasing flux but the change in sat-
uration level with respect to flux decreases with increasing
flux. From Table 2, the same relationship between satu-
ration level and flux is displayed. However, the change in
growth rate with respect to flux is also found to be decreas-
ing with increasing flux. This difference could be due either
to the presence of the applied wave or to the inhomogeneity.
Also, as mentioned before, the phase tends to advance more
slowly with increasing growth rate.

The Role of the Pitch Angle Anisotropy

In all of the simulation results shown so far, a unity pitch
angle anisotropy factor (g(a) = 1) has been used. Fig-
ure 15 compares the reference case with two distribution
functions having more anisotropic pitch angle factors, g1 («)
and ga(a). These g(a)’s have the form

g(@) = asin® o + (1 — a)sin? & (40)

Both have a = ¢ = 0.2 but y = 2 in g;(a) and y = 12 in
g2(a). The effect of these functions is to concentrate more of
the electrons at higher pitch angles. Because changing g(«)
alters the number density, the distribution function must be
rescaled for each g(a) so that the number densities are the
same. Since the form of the distribution function used (32)
is separable, the number density equation can be rewritten

N(z)= 21r/g(a) cos” 3 arsin ada/h(v||)11"_"+2d0" (41)

[+ 4 ll“

A general expression for g(a) which can be integrated in the
above equation is

gle) = Z (aisin® a + b; cos¥? a)

(42)

performing the pitch angle integration

w/2
g9(a) cos™ 3 asin ada ~

Xc

(43)

+ b;

2 e
yi+n-—2 2

where «j. is the loss cone pitch angle and is assumed to be
small enough to justify the small angle approximation to the
value of the integrand at this angle, and where the following
conditions must also hold:

n>2 z;>-2 y>2—n (44)

Thus, the distribution function must be scaled by factors of
2.7 and 5.6 for g1(a) and g2(«), respectively. Examination
of Figure 15 shows that this rescaling results in approxi-
mately the same saturation levels. The most interesting
new feature is the fact that g1(«) resulted in the largest
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Fig. 15. Output magnitude (solid) and phase (dotted) para-
metric in pitch angle anisotropy g(a). The g(a)'s are 1 (ref-
erence case, same as Figure 10), 0.2 sin®2? o 4+ 0.8sin!? o, and
0.2sin%2 & + 0.8sin? « and are labeled 1, 2, and 3 respectively.
The distribution function has been rescaled for each g(a) so that
the number densities are the same, resulting in nearly equal satu-
ration levels. g(a) = 0.25in2 & +0.8sin? & resulted in the largest
growth rate presumably due to a maximum in dg(«)/do occuring
at o =~ 45°, the pitch angle of maximum radiation.

growth rate. This can be explained in terms of dg(a)/da
and the falloff of the number of electrons with increasing
energy through the v—8 term. Large values of dg(a)/da are
known, by linear theories, to drive the whistler mode insta-
bility. But, through the balancing of the v x B forces with
the v™" falloff in the electron distribution, ~ 45° pitch angle
electrons are the largest fractional contributors to the total
radiation. Therefore, since dg;(a)/da has a maximum at
~ 45° it is not surprising that g; (o) results in the largest
growth rate. Although dgs(a)/da actually has a greater
maxima, it occurs at higher a’s where the contribution to
growth is less significant. Again, the phase tends to advance
more slowly with increasing growth rate.

Effect of Increasing the Parallel Velocity Range

Some preliminary results were obtained using a range of
Y| ’s. Specifically,

4
h(v)) = 2:(%5@u—vM4)—jAwﬂ (45)
j=—4
where Ay = vpReq/800 and a; = 1 — 0.2|5]. This results
in a triangular ) distribution with a full width of 1.25%
YReq and a center v given by the selection function (35).
This case is shown, along with the reference case, in Fig-
ure 16. Without rescaling to compensate for the 9 times
greater number density, the resultant saturation level is com-
parable to the reference case. This is a direct result of the
cancellation associated with the integration over v)|. The v
integration also reduced the growth rate by nearly a factor

-of 2. Overall, the key features continued to be reproduced,

providing further evidence that the actual growth and sat-
uration mechanisms are being simulated. However, more
simulations, having broader v ranges and closer v spac-
ings, are required before any final conclusions can be made.
In this case, the Y| spacing is approximately equal to the
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Fig. 16, Output magnitude (solid) and phase (dotted) paramet-
ric in parallel velocity windowing function h(v)). In addition to
the reference case (1, same as Figure 10), another case is shown
(2) which resulted from a triangular v distribution having a full
width of 1.25% vpeq. Without rescaLng to compensate for the
9 times greater number density, the resultant saturation level for
the broad v)| case (2) is comparable to the reference case (1). This
is a direct result of the cancellation associated with the integra-
tion over v)|. The v)| integration also reduced the growih rate by
nearly a factor of 2.

trapping velocity at the center of the interaction region for
the saturated wave. To determine the distribution necessary
to perform an adequate simulation, successive simulations
should be performed with broader ranges and finer spacings
until a repeatable solution is converged upon. One feature
of the v) integration which seems to improve the fit with the
experimental measurements, is the onset of a stable phase
advance at an earlier time.

5. SUMMARY AND DISCUSSION

A new model is developed, based upon test particle tra-
jectory calculations, to simulate the whistler-mode wave
growth process. The simulations reproduce exponential
wave growth and saturation coincident with a linearly in-
creasing frequency versus time using applied wave intensities
consistent with satellite measurements.

With this model the space-time evolution of a wave pulse
can be simulated, with high spatial and temporal resolution,
as the pulse propagates across the inhomogeneous equato-
rial region. Generalized equations of motion allow for the
evolution of the frequency and wave number in space and
time. Since only a narrow range of parallel velocities can be
included, a scheme is developed to make the center v vary
with the time and location at which the electrons are intro-
duced into the wave. This relationship is called the selection
function. For a class of selection functions consistent with
second order resonance theory, a maximum likelihood test
is developed which determines the function that maximizes
the average growth rate. This test shows that, when an ap-
plied signal is present, the total wave phase at the output
of the interaction region advances with time. The frequency
increase is found to result from the feedback of radiation
from the phased bunched currents which are rotated by the
geomagnetic inhomogeneity. In other words, the maximum-
likelihood selection function suggests that the most signifi-
cant electrons are those which satisfy the second-order res-
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onance condition for the observed frequency increase. The
simulations also show how characteristic features such as
growth rate and total growth, depend upon the various pa-
rameters such as applied wave intensity, energetic electron
flux, pitch angle anisotropy, and the width of the v|| range.

Comparison of the simulations with actual experimental
measurements show good agreement in growth rates, total
growth, the rate of frequency increase, and even the pe-
riod of amplitude and frequency oscillations. A simulation
performed using a broader v range continued to reproduce
growth and saturation, providing further evidence that the
actual growth and saturation mechanisms are being simu-
lated. In order to provide a better confirmation that the
actual mechanisms are being simulated, future simulations
should include broader, more densely sampled v|| Tanges.
A broader v) range also seems necessary before triggered
emissions can be produced.

The hypothesis regarding saturation is that the exhibited
saturation results from the same mechanism demonstrated
by Helliwell and Inan [1982]. This mechanism is related
to the onset of trapping in that the electrons can become
fully bunched within the interaction region when the time
it takes the electrons to traverse the interaction region is
greater than one-quarter of the trapping period. Further in-
creases in the wave intensity can reduce the bunching time
but cannot significantly increase the contribution to the out-
put field by these electrons.

The simulations showed no indication of an amplitude
threshold for growth as the applied wave intensity was var-
ied. This suggests that the threshold phenomena might be
associated with the interfering noise that is always present
in the magnetosphere.

While self excited emissions generated at the termina-
tion of pulses are generally falling in frequency with time,
this model and the implemented class of selection functions,
showed no dominant emission form. However, in the self
excited case, it is suggested that the selection function be
modified to allow for an interaction region which can drift in
space with time. By second order resonance theory, an in-
teraction region drifting at a constant rate, can produce an
emission whose frequency changes quadratically with time.
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