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This part of the paper addresses the effects of the inhomogeneity of the magnetic field of the
earth on the resonances studied previously. We find that the inhomogeneity introduces phase
shifts on the equilibrium positions of both types of resonance we have treated. Those phase
shifts are time dependent if either the main carrier in the case of internal resonances, or the
interacting carriers in the case of external resonances have time-dependent amplitudes. The
time-dependent phase shifts will translate themselves into sideband wave frequency shifts. If '
the carriers have constant amplitudes, the phase shifts are locally constant. However,
frequency shifts observable at the end of the interaction region can still be produced if the
amplitude of the radiated sidebands are locally time dependent. Since the phase shifts are
dependént in v, , the sideband waves should undergo an increase in width as they shift away
from their nominal positions. A strong enough inhomogeneity will destroy a resonance
completely. It is found that trapped resonances are much more resilient to the effects of the
inhomogeneity than external resonances, this being one of the main reasons why we can
experimentally observe the creation of sizable sidebands by extremely weak carriers.

I. INTRODUCTION

This part of the paper will analyze the effect of the in-
homogeneity of the magnetic field of the earth on the reson-
ances studied in parts I and I1. The analytical and numerical
methods used are the same as in part I, and so is the notation.
A familiarity with parts I and II of the paper is required.

In Sec. IT of this third and last part, phase plots are used
to show graphically the effect of the inhomogeneity on the
resonances we had previously studied in 2 homogeneous me-
dium. It is seen that those effects consist mainly of phase
shifts superposed on the resonance positions, coupled with
complete resonance destruction if the value of the inhomoge-
neity is large enough. In Sec. III the electron equations of
motion are rewritten to include the inhomogeneity, and in
Sec. IV the Lie perturbation method is applied to them to

study -analytically the effect of the inhomogeneity on the -

“trapped” resonances. In Sec. V we explain how the phase
shifts created by the inhomogeneity can, even when locally
constant in time, produce frequency shifts and line broaden-
ing in the sideband radiation received at the end of the inter-
action region. In Sec. VI we apply the Lie perturbation meth-
od to external resonances obtaining results similar to the
ones found in Secs. IV and V for internal resonances. Section
V11 takes a look at some general properties of higher-order
resonances, and Sec. VIII contains the conclusions, a chief
one among them being that the inhomogeneity is a principal
cause for the peculiar but experimentally observed fact that
vanishingly small carriers can create sizable sidebands if the
sideband producing interaction includes at least one strong
carrier. '

Il. PHASE PLOTS AND RELATION BETWEEN
FREQUENCY AND PHASE SHIFTS

Figuré 1 shows phase plots for an /=2 first-order
“trapped” resonance created by perturbing the main wave
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with a weaker carried located at & = (. This resonance will
radiate mainly at the frequencies 4+ O and + £/2. Figure
1(a) shows the phase plot for the zero inhomogeneity case,
where we can see the two-lobed structure of the resonance
inside the main wave potential well, and the perturbing car-
rier to the right, shifted 180° in phase relative to the main
wave,

Figure 1(b) shows the effect of a positive inhomogene-
ity {a positive gradient of the intensity of the magnetic field
of the Earth) on the resonances. The resonance associated
with the perturbing carrier has been completely wiped out,
and therefore such a carrier will experience no growth. How-
ever, the “trapped” resonance that it creates is still present
and can give rise to growing lines. Since the original ampli-
tude of the perturbing carrier is only 29 ( — 33 dB) of the
main carrier, the weak carrier will not be easily seen in the
sideband spectrum, but the sidebands it creates will. In the
same picture it can be seen that the outermost phase irajec- -
tories have been stripped away from the main carrier reso-
narice and that the two lobes in the “trapped” resonance
have acquired different negative phase shifts. The first effect
is widely known, the second one will be described in detail in
Sec. IV. There is also a small inward shift of the trapped
resonance and a positive phase shift (upward displacement)
of the main carrier resonance. This phase shift can easily be
shown to be equal to sin™'(7/Q2, ) where 7 is the torque
associated with the inhomogeneity (sec Sec. IV}, and Q,, is
the main wave trapping frequency. The internal resonance
phase shift will affect the frequency separation between radi-
ated harmonics and subharmonics: The phase shift in the
main resonance will affect the main carrier frequency. (The
mechanism for translation of phase shifts into frequency
shifts is discussed in Sec. V.) :

Figure 1(c) shows the consequence of moving the per-
turbing carrier form ) to - . The equilibrium peints in

0021-8979/89/203506-00$02.40 - © 1989 American Institute of Physics 3506




—7T

© 0 : - {d

FIG. 1. Effect of the inhomogeneity on a half harmonic “irapped” résonance. ‘Fhe main catrier is located at & = 0. The main carrier trapping frequency is
slightly above £2/2, and the weak to main carrier amplitude ratio is 0.02( — 34 dB). The weak carrier is shifted in phase by 180° relative to the main carrier:
(a) #/€2; = 0. The weaker carrier is located at # = 2. Chaos, the perturbing wave resonance, and the two-lobed half harmonic can be readily seen. (b) 7/

07 = 0.08. The weaker carrier is still located at # = {2, Chaos and the perturbing wave resonance have been swept away, but the resonance that the latter

creates is still present. Both resonance lobes have acquired a negative phase shift. The main wave resonance has a slight shift upwards.
(c) 7/0 = 0.08. The weaker carrier is now located at § = — (1. The resulting plot can be obtained from (b) by a reflection around a vertical axis going

through & = 0. As a consequence, the two lobes have their shifts swapped and changed in sign. (d) 7/01? = — 0,08, The weaker carri¢ris at & = 0. The plot
can be obtained by reflecting (b) around a horizontal axis going through & = 0. Both lobes and the main wave resonance have their phase shifts changed in

sign.

the resonance are reflected around a vertical axis going
through &=0. As a consequence, both their phase shifts
become positive.

Figure 1(d) shows the effect on the phase plot of chang-
ing the sign of the inhomogeneity, but keeping the perturb-

ing wave at the frequency €. The resonance equilibrium

points are reflected around a horizontal axis going through
€ = 0. That implies a change in sign of each phase shift in the
“trapped”resonance and a change in sign of the main wave
upward shift. The total phase shift associated with each radi-
ated sideband is consequently multiplied by minus one.
Figure 2 compares the effects of the inhomogeneity on
“trapped” and external resonances having the same approxi-
mate initial widths. Figure 2(a) shows a three-wave reso-
nance, already described in part II for the case of zero in-
homogeneity. Figure 2(b) shows the effect on it of a fairly
large inhomogeneity. As in Fig. 1, it can be seen that the
external resonances are completely wiped out, that thereisa
phase shift, now positive, added to each resonance lobe, that
external phase trajectories are stripped away, and that, now
in a more pronounced way, there is an upward shift of the
main wave resonance together with an appreciable inward
motion of the internal resonance. This inward displacement
protects and extends the lifetime of the resonance by moving

it away from the outward trajectories that are soon de-,

stroyed by the inhomogeneity. The inhomogeneity in this
case is 0.18.Q2,. - . :
Figure 2(c) shows several external resonances between
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two equal intensity carriers for the case of zero inhomogene-
ity. Figure 2(d) shows the effect of an inhomogeneity just
strong enough to destroy all external resonances including
the half harmonic. The value of the inhomogeneity in this
caseis only 0.03 27, . Since the resonance shown in Fig. 2(a)
is in reality still present for inhomogeneities of the order of
0.25 £32,, and since the size of the interaction region is pro-
portional to the maximum inhomogeneity that a resonance
can withstand, we arrive at the important conclusion that
“trapped” resonances can exist over an interaction region
almost 10 times as large as external resonances.

1. MODIFICATION OF THE ELECTRON EQUATION OF
MOTION BY A NONZERO INHOMOGENEITY

The effect of the inhomogeneity on the electron motion
can be locally described by a time-dependent torque'™ ap-
plied to the perturbed equations developed in the preceding
parts of this paper. The equation describing the electron mo-
tion under the influence of N waves will be then

e N
B:T(f)—z QiSIH(eﬁ-Q,r‘i‘Qsz)a (1)
{=1
where 7 is the inhomogeneity. . _ :
For the study of external resonances, the (6,8) = (g;p) -
pair of coordinates is maintained and an equivalent Hamilto-
nian can be written:. L '
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ances: (a) /02 = 0.0. Second-order two-

22 = 0.18. Despite the existence of a fairly
large inhomogeneity, the resonance is still

intact. The most apparent effects on it are
the creation of a positive phase shift, and a
displacement of its orbit towards the cen-
ter of the main wave. An upward shift of
the main wave resonance can also be seen.

tential wells of two equal amplitude
waves. (d) 7/02=0.03. An extremely
small inhomogeneity completely wipes
out the one-third and almost completely
destroys the half harmonic resonance.

2 N
h(g.p.t) =%—fq— > Qf cos(g — Q1+ ¢,). (2)

i=1
For the study of internal resonances created by the
wave-wave interaction process, we will use the (¢, /) pair of
canonical coordinates that gives rise to the following Hamil-
tonian:

BB, i) = hol ) — 78(h ) —in AR
Xcos(nd — Q1+ &), (3)

where

f=2sin"' [K sn(@)] | (4)
can be rewritten as® .

9= 3 b,(jsin (21 — D], (5)
with "

b, ()= 2( ?1 )2 :/22:;‘ (1;1 : (6)

Those equations will be used to study analytically the in-
homogeneity effects observed in the phase plots described in
the preceding sections.
IV. FIRST-ORDER INTERNAL RESONANCES
If we put 2 = €4,, we can write the Hamiltonian as
h(¢sj’t) =h0(j) +Eh1(¢’j;t)’ (7)
with

N @
hy= _7'9(‘}6:.]:)7_2 Z AV, ()eos(ng — Nt + ;).
i=2n= — =
(8)

[We have substituted e for 71in A{¢, j,#) to explicitly show
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that perturbations from the inhomogeneity and from the ad-
ditional carriers on the main wave have the same order of
magnitude.

To study first-order resonances we put

K,=h _ (9)
and choose

K= —4;V;(Jycos(I® —Qz +¢,). ~ (10)
This implies

W, = _f dr{in[®+ Q,(r—0,J7]

~K\[®+Q,(r—0),J7]}

or
= b (J
W, = ——T x ) cos[(2n — 1) @]
Q!(J) n=1 (2’1_1)
+ 3 a,sin(n® — Q1+ ¢,), (11) .
ti#Fpor
(n#D
with
AV (J
gy =—alelD (12)
n, (J) — Q,

The corrections to the resonance due to the inhomogeneity
are second-order terms that must be transferred to K, from

IW, dh,+K,) W, I(h +K,)

Woh +K}= -
b + K} P ar a7 T
(13)
where /; 4+ K, can be written as
B+ K= —10(®0) — 3 (1+8,8,)4,V,
xcos(nd — 0,1+ 6,). (14)
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FIG. 2. Relative effects of the inhomoge-
neity on “trapped” and external reson- .

lobed resonance created by the interaction .
of three different carrers. (b) +/°

(¢) /52 = 0.0. Half and one-third har- -
monic resonances created outside the po-




Diferentiating the above expression with respect to ® and J,
inserting the results in Eq. (13), transforming products of
trigonometric functions into sums and differences, and put-

ting into K, all resulting time independent and resonant

terms; we get

| | - 4,
2K, =2k T4 Sy T
' 20, A AT 20,
= ([b) —b,(Q/Q,)] |
X Va ne
,Z‘l( - (2m_—_1) (n, L HR )

‘+ b, (V, o V,'L))sin(kbwnﬂur é;), (15

ny

where n . =14 (2m — 1). Computer analysis shows that
keeping only the first term in both summations leads to a
very good approximation to the équation above, If we take
into consideration that . . '

, i . |
bi=b -2 s : (16)
v, 0,

we get for K
7 dbi

_ 7 b,
40, dJ

Vi 50 -
X 7 _?E— [(l+1)V:+[+('I—'1)V1—l]

+ (Vi — V,'MI)]Sin(I(I)—thukgﬁ}). (17

It will be convenient to transform the derivatives in the
above expression into derivatives with respect to the adimen-

sional variable «°, using the operator identity

Q
a_ % J (18)
al 202, 9«
We can then write
1/ 7 \2db} A; ‘
K, =K% —— —L £, (i
2 2 S(Q”) e +TQ%141( }
Xsin(IP — Q1+ ¢;), (19)
with
Fi(6)
o bV 5y
:Il[(Vlu.u?Q)[(1+1)V1+1+(1~1)V,1]
1 H .
+(V}+1*V,f_l)], . (20)

where a primed variable, in the above equation only, means

it is differentiated with respect to &> The total Hamiltonian

will be g

- K=hy—ed;V,cos(Il® — Qi+ ¢,) + €KY

2db? 4, '
_f( T) ‘+521'02’1 £ (&%)

s\Q,, /) de
Xsin({@ — Ot 4 ¢;). o 2n
If we define
f i
0, (%) er L&) er . 22)

B ‘Q%E IV.'(KZ) - 031
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and assume sin (/D,) = I®,, we can finally write

ef r bt
K=h €2K0——( )———EA-V
Febreti e, e T
Xcos[ (D + P,) — ﬂjz+¢j];r'-':_ . (23)
Figure 3 shows plots of ®,,,,,, asafunction of «* for a few low

values of / and also the asymptotic value when /— co.

From the way ®, was calculated, it is possible to have an-
understanding of the meaning of such a phase shift. Because
the inhomogeneity is only a perturbation, the electron
stream motion is mainly controlled by the main wave. The
oscillatory motion imparted on the stream inside the main
wave potential well makes the potential from the inhomoge-
neity, which is linear in 8, seem oscillatory with a frequency
&. The first term in the series for this effective oscillatory
potential is equivalent to a first-order resonance with /= 1
and ; = 0. The phase shift we are locking for is a second- .
order effect that comes from the interaction of this effective
resonance with .two first-order resonances having param-
eters (7 4 1,42, ) and (/ — 1,£);). Their interaction givés rise
to a second-order resonance with parameters (7,2, ), shifted
by — 90° in phase relative to the initia} trapped resonance.
The coherent superposition of these two resonances gives
rise to the phase-shifted resonance.

Harmilton’s equations applied to X will give

dK

J= —ag = AV Dsin[ (D + Do) — Dyt + 4],
o . . (24)
o= 9K _ dhold) gﬁ_i(L)zgtd_zbi
ay dJ a7 16 \ 02 d{x*)?

av,(Jh '
meAj——m&_cos[l(@—l—‘Po) -+ 4] (25)

dd, .
+ €eld, ¥V, () dJosm[l(CD+<I>o)—ﬂjf+¢j]-
Since |
. gb. gb. gd
225, %% 22 26
ar " ae oo
wecapput
| = oo
5T =2 Iz{‘ 7
N - =
L _,__ﬁr-f\f_:‘*:ﬁ“
-1+
g |
0.25 DAIS 0.‘75 K-z

FIG. 3. Plot of @, = (02, /7)P,, the normalized constant part of the”
phase shift caused by the action of the inhomogeneity on first-order reson-
ances. The picture shows plots for / = 1...4 and the asymptotic value /= co. .
The divergences at #° = 1 indicate the breakdown of the expressions near
thie separatrix due to the existence of chaos and the stripping away of closed
phase orbits by the inhomogeneity.
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(D)
dJ?
2
- G%IAJV,(J)sin[l(d) + @) —r+ 4]
(27

The equation describes an |/ |-lobed resonance oscillating in-
side the main wave potential well with frequency Aw, /! and
shifted in phase by — ®,. (Aw; is the frequency separation
between the perturbing wave j and the main wave.)

From the @ equation we also get at resonance

dv, LI €2ng e [ 7\, db?
a7 dJ (nf, ) "d(x?)?
(28)

Defining J, as the value of J associated with the resonance as
£—0, and expanding £}, around this value, we get

b

Q.
7 "t

Q, dQ
Q. =Q,(J,) — ! AJ:—L—{ ‘lAJ
o)) ¢ (Jo) ; ¥,

(29)

Substituting the last expression into Eq. (28), we can calco-
late Jand AJ:

J=JO+ A“’;—"“’04"'A']']'lom + AJlnhum’ (30)
where

av, ng) aQ, | -

Ao =(A & : } 31

hom =\ T GD
and _ _ _

@ dﬂ,}—l r \2d®? .
AJin om — —'_Qt - 32
" 16 'l dJ (93,) au Y

Since the second derivative of b? is positive, in the (®,J)

~ coordinate system the inhomogeneity hias the effect of de-
' creasmg the value of J, i.e., of pulling the resonance towards
‘the center of oscillation.

“To look at the stream motion in the (¢ ) variables, we

“need the transformatton equatlons correct to second order:

LA 6W,} C e
b=0 BJ- 2({W EU) (33)

ow, & 8W,}) “
=T+ ({ LA (34)

where the angle brackets mean as always that the time- 1nde- .

pendent part of the expression should be taken.
Evaluating specific terms we obtain

I,
ava_ T b, 2n - 1)®
FrR-) ,Z'] sm[( n—1)®]
+ 3 na, cos(n® — Q1+ ¢,), (35)
(i#for
(rs£D)
BW = 1
—cos 2n — 1)@
a 2( )(2 peost@n Dol
+ Z aj, sm(ndJ Q.14 6., (36)
(istf)or - o o
(nD
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aW]> 7 & (b,,) PPN

W — b=+ ¥ ra,e, (3D

([ ! 3‘1) Ql ,.;1 \Q.r (5;0; '. .
(sl :

aw . : BT
W, 1})=U. 38
({ 2 (38)

For the J—j transformation, we drop the first-order time-
dependent terms, we keep only the first term of the time-
independent series in the expression for dW, /d®, and trans-
form all derivatives into derlvatlves with respect to «2. We
then get

2 de 2
J = o + €by sin @ — ﬁgr(L) i
0

Q, 2 d(k?)?
& [\, d nb) |
+=—Q,, {— ] & == , 39
4 ”(Qfl) ‘df(ﬂ, . (39
where .
) , da,
Jhom = 0 + AJ’hom + Z R ar'rt_ b (40)
(iFPor dJ
(nsth)

which can be rewritten as

2
F=Jrom - €——b, sin P + 62&'1,1( T ) Ao (41)
Q- Q3 L

If 7 is positive, the oscillatory term linear in € is positive
when ¢ is positive and negative otherwise. Its effect is to push
all points in the phase trajectories upwards, and essentially
describes the phase shift of the main wave resonance ob-
served in the phase plots of Figs. 1 and 2. The constant sec-
ond-order term describes a systematic shift of the “trapped”
resonance towards a different orbit. Figure 4 has a plot of
Aj orm» Which is adimensional and depends on «” only. The
plot shows it to be negative and therefore describing a dis-
placement of the resonance towards the center of oscillation.

For the ®-¢ transformation we can write
=P, . — P, where &, .. is the value of ¢ obtained

-from Hamilton’s équation when 7 = 0. We'then throw away

all explicitly time-dependent terms and keep only the first
term in the remaining series expansion for W73 to get

Cp= :(I)hom — @, + er(b,/Q,) cos ®. ' (42)

0.25 0.5 0.75 K2

FIG. 4. Plot of Af, ..., the normalized constant shift in j due to the action of
the inhomogeneity on the main wave potential. The shift is negative and
independent of the specific resonance under consideration. The divergence
at «* = 1 is due to chaos and the presence of the inhomogeneity that com-
bined destroy the outer electron orbits of the main resonance rendcnng the

-analytical expressions inadequate.
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We see that added to the constant phase shift — &, there is
a periodic term that for positive 7 is positive when 8 is posi-
tive and negative otherwise. For the two-lobed resonances
shown in Figs. 1 and 2, this term advances the motion of an
equilibrium point at the right of the axis # = O and retards its
motion at the left. This term is the cause of the different
phase shifts observed for the two lobes of the resonance in
Fig. 1. Such a term can be understood as a consequence of
the upward shift of the main wave resonance that decreases
the j values of the lower part of the phase trajectory, increas-
ing the values of the trapping frequency, and does the oppo-
site on top. ;

The expression above explains the values and reflection
properties of the phase shifts observed in the phase plots of

Fig. 1:
We can rewrite it as
¢=Ppm —Po+71acos =D, + A (43)

D, ... is the equilibrium point of the resonances for 7= 0.

For the resonance located at ®,,,, = 0, the phase shift will -

be

Ad, = — Dy + Tacos By _ (44)
and for the resonance at &, =,

Ag, = — Py — 1a cos D, (45)

We see that in A, the two contributing terms have opposite
signs and tend to cancel. For A, they add. This makes
|Ad,] > |Ad,| as seen in Fig. 1(b).

When the perturbing wave is shifted from Q2 to — 2,/
changes to — /. It is fairly easy to show that ®, is odd under

such a transformation, i.e., ®o( — L) = — Dy (/*). The
effects on the phase shifts are

Ad - Dy + Tacos Py = — Ad,’ (46)
and '

Agy Py — Tacos Dy = — Ady. - (47)

Those two equations define the reflection transformation
seen in Fig. 1(c). .

When the inhomogeneity is multiplied by — 1, both
terms change sign because they are proportional to 7. This
implies ' ’ '

A¢51,2—’ - A¢1,2 - (48)

that are the reflection properties seen in Fig. 1(d}.

As will be shown in the next section, the relevant part of
the phase shifts is the constant part, ®,, and the important
result to be recalled is that ¥, changes sign under either of
the transformations considered above and represented in the
phase plots of Fig. 1.

V.INTERNAL RESONANCE RADIATION FREQUENCY
SHIFTS

The internal resonance phase shifts are a sum of two
terms: a constant part, ®,, common to all points in the reso-
nance, and an oscillatory part that depends on the angular
location of each lobe, The oscillatory part is the cause of the
unequal phase shifts in the phase plots described in Sec. IL.
Its presence will modulate the resonance motion producing
additional radiation falling on already established sideband
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positions. This radiation-will not affect the profile of the
radiated spectrum to a great extent and its presence will be
neglected. We will concentrate instead on the effect that &,
has on the resonance radiation.

If£),, istime dependent, &, will also be time dependent,
giving origin to frequency shifts. Reminding ourselves that
), remains equal to Q; /7, independently of the variations in
the wave trapping frequency, we can write

Q- 20, K (k) (49)

7l
and
_ D dK(x) di®
Ky did dr
Dilferentiating ®, we will get the frequency drift Aw,,.:

(50)

D 0, -
A = P — 2L P, (51)
norm - Q!l :
Since
. dd 2
B,y = —rorm K (52)

e > dt’
we can write

Aa"]ocal = (I)

th ((I,:lorm K(K) _2)’ (53)

70, \ o K'(5)
where the prime means differentiation with respect to &°, and
the time derivatives should be taken at a fixed point in space. .

It is possible to show that the first term within large
parentheses is always larger than 2. Therefore, if the main
wave amplitude is increasing, the frequency shift has always
the same sign as the phase shift $,,

Figure 5 shows how frequency shifts can be created ata
receiver at the end of the interaction region even when ®,, is
iocally constant in time. We assume that electrons propagate
in the negative z direction, and for simplicity we reduce the
continuous interaction region to three localized points in
space where radiation is created. The vertical axes represents
the phase of the radiation produced by the resonances if the
inhomogeneity were zero. We assurne that the wave configu-

[ or
[ f D

z
FIG. 5. Schematic representation of the transformation of resonance phase
shifts into radiation frequency shifts. B, is a vector sum of By, By, and B,.
The vertical axes represent the vector phases if the inhomogeneity were
equal to zero. The upper part of the picture shows a situation in which the
amplitudes of the component fields add up to a zero-phase-shifted B,. The
lower part shows what happens when component fields vary in magnitude
keeping a constant phase. The result is a phase shift on B, . If the shift A®
happens on a time interval At, the frequency shift will be Awmq = AP/AL

1
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ration is such as to produce a positive phase shift on the
radiation at the beginning of the interaction region {B,) and
therefore a negative shift at its end (B,}. In the middle point
there is no inhomogeneity and the shift is zero. We assume
that, at a certain moment, B, and B, have the same ampli-
tude. The phase of the received radiation, B,, will then be
equal to zero. If over a time interval At, B, decreases and B,
increases in amplitude, the resulting field, B,, will undergo a
positive phase shift, A®. This will be detected by the receiver
as an increase in frequency, Aw,,,.,, = AP/Ar. We see that
variations in amplitude of component fields having an in-
homogeneity-dependent phase shift are enongh to create an
overall variable frequency field, even when the phase shifts
are locally constant in time.

Since the phase shifts are dependent on Q, ,, and there-
fore on v;, we conclude that associated with the shifts in
frequency there will be an increase in the linewidths of the
sideband waves as they move away from their original posi-
tions in the frequency axis.

VI. EXTERNAL RESONANCES—HALF HARMONIC

To study external resonances; we start with the Hamil-

h(q;PJ) = ho(q,ﬁ',t) + Ghj (q,P’t):
with

(54)

N
ho=p/2, b, = —7g— ¥ 4;c08(¢ — Q1+ ¢,),
i=1 !
where again a factor of € was factored out of .
To arrive at the corrections created by the inhomogene--
ity on the half harmonic resonance, we choose K, = A, and
K, = — 70. This implies :

(53)

N

"
W=y "
! Z(P Q)

i=1

sin(Q — Q7+ ¢,). (56)

The second-ordér Hamiltonian containing the half harmom
ic is chosen to be

_ 1 N A2 z‘Aj{ 1 1
= 2 Q7 4 \P_0)’ (o nj)z)
Xco8(2Q — 20,5t + &, + ¢,). ' (57)

2

The corrections to the resonance will show up in the X,
terms depending both on 7 and on the argument
(2Q — 2805t + &; + ¢;). To calculate K, are need W, that

tonian written as a function of (_9,9) = (g,p): can be found similarly to the ho_mogene‘ous case to be-
‘ i
W, = 44, sin [2Q (@ + Q)1+ 4+ ¢
‘ ,JZQ(P—Q,.)Z[ZP «, +n)]° o
N AA; '
_ 2 sin[ (Q; — Q)7 + (¢, — 8;) (58)
!_‘Z,I 2P— 00, —0) ¢ J ¢ ¢_; ] ;
i)
—2 ————C08 Q.6+ ;).
1'2:1 (P Q. e (@— b
l
Relevant terms for K will come only from LL,#, and from  The full Hamiltonian is now
1L 1 h,. They give E S o p? 0 & i A2
= —— T - L S—
Lo — 374,4; ( 1 + 1. ) 2 = (P—Q,)? _
4 4
. 2 \(P—0)* " (P—1) e a1
Xsin(2Q — 2Q, ot + ¢; + ;) (5% 4 \(P—-0)?  (P-—0)
and . g , Xeos(2Q — 205t +¢: + )
%Lghl_»"A‘A"{ (P—Q)(P—0) + (0, — Q) ) — ErAAS (P)sin(20 — 20+ + ¢ v, (64
3 3
. 2\ (P—Q,)*(P~10,)
, Defining
in(2Q — ; i) 60 '
K can, therefore, be.writtenas 0 P—0)2+(P—Q)° (0, —0) ’
Ky = — 144/ (P)sin(2Q — 20yt + ¢, + ), (61)  where the approximate equality is valid near the resonance,
with ' ' o the Hamiltonian can be rewritten as
1 1 p? e X 4]
fP)= ( Keee——erf4— %y ———
, (P—9, )“ (P—0)* 2 e 2; (P—Q,)*
: 1 (p—ﬂ,-)(P—Q,-)—'i-(Q,-—Qj)z) 62) e, 1 + 1
3 (P-0)P-q) 4 \(P-Q,)? (Pﬂnj)z)
that has the following properties: 7 | Xcos[2(Q — 6y) — 200t + &, + ;] - (66)
24 ; We see that apart fom creating a small initial phase shift on
Q) =——M—, Q) =0. 63 - : .
f () Q,—a)* F8hp) _( _) the equilibrium positions, the inhomogeneity acts on the half
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harmonic as it does on a regular resonance created directly
by a single weak carrier propagating in the magnetosphere.
If we calculate the equation of motion, we obtain

- 46’4 A,
Qe er— 17
('Q'i - Qj)z .

Xsin[2(Q — 6,) — 205t + ¢ + ;] - (67)

The equilibrium points are shifted by
. (£, — Q-)z)
AQu = 6, + lsin ™| ——F— 68
Qshlﬂ 4] + 2 ( 4€A1-Aj ( )

from their original values. There will be no oscillatory mo-
tion if

P dedA; (69)

(Q; — Q,)*
This is a very small value for the inhomogeneity meaning
that the closed orbits associated with such resonances will be
easily stripped away and the resonance destroyed as shown
in Fig. 2(d). '

Frequency shifts and line broademng will also be ob-
served in the radiation coming from external resonances.
They are originated in a manner similar to the shifts and
broadening associated with internal resonances described in
Sec. V, a main difference being that for external resonances
any interacting carrier amplitude variation will contribute to
the local time dependence of the phase shifts.

VIl HIGHER-ORDER RESONANCES

Higher-order “trapped” and external resonances can
also be studied but the expressions describing the effects of
the inhomogeneity are extremely complex and can only be
arrived at with the help of an algebraic manipulation com-
puter program. Those expressions will not be reproduced
here, but a summary of the principal results is possible to
make.

A. Internal resonances

Some inhomogeneity effects come directly from the in-
teraction between the main wave and the inhomogeneity and
should not depend on the type of resonance under study.
Therefore, we should expect to have the same expression for
Aj describing the motion of the resonance towards the center
of oscillation. The stripping away of the outward orbits of
the main wave should remain unaltered, and so should the
upward shift of the main resonance when 7 is positive. An
oscillatory component in-the phase shift of the equilibrium
poinis in higher-order resonances should also be present and
its mathematical expression should be exactly the same as

for first-order resonances, since such a shift is a consequence

of the upward displacement of the main wave resonance, and
is independent of the particular “trapped” resonance under
consideration. The only effect that can and will depend on
the type of resonance under study is the value of the constant
part of the phase shift, &,. Phaseé plots such as the one in Fig.

2(b) show that ®, values have all the same order of magni- -

tude, but they do not always have the samesign. A phase plot
~ analysis also shows that the reflection properties of those
higher-order phase shifis are the same as for the first-order
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ones, i.e., they change sign"when the frequency offset of all
interacting carriers, or the inhomogeneity, is muluphed by
—L

B. External resonances

Higher-order external resonances also have phase shifts
proportional to € in the position of their equilibrium points.
Those shifts, although all of the same order of magnitude,
vary appreciably from one resonance to another and can
even be zero as, for example, in the case of the  subharmonic,
Such shifts are, nevertheless, irrelevant because they are
readily swamped by the direct effect of the inhomogeneity on
each resonance. An nth-order resonance will have a phase
shift of the order of unity, and will be subseguently wiped out
when under the influence of an inhomogeneity with a torque
7= ¢€"~ ', This is a very small value indeed, and if no appre-
ciable growth is present, those resonances will exist only
over a very short interaction region around the equator.

Viil. CONCLUSIONS

The inhomogeneity of the magnetic field of the earth has the
following effects on resonances: '
(1) For an external resonance, it opens up its outer

 closed phase orbits, destroying it completely if the associated

torque is strong enough, and introduces shifts in the posi-
tions .of its stable equilibrium points. The resultant shifts
have the same sign as the applied torque and, even when -
locally constant in time, are translated at the end of the inter- -
action region into radiation frequency shifts. Since the phase
shifts are depéndent on v, , the frequency drifts will be ac-
companied by an increase in the radiated sideband
linewidth. Because the external resonances that gives rise to
sidebands are naturally narrower than the ones associated.
with main carriers, they will be able to exist only over a short
length of the interaction region located around the equator .
without being completely destroyed. :

(2) For a “trapped” resonance it creates a shift in its

" angular position inside the main wave and moves its orbit

towards the center of the main wave resonance. The shift
towards the center is independent of the resonance under
consideration, and contributes to extend the lifetime of the
resonance by moving it away from orbits easily opened by
the inhomogeneity. The phase shifts take values partly de-

- pendent on the resonance under consideration, show weli-

defined parity properties under reflection of the perturbing
carriers around the main carrier position, and change sign
when the inhomogeneity does. Those shifts, as in the case of
external resonances, will be translated into frequency shifts
and line broadenings at the receiving end of the interaction
region.

The difference in resistance to the inhomogeneity
between internal and external resonances is one of the rea-
sons why it is possible to have carriers too weak to be seen in
a spectral display creating easily visible sidebands. Since
their own resonances are external and narrow, the orbits are
opened up, the resonance destroyed, and growth eliminated.
The weak carrier is never seen. However, since they can cre-
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ate resonances inside the strong main carrier, and since those
resonances are not easily affected by the inhomogeneity,
bunching can occur, radiation will be produced, and the
sidebands seen. '
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