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The second part of the paper presents an analytical and numerical treatment of cyclotron
resonances formed inside the potential wells of a set of monochromatic carriers propagating in
a duct in the magnetosphere. It is found that those resonances produce oscillatory disturbances
in the potential well charge distribution that frequency modulate the carriers to produce
sidebands. The frequency spectrum is the same as the one generated by the external resonances
defined in part 1. The carrier trapping frequencies do not affect the sideband wave frequencies
and do not impose sharp constraints on the spectrum bandwidth, on the sideband line
separation, or on the maximum interacting carrier frequency separation. When not highly
distorted by wave growth, a two-carrier sideband spectrum should have an approximately

exponential profile.

I. INTRODUCTION

In the second part of this three-part paper we will con-
centrate on the study and classification, together with an
analysis of the sideband radiation they produce, of cyclotron
resonances created by the electromagnetic fields of an in-
coming set of carriers acting on plasma electrons inside the
carriers’ own potential wells (*“trapped” resonances). A pre-
vious reading of part I of this paper is recomiended, since
the same analytical methods are used to solve the equations
describing the electron motion and the same type of phase
plots are used for displaying numerical results. Most of he
notation used in this second part is identical to the one used
and defined in part L.

We begin part II by displaying, in Sec. II, “trapped”
resonances with the help of phase plots, and discussing qual-
itatively the process of radiation formation. In Sec. ITI, as a
preparation for the work to follow, the equations describing
the electron motion are rewritten using action-angle vari-
ables which are more adequate for the study of motion inside
the potential wells. The Kolmogorov—Armold-Moser
{KAM) theorem is applied in Sec. IV to the Hamiltonian
expressed in action-angle variables and general expressions
for the resonant frequencies of motion and associated radi-
ation frequencies are obtained. In Sec. V, the Lie perturba-
tion method is applied to solve the equation of motion for
nonresonant electrons. Section VI describes analytically an
infinite set of first-order resonances coming from the interac-
tion of any wave pair in the incoming wave packet and radi-
ating mainly at their first harmonic frequencies. Weaker ra-
diation at the subharmonic frequencies is also obtained.
Section VII describes two- and three-wave second-order ef-
fects. Two-wave effects consist of the second harmonic and a
series of subharmonics. Three-wave effects contain intermo-
dulation effects, together with the infinite series of their asso-
ciated subharmonics. Section VIII describes sideband inter-
ference effects due to the direct interaction of resonances
located inside a same wave potential. Section IX looks at
higher-order effects, and Sec. X contains the conclusions.

3495 J. Appl. Phys. 66 (8), 15 October 1989

0021-8979/89/203495-11$02.40

Il. PHASE PLOTS AND THE PROCESS OF RADIATION
FORMATION

Figure 1 shows the time evolution of one of the trapped
resonances we are going to study seen by an observer at a
fixed point in space. The resonance is created by a main
wave, inside whose potential well it oscillates, and by a
weaker wave not visible in the plot. The resonance motion is
phase locked to the weaker perturbing carrier and its rota-
tion is at twice the carrier-carrier frequency difference as is
indicated by the vector diagrams at the corner of the pictures

*(itis a second harmonic resonance ). The trapping frequency

of the main carrier is slightly higher than twice the two-
carrier frequency difference, as should be expectéd, since the
average rotation frequency of the resonant electrons is un-
disturbed by the presence of the resonance. A band of chac-
tic motion is seen around the resonance, and will be present
in all cases where internal resonances are formed. Electrons
in this chaotic band cannot be bunched, and its presence will
contribute to the main carrier saturation by limiting its
growth. We will see in the following sections that radiation
from this trapped resonance will fall mainly outside the car-
rier potential well. Those two facts imply that, for this value
of the trapping frequency; few of the electrons that are di-
rectly affected by the main wave will radiate at its frequency.
In other words, for this electron population, the main wave
has practically saturated due to the presence of the weaker
perturbing carrier. On the other hand, the weaker carrier is
located inside the main carrier potential well, one quarter of
the way from the center to the separatrix, but no resonance
directly associated with its presence is seen. This means that
the weaker carrier is not able to bunch electrons on its own
and grow. We say that, under those circumstances, the weak
carrier growth has been suppressed by the strong carrier.
The radiation process can be understood if we remind
ourselves, from part I, that resonances, coupled to the exis-
tence of an electron concentration gradient in v at all points
in space, can cause bunching when they act on the convective
motion of the electrons moving along the duct. Observed at a
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FIG. i. Trapping resonance created by
two interacting carriers. The main carrier
is located at & =0 and the weaker, per-

— 4

turbing one at & = §}. The main carrier
trapping frequency is =202, and the weak
to main carrier amplitude ratio is 0.2. As
the carriers rotate relatively to each other,
the internal resonance rotates at twice
their frequency separation: (a) Relative
carrier phase = 0°. (b) Relative carrier
phase = 60°.  {c¢) Relative carrier
phase = 120°. (d) Relative carrier
phase = 180°.

fixed point in space, the trapped resonance will exhibit some
bunching, causing a localized perturbation inside the poten-
tial well. Now, the resonance is phase locked to the weak
carrier, and as time flows, its position, together with the per-
turbation in electron concentration associated with it, will
oscillate inside the main carrier potential well. This oscilla-
tion will modulate in frequency the radiation produced by
the main carrier, creating sidebands. An important fact to be
noticed is that the radiation process is a collective phenome-
non coming from oscillations of distorted electron concen-
trations inside the potential well, occurring as a function of
time at a fixed point in space, independently of the existence
of full oscillations for individual electrons as they move
along the duct.

(a)

Frequency

[Il

Figures2(a) and 2(b) have a pictorial description of the
resonance radiation mechanism. We assume that each inter-
nal resonance, due to the disturbances it creates in the elec-
tron concentration, constitutes a localized source of radi-
ation, instantanecusly monochromatic. If the carrier has
frequency @, and the resonance turns inside the carrier wave
potential with frequency Aw, radiation will be observed at
frequencies @ = o, + rA®, 0<n < « as a consequence of
the frequency modulation process. '

Figures 2{c) and 2{d) show the case when the internal
resonance has two lobes. Each lobe will radiate the same
frequency spectrum shifted in phase by 180°. The modula-
tion around the carrier frequency will now repeat itself twice
as fast, creating a spectrum of lines separated from each oth-

(o)

Amplitude

l I i FIG. 2. Radiation from oscillating trapped res-

— e f onarnce: (#) As the resonance oscillates with fre-
Acd quency Aw in the potential well, it creates vari-
able frequency radiation with period 2#/Aa.

(b) Demodulation shows a spectrum of lines

separated by Aw. (¢} If the resonance is two-

lobed, the radiation will have a period of 27/

(e (2Aw). (d) Demodulation will show lines sepa-
rated by a frequency 2A@. Since the two reso-

nance populations are not identical, weak haif

harmonics will be found between any two main

_harmonics.

Amplitude
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er by the frequency 2Aw if the perturbations in electron con-
centration are exactly the same for the two lobes. If some
difference occurs, due, e.g., to variable distortions caused by
the perturbing carrier, the spectrum will also have odd mul-
tiples of Aw which will show up as weak half harmonics
between the main evén multiples of Aw.

llt. ELECTRON EQUATION OF MOTION IN ACTION-
ANGLE VARIABLES

From part I, we know that the equations describing the
electron motion under the influence of N waves are

N
b= — 3 O sin(6— Q1 +4), (0
i=1
Q,v e [U"/Ug + I]Aa),-, (2)
¢, = (Q; — Aw; )t + Ady, (3)

where Q% = ev, k,B./m is the square of the trapping fre-
quency associated with wave i, £}, is the Doppler-shifted
frequency difference between wave ¢ and reference wave 1,
and v, is the wave group velocity at the average radiation
frequency.

For the study of internal resonances created by the
wave-wave interaction process, it will be extremely conven-
ient to single out one of the waves that can always be wave 1
by an appropriate labeling of the carriers, and rewrite the
equation of motion using ( j,¢), action-angle variables for
electron motion under the influence of that single wave. The
meaning of ( j,¢) can be seen from Fig. 3 and the defining
equations:

— L fod— Lo
2 T
J is proportional to the average value of & over the electron
phase space trajectory and equal to the area enclosed by the
trajectory divided by 2. ¢ is defined from the main wave
trapping oscillation frequency:

7 ¢ =0,/ —1t). (3)
¢ goes through one cycle in the same time the electron goes
through one oscillation inside the potential well, and can be

thought of as describing the phase of the motion. By an ap-
propriate choice of f,, the relation between & and ¢ is

g =2sin"" [KSH (m)] , (6)

T

(@). (4)

e

Areasj 21

FIG. 3. Action-angle variables used for description of trapped resonances.
277 is the area enclosed by the phase trajectory and ¢ is the phase of the
motion. Although ¢ is a constant, @ has a complex dependence on time.
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with sn the Jacobian sine function and K the complete elhp-
tic integral of the first kind. « is defined by -

w8 = (14 hy/Q71)/2, (7)
A, being the energy of the motion. j is given by

where E is the complete elliptic integral of the second kind.
The trapping frequency can be expressed as

QN =0,,7/2K(k), 0<Q,(NH<Q,,. (9)

Written in Hamiltonian form the equation of motion
becomes
92 N
h = 0 cos 0 — % Qf cos(f— ;7 + ;).
i=2
(10}

As a function of ( j,¢), it can be rewritten as

Z O cos[O(g) — Ot + ¢, ].
i=2 (11)

The cos terms inside the summation can be explicitly written
as a function of ( j,¢). This was done by Smith and Pereira’
and the result is reproduced here:

cos|B(¢) — Ot + ¢;]

h(jd) = hol ) —

Z ,,(j)cos(ngé—ﬂit +¢i)) (12)
with |
2z /2
V,,('):( "T ) " (a0, (13)
J Ko 1 (—q" n#
Vol j) =2E(x)/K(x) — 1, {14)

and ¢ = exp[ — 7K{y/1 — «*)/K(x)]. An important prop-

ertyof the ¥, ( j),isthat ¥, (j) = ( — 1)*V_, (/). Figure 4

contains plots of ¥, as a function of «* for a few values of #.
The Hamiltonian can be finally written as

h(j.8) = ho( D)
N

S S @iV, (cos(ng — t + ).
i=20= —o
(15)

-1.0

ls 1 1
0 0.25 0.5 0.75 K2

FIG. 4. Plots of the potential ¥, as a function of & for n = 0...4. Negative
values of » can be obtained by noticing that ¥ _, () = (— DV, (/).
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IV. GENERAL SOLUTION OF THE EQUATION OF
MOTION—KAM THEOREM ) :

~As in part I, the system we are studying has &N + 1 de-
grees of freedom: the phase of the N waves, and the electron
angular position. But since we have arbitrarily defined the
origin of frequencies as being wave 1, we areleft with only an
N-degree of freedom system that can be described by the N-
dimensional Hamiltonian: :

N
Ay (gip:) = ho(py) + 2 p;

i=2

N o0 ’
=2 > QuV.(p)cos(ng,—g; -+ 4,
f=2n=—
' (16)
with the following equations of motion:
. ahN 3}10 N
=oe— = ‘Q' n(
“ ap, ap, igln—z—w P
XCOS(an__q;+¢[)7 (17)
Ok
b= - 34,
N o .
= _“Z Z nQLV, (p)sin(ng, — ¢, + ¢,),
f=2n= —
(18)
. Ohy )
qu—gm——ﬂ (i 1), (19)
and
. Ohy
P = 34,
= 3 OV, (psin(ng —q + ) G£L).
H= — (20)

The p; for i# 1 are dummy variables and can be ignored. The
equations for the g; give

= QI.I, (21)

Substituting those values in Egs. (17) and (18), making

21 =Jj,and g, = ¢, we get the right equation of motion. If we
now define
N
Hy(p:) = hy(py) + 2 Q.p; (22)
=2
and
N @
H(g,p;)= — Z Z QLY. (p)
i=2 0= —
xXcos(ng, —q; + ¢}, (23)
We can write
by (gup;) =Hy(p:)) + H(q,,p,), i= L..N, (24)

where H,(g,.p;) is periodic in all g;, and H,(p,) depends
only on the p,. Once again, the KAM theorem for nonlinear
systems states that the motion described by H,, will be appre-
ciably affected by H, only if the following relationship holds
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for the variables describing the unperturbéd motion;
N S

D ng, =0, (25)
i=1 .
n; being arbitrary integers. Makmg g =d=Q, we will
have
N
= E n,Q./n. (26)

i=2
That is, the bounce (trapping) frequency of the electron res-
onates with the Doppler-shifted wave frequency differences.
Since we have already fixed the origin at wave 1, there are no
free parameters left and no additional constraint is imposed
on .

To see the effect of the resonances at a fixed point in
space, and derive an expression for the radiation frequencies,
we need to define an electron stream. For that, we take a set
of electrons with trapping frequency € and an infinitesimal-
ly weak wave with a Doppler-shifted frequency offset also.
equal to . Such a wave is said to be resonant with the elec-
trons because their relative phases are constant. Next we
define the stream as a subset of those electrons having a cho-
sen fixed phase relative to the electromagnetic wave at all
points in space, and consequently at all instants of time.
Since the wave at a fixed point in space turns with frequency
Aw = Q. /(v + v, ), so will the phase ¢ of the electrons in -

the stream, which can now be written as
@ =0t — 1) + Awt, + &, (27)

where 7, is the moment the electron at z = — v (1= 1;) en-

. ters the interaction region. The radiation coming from such

astream can be substituted for the radiation coming from the
accelerated electrons. Since Aw, = () ;vg/ (v" +v,), the
expression for the resonance frequencies can be rewritten as

N
Aw=Y
(=2

n; Ao /n (28)

where Aw is the oscillation {requency of a cross section of the
stream we have just defined. The electron stream oscillations
will frequency modulate the reference wave monochromatic
radiation, as mentioned in Sec. II, adding lines at
® = @, + mAw, m being an arbitrary integer. The radiation’
frequencies will then be

(29)

Since Aw; = w; — w, and n, can be substituted for mn; be-
cause both are arbitrary integers, we can write

N N . '
W= [0’1(” -y n,-) + > n,-a),-]/i. (30)
=2 i=2 -
Defining n, = (n — 3}_, n,), we finally get
w= Z B0, E H;, 3D

i=1 i=1

which is the same formula for the frequencies as obtained in
part I.

L.AD Sa 3498



V.ELECTRON MOTION FOR NONHESONANT VALUES
OF V,

If we use the exp]icitly.time—dependent form of the
Hamiltonian, and put )2 = e4,, we have

h(‘#’JJ) = ho(¢5J,f) + 6h1(¢zjat)’
with
ozh (])
= z Z AV, (fcos{ng — Q.6 + ;). (33)

I=2n= =0

(32)

To study nonresonant terms, using the Lie perturbation
method described in part I, we ignore all resonances, and put
in the K, only constant terms. To get the simplest nontrivial
result we have to go up to second order in the perturbation
expansion. Doing this, we get K, = k, and K| = 0 (because
i A, has no constant terms).

This implies

W, = ——J- dr i [® + Q,(r—0),J,7]

N 0 A.Vn( )
= -—51 b — 0,1
2,2 oo —g o0
(34)
We then choose
2K, = {L.h)) = {W,h, D). (35)
A straightforward calculation shows that
{Wl!hl} = —an % - _an %
_ ab a7 af b
':_ 2 Z A (mam m — Ry, V;n ) .
=2 muoa= — oo .
Xcos{ (n+m)® — (§; + Q) + ¢ + ;]
N o0 . .
~LS S 4 ma,v, +ra, Vi)
2 iWf=2mn= — .
Xcos[(n—m)P— _(\Qq Q)i+ ¢, — ¢f]’
: (36)
where
AV, (D
Ay =————>—"—"> (37)
nQ, () —

and the prime indicates differentation with respect to J. If
), # — €); (no symmeirically placed waves in the system),

,.K2= 2 —-({th })

= __ZA,.(na,f,, Ve +na, V5

Ln

= 4%24-11((1,-”1/")’ (38)
and
& nAW? (ZV’ QY )
K =ho(J A .
oty = Z nQ, —Q, \ ¥V, nQ,—Q,
(39
3499 . Appl. Phys., Vol. 66, No. 8, 15 October 1989

Hamilton’s equations of motion for X can be solved:

oK
= —— =0, 4
J Frem (40)
JK  Bhy(y L, 9K3
= — = :n. .
T e T ar (41
The solution is
J=Jdy (42) -
5K ,
b == Qt+¢’0—ﬂ(J0)t+€2 r+<I> (43)

The transformation back to (&, ], keepmg only the first-
order terms and constant second-order terms, is given by

45:4);6%—5([1%,%})- ' (44)
aFf 2 ot
' W, & IW,
= L ([, 20, 45
| J .+ € — s +— 1 5 | (43)
Evaluation of the Poisson brackets gives -
(2o
_ ay
and
2 g
which gives . .
AV ' . - nly R
b=0_¢ #(V" __,fwf__)_
ol nd, — 0, \¥F, nf}, — O,
Xsin(nd — Q,1 + ¢,), (48)
& nAV? (V' ns}; )
=J _ i e _
/=4ty Z,‘(nﬂ —0,)° nQy, — 9,
nd. v,
+e§hcos(n¢ Q.0 +¢). (49)

We see that up to zeroth order ( j,¢) is equal to (J,®), and
the motion is just the normal oscillation, with frequency
Q, (J,), of the electron inside the potential well.

" The first-order oscillatory terms in the above equations
predict the existence of a conditionally periodic jittering mo-
tion superimposed on the main motion, maximized when
n$Y, =, for some { and n. Under those conditions, the parti-
cle motion will add to the bunching associated with such a
resonance. ' ' ' o : ‘

The second-order corrections describe an important ef-
fect, here due to the adiabatic invariance of J: If we average
away the oscillatory terms, and assume that a certain parti-
cle has j = J, for e = 0, and that the wave fields are adiabat-
ically turned on, then J will remain constant, and ¢ will vary
as :

. OK S (Jy)
$=0,0) + & —2"2. (50)
a7,
If J, is such that €}, (J,) ={),, for a certain
. . & rAlVIQ,
=J + A= ———— " 51) .
J 0 .J o 5 (-”Q.e_ﬂf)? (51)
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and

; s L& nAVQ?

P, (o) + UA=Q, () — 5 m . (52)
The particle will be shifted due to the presence of the waves,
the forces being such that each wave tends to pull the particle
towards points where the wave Doppler-shifted frequency
offset is a multiple of the particle trapping frequency. This
shift will create a gradient around those points, increasing
the growth rate of sideband waves associated with reson-
ances located at those frequencies. (Those will be the first-
order resonances described in the next section.)

Since radiation is a collective phenomenon, it will be
extremely convenient to observe the effects of the electron
motion, using a stream defined according to the outlines es-
tablished in Sec. IV, The whole electron distribution can be
broken down into such streams, their bunching and distor-
tion determining the radiation characteristics of the system.
Those streams will also be the loci of the equilibrium points
for the resonances to be studied in the following sections.
The stream will be composed of electrons with trapping fre-
-quency 2, and its cross section will oscillate at the frequency
Aw = Qv /(v + v,). The phase of the component elec-
trons can be obtained by conveniently defining &, in the
general solution for &:

D=0t + P, =0t — ) + Awty + Ad. (53)

The electrons in such a stream have equal radiation charac-
teristics, because they all describe the same path in the wave
potential (with the right phase delays to account for the
finite radiation propagation velocity). The stream forms a
rigid direct current (dc) line consisting of a spatially period-
ic distorted straight line wound .around a spiral path, and its
motion can be studied in a variety of ways. The most conven-
ient is to observe the motion of its cross section at a fixed
point in space. From the above equation it can be seen that

such a motion will be oscillatory with frequency Aw, produc-

ing radiation at multiples of the oscillation frequency. We
see that individual electron motion after integration over the

‘stream becomes only indirectly relevant. The stream can be

so short that no electron in it will have time to perform a full
oscillation in the potential well. However, the stream can
still continuously execute full oscillations, radiating at well-
defined frequencies, if the electron flow is never interrupted.

VL. FIRST HARMONIC RESONANCE AND ASSOCIATED
SUBHARMONICS

To study first-order resonances we put -

K,=#h, o (54)
and choose

K= —4,V, (Hcos(m® — Q;t + ¢;) (55)
if (}; 52 — ), for all i. This implies

AV, (N
W, = ————sin(a® — Q,r +¢,) (56)
! (i#%or nﬂ((-]) - Q; .
(nigtm) )

and

K= hy(J) —ed;V,, (Nycos(mP — Q¢ +4¢;). (57)
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Hamilton’s equations applied to K will give

: K . '
J= u% = —emA,V, (N)sin(m® — Q;t +¢;), (58)
. IK (D) , '
¢ :E=#—- EAj Vm (J)Cos(mcb - ﬂjt + ¢j)’
(59)
. 2 . 2
bpxd Ny I gy )
ar: ar:
Xsin(m® — Q;t +¢,). {60}
Defining
AP =m® - QO + ¢, (61)
we can write the equation of motion as
- 2
AD = — emd, 3;‘}—’?) V. (Dsin(Ad). (62)
This resonance has a full width, in the & variable, equal to
3%hy (D) A2
T, :4(€AJ- 5;2 V.. (D) ) . (63)
The width in J is obtained by noticing that
=0, —J/8+.., (64)

which implies I', (J) = 8T, (D).

If m<0 and odd, the equilibrium points will be
A® =2k7, otherwise they will be given by
AP = (2k + 1) The clectrons at the equilibrium points
will oscillate with frequency @ subject to the following con-
straints:

0<d = Q,/m<Q,,, (63)

which gives a minimum value for |m| for a given wave trap-
ing frequency: ‘

| >, /€. (66)

Using the expression for ¢; from Eq. (3), we get for the
motion of the equilibrium streams:

. Aw, - Q,(t— 1) L2k + L7 —Ag
m m m .

The equation describes a | |-lobed resonance oscillating in-
side the potential well at a fixed point in space with frequen-
cy Aw,;/m. To look at the stream motion in the ( j,8) vari-
ables, we need the transformation equations:

AV, Vv, nl,
p=®—¢ - ( S %)
taner B, — O, \V, nd, — 1,
(n7m)
Xsin(n® — Q,t + ;) (68)
. & w4V (V) nsY;] |
2 (i#f) or (nﬂt — ;) V. ?IQ( - ‘ni
(nz£m)

+e ¥ L (n® — Q1 +¢,). (69)
€ ————cos{nd — ).

(i or 1, — £},

(nsm)

Since m}, =, and md — Ot +¢; = (2k + 1)7, wecan
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put

(nAw; — mAw;)

nd— QO +¢, = fo+ Ppumi: (70)

From the equations of motion wecan alsc get
Q,=0/m=Q, —J/8+ €4, V. {71)

Combining those equations, we have the expressions for the
coordinate transformations:

Aw; md,;V,

tO + q)Ok
(r#j) or ROy — m{,
{(nm)

(V,’, mnf}! )
X —_
vV, nQ;—m,

i ( (nAw; — mAw;)
X sin
‘ m
— Q;/m)

¢=

(72)

t() + (I)Unmk) *
i= 8(Q,,
nmAiVu

(i3 oc 1Y — mA,
(nzm)

( (nAw; — mAw;)
Xeos
m.

+ 84V, +¢

(73)

rO “+ (I)ijnmk) .

The equations show that points in the resonance rotate with ‘

an average frequency Aw;/m and are slightly shifted in j
towards regions of hlgher potential, ¥,,.. This rotation in
phase space is equivalent to oscillations around the mean
rolation frequency of the electron siream in real space, creat-
ing a frequency modulation of the radiation coming from the
‘carrier. The resulting radiation spectrum has lines with fre-
quencies @, + (n/m)Aw;, — « <n< o, for a single lobe.
The multiple Jobed structure changes the spectrum appre-
ciably. If all lobes have exactly the same electron distribu-
tion, the system will repeat itself at m (Aw;/m) and the spec-
trum will have frequencies @, + nAw;. Since different lobes
wil! have somewhat different electron distributions, subhar-
monic radiation will show up at frequencies @, + (nk/
m)Aay;, 1<k <m. Since the differences in electron popula-
tion will not be very large, those subharmonics will in gen-
eral have smaller amplitudés than the integer harmonics of
Ay '

Since the maximum frequency shift in the instantaneous
radiation frequency, Aw . , isequalto 24w, , , the resonance
half-width that the electron stream sees, and Aw<Aw,,
where Aw,,; = Q,,v,/ (v + v, ) is the carrier trapping fre-
quency for the electron stream, the modulation index,
Ao i, / Aw, can easily be of the order of 1, generating quite a
wideband spectrom.

If n§); #£mQ; for all { and », the time-dependent distor-
tions of order € present in the transformation equations for
( j.¢) will give contributions of order €-¢'/? to the radiation
and will be negligible up to the second-order effects we will
be analyzing in this paper. They might be important, how-
ever, when compared to higher-order terms. If, on the other
hand n(); = m(}; for some i and #, then resonance overlaps
are present and the choice for K| has not been correctly
made.
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VII. SECOND-ORDER RESONANCES
A. General expressions

To look for second-order resonances, we choose K, K|,
and W, tobe the same as in the nonresonant case. 2K, will be
obtained from terms in { W,k }:

{W,,hl}z— 2 E A (ma, ¥V,

ifj=2mn= —

Xcos[(n—}—m)q)-— (Q; + Q) +¢: + 6]

—na, Vi)

_2 z E A (mal,V, +na,V,,)

=2 mmn= —
xcos[(n —m)‘b— (Q — Q)¢ + ¢ —¢;1-
B (74)

K, will always consist of K3, the constant term obtainable
from { Wk}, plus a chosen resonant term. In all cases, K,
can be written as

K, =K} + K] cos(}]P — Q;t +¢;) (75}
and

K=nhy+€KS + K, cos(lb — Qut +¢;),  (76)
with ¢; = (Q; — Aw; ), + Ady.

Hamilton’s equations will be

: K .

J= _%zezm;sm(@_nﬁz + 4y, (77)
_ 9K _ dhoth) : ’
=== ;J + &K 9 + 2K cos(I® — Qut + ),

(78}
= %h,(Jy - a 2ho( )

b~ 5.(}2 J=¢ FTe — LK) sin(Md— Qg + ¢y).

. (793

Defining
AP =1d —Q,t + ¢, (80)

we can write the equation of motion as:

. 2 . i
Ad = ﬂl%m sin (AD). (81)

The resonances have full widths, in the variable, equal to

ERNC & :
I"_=4€( 'a—(z) ! ) : (8)
Since 3 2k, (J) /3 % < 0, the equilibrium values of AD will be
AP, = 2k + )7 if K; <0, (83)
A®, = 2kr i K10, (84)

with & = 0...(|/| — 1). For those equilibrium points,: which
define |/ |-lobed resonances, ¢ will vary as

Q.t—d,. + AD
(I) — i ¢},‘ + 4] , (85)
which can be rewritten as
B Awyt, N 0t —1) 'A%—Afl)(,' (86)

! S
The resonances will oscillate in the potential well with fre-
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quencies R e

Ao = Aw, /], (87)
and will ra-diate at the frequeﬁciés

® =, + (nAwy/I), (88}

with enhanced amplitudes at frequencies such that n/7 is an
integer.

B. Three-wave resonances: Intermodulation
1. Frequency subtraction

If we take two distinct waves with frequencies 0, and
(};, the term in {Wl,h } asymmetrical under permutation of
the 1ndlces i andj gives

HK,—K) = - Z l(ﬁ,-,-m,, + B s )
Xeos{ /P — (£, — )t + ¢, — ¢f]’
(89)
with
Bymn = A;(may, V,, + na, V). (90)

Calculation of the s leads to the following expression for

AAd, = WV, _,(n—Dn
K-K{="21 % d
2 H= —a (I—H)Q, «I—RQ_,-
(V:, oV, i )
X -+ +
n¥, (n—0V,_;,  (—=n)Q; +n),
Xeos[I® — (Q, - Q) + ¢, — ;] o1

or

n= — e

K,—K)= Z d(n)

Xcos[/® — (£, —Q))t + ¢, —¢;]. (92)

It is possible to rewrite the summation in sucha way that one
of its limits is finite and terms of same magnitude are added
together. To do this we notice that if / is odd, '

S odmy = 3
4

= — n={(I

din) +dd—nm),  (93)

1372

and if / is even,

S dn) = AWM+ > ) +dd-m

{724+ 1
o0
=3 [1-
ne= /2

where 6 representé the Kronecker delta function.
..+ Evaluation of d(n) + d(/ - n) for odd / leads to the

H= — o

a,,n

= ) [d(n) +d(I—m)],

(94)
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expression -

K, =k?+ 24

< 12V,,V,,,,(n—l)n(ﬂf+ﬂj)
=d3ns 120-0- +n{l—n)(Q, — Qj)z

(Vﬁ Vi
X +
nV, (n—0V,_,
2n—D(Q, — Q)
P00, +n(l—nm(Q; — 0,)*

X

lﬂ,’)

Xeos{ I — (£, — Q)1 + ¢, — 4,1, {(95)-
and for even [:
AA,
K,=K} A
% i (] _ 6:;(.’/2) ) - lI/n I/n—l(n _l)n ,
n=ir 2. ) Qfﬂj+n(l—n)(ﬂi_ﬂj)
V;l V:i-l
X 2n— DO, — O,
[( n+(n_l)]7u—[)( § )( J)_
10+ 03 —2n(l —n)(Q, — nj)?m,]
PO, + n(l — n)(Q; — Q,)? !
Xcos[ D — (), — Q)1 + ¢, %qu}.' (96)

In both cases, K, can be written as
K2=K2+K;cos[l(1> (Q Q)t+(¢ ¢)}
| (97

The resonance descnbed by K, has a full width, in the ®
variable, equal to

1A T - N1/2
ro=af | TR )7, ©8)
it will oscﬂ]ate in the potential well w1th frequency
. Ao, mAco 0 =
Aw = = C (99)
o I-- :
‘and 'will radiate at the frequencies
w=0,+[n(w, o)/ ~ (100)

If for odd / we take the case of two waves extremely
distant from the main carrier, but having a finite frequency -
separation, we can find an approximate expression for K, by
taking the limit £); - o0 with Q; — ), finite:

K, =K5 + (4,4,/9,)5,(J)

Xeos[ M0 — (X — )t +4,— 4], (101)
with
Sh= S =DV, V¥, V,_,
= (14 13/2
(102)
This resonance will have a' width .
i /2
r,=fi(,4,.,4, I ¢ gy ) . (103
\/ﬁ; ogr? o
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Since '« 1/ Jﬁ, , the resonance width may be sizable even
when large distances separate the main wave from the per-
turbation. In particular if a large set of weak and equally
spaced waves perturbs the main carrier, the total perturba-
tion will be a function of a large number of those weak waves,
and the overall effect, although in practice only a few times
larger in magnitude than the one created by a single pair of
lines, will be nonlocal, with properties not entirely attribut-
able to any wave pair in particular.

The general expression for K, is a sum over n of terms
containing as a denominator the expression

PO, +n(l—m(Q, — Q) = [({—m)Q,; + n%;]
X [ —n)Q; +n8d;].
If for some n we have either

n=n=I0,/(Q; - Q;) (104)

or
n=n,=~ — [,/ —Q;)], (105)

the summation can be approximated by the term that has
such a value of n alone. Since n, +#n,=1, n,#n, and
Ry 31/2, at most one value of n will satisfy any of the two
equations. Such value if it exists will be n = max{(n,,n.),
which we will assume for simplicity to be n,. Because the
perturbation expansion converges only if there is no reso-
nance overlap inside the carrier potential well, which causes
chaos, and the enhancement of the term we are looking at is
caused by the existence of a |r,|-lobed first-order resonance
caused by wave 7 alone, we must have as the closest possible
spacing for the two resonances:
0,-9 0

; ——L =2fed;[V,]/8.
1

Under those conditions X9 and K, can be rewritten as

(106)

K=/ e, (107)
Ky =(f5 /Jercos[i — (0, — Q) + 6, — ¢, ],
{108)
K=hy+ &% + 8777
X cos[ 1 — (€, — Q)¢+, — ;] (109)
This will lead to an enhanced resonance width:
T = ( —_5_2;;2” fr )w, (110)

putting the resonance halfway between a first- and second-
order effect in terms of its magnitude.

We note that the width of this type of resonance when
created by the processes described in part I of the paperis a
totally symmetric function of the wave amplitudes, i.e., the
width remains invariant if any permutation is made among
the interacting carriers. This is not the case when the same
effect is described by a trapped resonance since it is highly
convenient that the wave that contains the resonance be the
strongest of them all, so that the required value of |/ | is mini-
mized and the radiation is as strong as possible.

2. Frequency addition

If we take two distinct waves with frequencies {}; and
Q;, the term symmetrical under permutation of the indices §
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and j gives

4(K2 - Kg) = (aijmn + ajimn)
m-n=1
Xeos[I® — (Q; + Q)¢ + 6, + 4],
(111)
with
aljmn =Aj(ma|{n V-m — ha,, V:n)‘ (112)
Calculation of the «'s leads to the following expression for
K, -

4,4, = v, v, ,(—
K-Ki=—2 % — L e —
T4 =00 —a(ln)(Q + Q)
V., ¥
X 2?’1—1) Qf—i-ﬂ)( no l—n )
( ( ! nl/n (I_H)VI—M

PO+ 0 —2n(l— ) (Q, + Q) ]

P00 nd =m0+ 9
Xeos[ /0 — (0, + Q) +¢ +¢,]  (113)
or

o0

X clmcos[I®—(Q + )t + i+ 6],
T (114)

Since ¢(n) = c¢(I — n), we are led to the following simplifi-
cations:

Kz*Kg_

For odd |,
Kz:Kngi S c(n)
' n= (I 4+ 1)/2
Xcos[ I — (€, + )t + ¢, +¢,]-  (115)
For even {,
1
K, =Kg +— (2 _61:(.'/2) Ye(n)
4!::!/2 X
Xeos[IP — (2, + Q) + b + ;] (116}

In both cases, K, can be written as
K, = K3 + K, cos[IP— (Q; + Q)¢ + (4 + 4]
(117)

The resonance described by K, has a full width, in the ¢
variable, equal to

l"+=4€( %E—DK; )Vz, (118)
it will oscillate in the poténtial well with frequency

Ao = (Ao, + Aw,)/], (119)
and will radiate at the frequencies

o=, + [#{Aw, + Aw,)/T]. (120}

An example of this type of resonance is shown in Fig. 5 -
forl= —2,0, =7Qp,and Q; = — 9Q,, with £2,=Q,,.In
this example it can be seen that the main wave trapping fre-
quency imposes no constraints on the required perturbing
carrier frequency separations or on the bandwidth and line
separations of the radiated spectrum. The perturbing carri-
ers are positioned. several times ),, away from the main
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0.
-
-2, 0 20, 8
FIG. 5. Frequency addition intermodulation resonance for /= — 2,

0, =704 and ; = — 90, with 0, = 6/7¢),, . The resonance consists of
the two crescent shapes symimetrically placed relative to the 8 = 0 axis, and
centered at #=0. As time flows, they will turn with frequency
Ao = (Q; + )/ [v,/( Y +v,)]- The three lobes at right, located at
8= 202,; and =0, &+ 2#/3, represent an external 1/3-harmonic reso-
nance created by wave / and the main wave. At the left the external reso-
nance for the interaction o = w, + w; — & (8= — 20, and 8= 7) can
also be seen. A sizeable chaotic band is seen circling the main resonance. Its
presence will decrease main wave growth.

wave potential, and the resonance produces a spectrum with
main lines separated by 20,5 (), ;.

Similarly to the previous subsection, due to the poles in
its denominators, X, will be enhanced if

n=n,,=iQ, /(0 + ), (121)
Under those conditions K9 and K ;* can be written as

K9 =fINe, (122)

K =(f5 ey cos[ i — (@, + Q)1 + 6, + 4],

(123)
ar
K=hy+ &3+ 725
Xceos[ /P — (Q; + Q)1 + ¢, + ¢, ], (124)
which also leads to a larger resonance width:
r_:é‘“( 5—23’35%]_) S )1/2. (125)

C. Two wave effects: Second harmonic

If in the expression for {W,4,}, we select the terms
symmetrical under permutation of / and j, but assume § = j,
we get a new type of resonance. Since we do not want this
resonance to fall on top of any already present first-order.
resonances, we choose m + # = / to be an odd number. The
expression for K, can then be either directly calculated or
obtained from the {requency addition resonance by putting
i =j and dividing all terms by two. We then get

A = WV, (—-mn

o i
=5 +_n:u+n/2 (2n — DY,
x( v B Vi, _ ", )
nV, (I—m)V,_, 2rn—-0D0, /7
X cos(ID — 2041 + 26,), (126)
which can be written as ' _
K=K+ K2 cos(/® — 20t + 2¢,). (127).
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The resonance described by X, has a full width, in the .fb
variable, equal to

ry=de (|0 g31)", (128)
it will oscillate in the potential well with frequency

Aw = 2Aw, /1 (odd 1) (129)
and will radiate at the frequencies

w=w,+ (2nlAa /). (odd I). (130)

This is a second harmonic resonance that will produce most
of its radiation at even multiples of the frequency separation,
Aw;. There will also be some radiation at subharmonic fre-
quencies, adding to the spectrum weaker lines separated by
multiples of 2Aw, /1.

VIH. INTERFERENCE EFFECTS

In the case of first-order resonances, if we happen to
have two waves, / and j, such that Q, = — Q;, the same
value of ¢ will be simultaneously resonant with both. We are
faced with the case of resonance interference. For a firsi-
order Hamiltonian we must then choose

K= —AV_, (Deos( —m® — Q1 +¢,) — 4,V, ()

Xcos(m®P — Ot 4 ¢)), (131)
which is equal to .
K= —4,(— 1)V, (Noos(m® — Ot — ¢} — AV, (J)
Xcos(m® — Nt + ¢, (132)
and can be rewritten as
Ky =rcos(m® — (4t — D), (133)
with
tan B, = A,(—1)"sin ¢, — 4; sin ¢, (134)
4,(—1)" cos ¢, + A; cos ¢,
and
rP=A} 4+ A4 2(—1)"4,4, cos(d, + ). (135)
If, + ¢, =,
r=|V,|l4,(— 1" —4,], (136)

which is minimized if m is even, and zero if additionally
A; = A,. Inthis case, all even m, first-order radiated subhar-
monics will have zero amplitude, and odd ones will be rein-
forced.

If g, + ¢, =0,

r=V 4,0 =1)"+ 4], (137) .

which is minimized for m odd; and zero if 4; = 4,. If this
happens, all even m first-order radiated subharmonics will
be reinforced, and the odd ones will be weakened. The odd
ones will not be completely cancelled because it is always
possible to get radiation at their frequencies from an even
resonance with an appropriate m.

Those interference effects are a simple consequence of
the well-defined parity properties of the Hamiltonians gen-
erated in the wave-wave interaction process. Such reflection
properties will also be present in higher-order terms. For
instance, it is possible to show that for all of the already
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calculated second-order terms, the parity of the Hamilto-
nian is equal to ( — 1)’. As a consequence, interference ef-
fects, similar in nature to the ones above described, should
also occur among them.

1X. HIGHER-ORDER EFFECTS

From the examples seen in the previous sections and
from the way each term is obtained, it is possible to extrapo-
late the possible frequencies for effects of order n:

N
Aw =3 nAa/l

i=2

(138)

with =Y, |n,| = n. [tis clear that terms of order n contain at

most # + 1 interacting waves.

Two given waves can generate a # order harmonic by
two different processes: (1) First harmonic radiation by a #-
order harmonic resonance and {2) high-order harmonic ra-
diation from a low-order resonance.

The n-order resonance widths are of the order €. The
amplitude of their first harmonics should therefore go down
exponentially with #. High-order harmonics coming from a
low-order resonance have amplitudes proportional to the
Bessel functions J, which decrease in value, as a function of
n, faster than an exponential, and can therefore be neglected.
We are led then to the conclusion that harmonic sidebands
created by two waves through trapping effects should have
an exponential amplifude slope as a first approximation, as is
indeed borne out by the data. '

X. CONCLUSIONS

As main results from trapping effects we can quote the
following:

(1) Because their frequencies are independent of v, and
because if |#| is large enough a resonance will fit in any wave
potential, sidebands have narrow linewidths and well-de-
fined frequencies, and can be produced independently of car-
rier amplitude values or variations. However, weaker waves
will have a spectrum more finely divided by subharmonics
because higher values of |n]| will be involved. Integration
over different pitch angles will not smear out the resonances.

(2) Electrons interact with Doppler-shifted wave sepa-
rations which may be larger than the nominal frequency sep-
arations by a factor of 3 or more. The resulting effect can be
understood as either a decrease in the time constants of the
system or a decrease in the interacting wave amplitudes.

(3) Since around the equator electrons can always be
temporarily trapped, i.e., they will describe part of a closed
orbit if put inside the main wave potential well, electron
streams can always exist giving rise to trapping effects with
arbitrarily weak fields, independently of inhomogeneity ef-
fects.
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{4) Due to the frequency modulation process, side-
bands are created in symmetric pairs. Line growth can
change their amplitudes and symmetry appreciably.

(5) Trapping predicts an approximately exponential
fall-off for the harmonic spectrum, line-line interference ef-
fects, and a slow fall-off with distance (in frequency space)
of the interaction strength for some resonance types. This
last point indicates that a comb of weak, equally separated
lines can appreciably affect sideband formation if the num-
ber of lines is large enough (the effect is divergent for an-
infinite set of lines).

(6) Although line amplitudes are different, sidebands
due to trapping effects are created at the same frequencies as
the ones due to external resonances:

N N
w= Y mo, /¥ n. 30

f=1 =]

(7) Sidebands due to trapping also need a nonzero gra-
dient in v to be created.

(8) Individual electron oscillations and the continuous
spectrum of their frequencies (“trapping™ oscillation fre-
quencies} do not directly affect the observed sideband spec-
tra. Those oscillations are convective, occurring as the elec-
trom, as part of a stream, moves along the interaction region,
and may not even exist for a full cycle. Radiated frequencies
are associated with oscillation frequencies of the streams to
which the electrons belong. Those oscillation frequencies are
only indirectly related to the trapping frequencies, and the
frequencies they radiate may be almost an order of magni-
tude away from available trapping frequencies. The total
emitted radiation will be a combined result from all such
stream oscillations, and its spectrum will reflect the frequen-
cy structure of the externally accelerating forces, and not of
the overall electron population,

(9) Chaos, always present when internal resonances are
formed, is an important factor in the formation of the final
radiation spectra, contributing to saturation effects. '

{10) Trapped resonances are more protected from in-
homogeneity effects than external resonances and should
produce radiation over a longer length of the interaction re-
gion around the equator.
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