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Resonance Between Coherent Whistler Mode Waves
and Electrons in the Topside Ionosphere

T. NEUBERT, T. F. BELL, AND L. R. O. STOREY

STAR Laboratory, Stanford University, Stanford, CA

Landau resonance and cyclotron resonance of coherent whistler mode waves and energetic
electrons are explored for magnetoplasmas with appreciable gradients in the plasma density and
magnetic field strength. It is shown that in the topside ionosphere of the earth near the ion
transition height the gradients in plasma density and magnetic field strength along a magnetic
field line may match in a way which enhances both Landau and cyclotron interactions between
waves and electrons at the loss cone pitch angle. The pitch angle scattering induced by a signal
from a ground-based VLF transmitter in the ionosphere above the transmitter has been estimated
and compared to the pitch angle scattering induced by naturally occurring ELF hiss through
cyclotron resonance. It is found that the expected scattering due to plasmaspheric hiss is an order
of magnitude larger than that due to Landau resonance in the topside ionosphere. Pitch angle
scattering due to cyclotron resonance in the topside ionosphere, however, may be larger by a factor
of 2. We suggest that the “fast Trimpi” eflect may be caused by a cyclotron resonance interaction

in the topside ionosphere.

1. INTRODUCTION

Cyclotron resonance interactions between coherent VLF
waves and electrons near the magnetic equator are thought
to create enhanced electron precipitation and VLF emissions
in the earth’s magnetosphere. While substantial literature
exists on the subject (see references of Matsumoto [1978]
and Bell[1984]), it is only recently, with the advent of high
energy and time resolution electron analyzers, that a di-
rect one-to-one correlation between wave pulses and pulses
of electron precipitation has been established [Imhof et al.,
1983; Voss et al., 1985]. Electron energy spectra of precip-
itating electrons observed from low altitude satellites near
ground-based VLF transmitters [Imhof et al., 1981a, b] have
characteristics that to a large extent are reproduced in model
calculations ol equatorial cyclotron wave-particle interac-
tions [Chang and Inan, 1983; Inan et al., 1984]. However,
a number of assumptions generally enter when comparing
measurements with theory. The waves are usually assumed
to propagate in ducts along the magnetic field lines, and the
plasma density is assumed to follow a diffusive equilibrium
model. Calculations using such models only reproduce a
subset of the observations as found by Imhof et al. [1983],
who report that only 15-50% of the enhanced precipitat-
ing electron flux above a VLF transmitter was concentrated
near the resonant energies for cyclotron resonance occurring
close to the magnetic equator.

Full distribution test particle simulations of electrons in
Landau resonance with whistler mode waves are reported
by Tkalcevic et al. [1984]. They find that for typical mag-
netospheric parameters the electron precipitation fluxes in-
duced for equatorial Landau interactions are much smaller
than those induced in cyclotron interactions. The reason
for this is that in cyclotron interactions, electrons are scat-
tered mainly tangential to the particle velocity by the wave
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magnetic field [Kennel and Petchek, 1966], while in Landau
resonance, electrons are mainly scattered in parallel velocity
by the relatively small-wave electric field component parallel
to the background magnetic field. As loss cone particles at
the magnetic equator have small pitch angles, the resultant
pitch angle scattering through Landau resonance is small.

The purpose of this paper is to discuss the importance of
off-equatorial resonance interactions of whistler mode waves
and electrons. We first introduce the concept of gradient
matching and derive a general relationship between gra-
dients in the electron gyrofrequency (magnetic field) and
plasma frequency (density) for matching to occur. Then the
theory is applied to the magnetosphere of the earth, and
finally, some consequences are discussed.

2. THEORY

We consider a fully ionized magnetized plasma with a
magnetic field B directed along the Z axis of a cartesian
XYZ coordinate system:

B =Bz

The plasma is characterized by the electron plasma fre-
quency fp, and the electron gyrofrequency fe, defined by:

1 en

fp - 2_1l' €om
1 eB
fe=trm

where e is the magnitude of the electron charge, n the ther-
mal electron density, m the electron mass, and €, the elec-
trical permittivity.

The magnetic field strength and the density are assumed
to vary negligibly in the z and y directions over the scale of a
gyroradius but, in general are assumed to vary significantly
in the z direction.

We assume, furthermore, that monochromatic whistler
mode waves propagate in the plasma with a frequency f
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and a normalized wave vector k, which has an angle  to the
magnetic field. We define a function R;(z), the resonance
function, as:

Rs(z) = sfc(2) + ka(2)v2(2) - f (1)

and express Landau resonance (s = 0) and cyclotron res-
onance (s = 1) ol whistler waves and electrons at a point
z = zg by

Ry(z0) =0 ()

In (1), fo is the relativistic electron gyrofrequency:

fé = feyJ1—2?/c?

where v is the electron velocity and c is the velocity of light
in vacuum. The component of the electron velocity parallel
to the magnetic field is v,:

Vz =vCosa

where « is the electron pitch angle.
Similarly, for the component of k parallel to the magnetic
field,

k; =kcos#d

where k equals 1/), X being the wavelength.

From the quasi-longitudinal approximation of the disper-
sion relation for whistler mode waves [Helliwell, 1965] we
find for k,

k=S

¢\ fecosf— f )

Note that the properties of the waves are expressed by
the cold plasma dispersion relation (3), while the resonance
conditions (1) and (2) can generally be satisfied only by the
energetic electron component. For a given wave frequency
and given plasma parameters, (2) defines the parallel veloc-
ity vg of electrons in resonance with the wave. Equation (2)
is often referred to as the first-order resonance condition.

For whistler mode waves, f < fccosf, and except for ex-
treme cases of cyclotron resonance with very energetic par-
ticles or wave frequencies close to the gyrofrequency we have
f < f&. In the following we assume that f < f¢, and noting
that the electron energy E normalized by the electron rest
mass (511 keV) is

2
E:(]-';—z)—”z—1

we find the correspondiiig condition on the electron energy

E< Je _ 1
7

Thus for Landau resonance, electrons are propagating in
the same direction along the magnetic field as the waves
with a parallel velocity that equals the parallel phase veloc-
ity, while for cyclotron resonance, waves and particles are
streaming in opposite directions.

The strength of the interaction between waves and par-
ticles is proportional to the time they stay in resonance.
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In a homogeneous medium, the interaction time is limited
only by the scattering of particles out of resonance with the
waves. In an inhomogeneous medium gradients in fp and fe
in the direction along the magnetic field may seriously af-
fect the time that waves and particles are in resonance. This
leads to the concept of second-order resonance [Malsumoto,
1978; Carlson ct al., 1985] or gradient matching:

(4)

where the notation dR;(z)/dz = Rj(z) has been used. With
(2) and (4) we find that

kz , vz _ s fe
22 o4 72 _ T JC 5
kz+'Uz ngc ()
ge =1—f/fc

Particles in second-order resonance will stay in resonance
for an increased length of time, or an increased length along
the magnetic field line. While first-order resonance deter-
mines the parallel velocity of the electrons, second order
resonance imposes a condition on the pitch angle of the elec-
trons through v5. In a homogeneous medium all derivatives
equal zero, and no pitch angle is preferred. In an inhomo-
geneous medium the interaction depends critically on the
pitch angle, as we will show in sectioni 3. Thus at a fixed
point in space, fewer particles will interact significantly in
an inhomogeneous plasma. This concept is illustrated in
Figure 1.
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Fig. 1. Electrons in phase space in resonance with a
monochromatic wave (solid regions). (a) A homogeneous
plasma (b) An inhomogeneous plasma.
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Fig. 2. Plasma frequency as function of altitude in units
of Rg for electrons at the loss cone pitch angle neces-
sary for resonance with a 10 kHz wave everywhere along
the dipole field line L = 4. The plasma frequency pro-
files for four electron energies are shown along with the
plasma frequency determined from a DE model (dotted
curve) and the gyrofrequency (dashed curve). (a) Landau
resonance. (b) Cyclotron resonance.

Assuming the magnetic moment of the electrons to be
conserved, we find that

= =—=tg - (6)
which with (5) gives

k. 1 /
= 4tk ™
For whistler mode waves the direction of the phase veloc-
ity differs from the direction of the group velocity, except
at certain wave normal angles. To simplify the problem, we
consider waves propagating along the magnetic field. This
occurs for § = 0° and, for f < fe/2, for § = 8y, the so-
called Gendrin angle. In the following we consider two cases.
For cyclotron resonance we choose § = 0°, at which angle
strong cyclotron interaction is possible. The Landau reso-
nance interaction is dependent on a component E, of the
wave electric field parallel to the background magnetic field.
As E, =0 {or 9 = 0° and E; is finite for § = 04, we investi-
gate the Landau resonance for waves propagating with the
wave vectors at the Gendrin angle. The parallel component
of the wave vector k4 at this angle is

kg = Z{Lf{ (8)
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Combining (7) and (8), we then find for the case of Lan-
dau resonance between electrons and waves propagating at
the Gendrin angle:

I 1, 5  f¢
f_p_(1+§tg a)ﬁ (9)

Combining (3) and (7), we find for cyclotron resonance with
parallel propagating waves (8 = 0):

fp 1 1 1,4 f
P (= — + Stg?a) 10
fe (yé‘ 2gc taok a)fc (10)

ge=1—f/fe

In the remainder of this paper we use the term “gradients”
when referring to f,’,/fp and fi/fc, although they truly are
“normalized” gradients or gradients in In(fp,c).

From (9) and (10) we draw the following conclusions:

1. The gradients in the density and the magnetic field
strength must have the same sign for second-order resonance
to be possible. If the magnetic field strength is increasing,
so must the density. This.is the reverse of what is found in
an isothermal plasma in equilibrium with no external forces
acting. However, if an additional force exists, like the grav-
itational force in planetary magnetospheres, this is exactly
the type of variation that is found.

2. The larger the gradient in the plasma frequency for a
given magnetic field configuration, the larger the pitch angle
of the electrons in second-order resonance.

3. Since 0 < g7,9¢ < 1, the gradient in the plasma
frequency must be larger than that of the gyrofrequency.
Therefore, the gradients in the plasma frequency must be
larger for cyclotron resonance than for Landau resonance.

4. The gradient matching relation (5) for Landau reso-
nance is independent of the wave frequency. This is a con-
sequence of the assumption that the waves are propagating
with their wave normals at the Gendrin angle.

3. APPLICATIONS TO THE
EARTH’S MAGNETOSPHERE

Cyclotron resonance and Landau resonance of whistler
waves and electrons in the earth’s magnetosphere have re-
cently been studied by computer code simulations [Chang
et al., 1983; Tkalcevic et al., 1984]. In these studies the
magnetic field is described by a dipole field, and the plasma
density by a diffusive equilibrium (DE) model [Bell, 1985].
It was found that the strongest interaction takes place in the
equatorial region, where the gradients in the plasma param-
eters along the magnetic field minimize. Some experimental
evidence exists, however, that significant off-equatorial res-
onance interactions also occur [Inan et al., 1977]. We will
first show why calculations using a DE model, considered
a good description of the magnetospheric plasma inside the
plasmasphere for magnetically quiet periods, is unlikely to
give any significant off-equatorial resonance interaction for
fixed-frequency waves.

We consider the resonances along a dipole field line inside
the plasma pause, from the topside ionosphere and to the
magnetic equator. The expression for a field line is
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r= RgLsin® ¢ (11)

where r is the radial distance from the center of the earth,
RE is radins of the earth, L the maximum distance from

the center of the earth measured in earth radii, and ¢ the
colatitude. The gyrofrequency is given by

A T
fe= 34381

where A is a constant. We now let z denote the distance
along the field line. We then find for the derivative f¢ with
respect to z:

fo _ —3Hc('r)% (12)

fe
8 —5r/RglL

Hc(r) = 8 — GT/REL

In the region of interest the variation of the plasma den-
sity n along a field line in a diffusive equilibrium model is
given by

npg = no[z 6,~e_G(r)/s']1/2 (13)

G(r) = (1 —r/7)

Bre
m;Rg

S; = 0.282
T
b=,

To = 1594.5° K

In (13), no and ry are constants, T the temperature, m;
the ion mass measured in proton mass units, and S; a mea-
sure of the scale height of the ion density. The summation
is done over the number of ion species, and §; is the rela-
tive density of ion species at r = rp, which is often taken at
R + 1500 km, which is close to the ion transition height.

Differentiation of (13) yields

f_;; _ RET'
o 05 (19

where 7;(r) is 2 measure of the average ion mass:

Z Egm,'c_G(r)/S'
mi(r) =

1
S 6,6~ G5,
%

Combining (12) and (14), we find that

fo _ Hp(r) Rp fe
fr  3He(r) v [
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For r varying from Rg to LREg, H(r) varies from ~1 to
1.5. For typical magnetospheric conditions, 8 ~ 1. Com-
paring (9), (10), and (15), we find that the possibility of
second-order resonance depends on the average ion mass.
Assuming, for instance, a proton plasma (7; = 1), we find
that in a DE model the gradient in the plasma frequency
along a dipole field line inside the plasma pause is smaller
than the gradient in the gyrofrequency. This is the reverse
of what is needed for second-order resonance. However, for
higher average ion mass, second-order resonance is possi-
ble. In the ionosphere the major constituent is O7, while
at higher altitudes H* is dominant. Thus we see from (9),
(10), and (15) that the ion transition height plays a crucial
role for second-order resonance.

However, since the plasma density and composition of
the topside ionosphere are highly variable [ Titheridge, 1976;
Rawer et al., 1978], the DE model is not very accurate in
these regions. Consequently, model calculations of whistler
wave-electron interactions in the magnetosphere typically
assume a lower boundary well above the region where
second-order resonance is possible.

The density profiles encountered in the magnetosphere de-
pend on the geomagnetic activity and on latitude. Outside
the plasma pause, for instance, the gradient in the plasma
density along a field line is, in general, larger than inside.
During disturbed periods the plasmapause moves to lower
L shells. The wide range of equatorial plasma densities that
are encountered is illustrated by Carpenter et al. [1981]. We
have then found it of interest to determine the plasma {re-
quency profiles needed for waves to stay in resonance with
the same group of particles all along a field line. We men-
tioned in section 2 that at a given location, only electrons
at a particular pitch angle can be in second-order resonance
with a wave at a particular frequency. For the dynamics of
the energetic electron distribution in the magnetosphere the
loss cone is of particular interest, as particles at the loss cone
interacting with waves may be scattered into the loss cone
and precipitate into the atmosphere. We have thus chosen
to determine the profiles of the plasma frequency needed for
a wave to stay in resonance with loss cone particles. Assum-
ing again the magnetic moment to be conserved, we find
with (2) and (8) for waves propagating at the Gendrin angle
in Landau resonance with electrons:

[ Lyl (16)
gm =1 _fc/fm

where fm is the gyrofrequency at the altitude of the mirror
point.

With (2) and (3) we find, similarily, for parallel propagat-
ing waves in cyclotron resonance

— Copr— pyLegeyire
o= SUz - NdeLs an)

The results are shown in Figure 2a for Landau resonance
and Figuie 2b for cyclotron resonance. The calculations aie
done along the dipole field line L = 4 for a 10-kHz wave,
assuming the loss cone mirror point to be at 100-km alti-
tude. Shown in the figures are the electron gyrofrequency,
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Fig. 8. A close-up of the plasma frequency as a function
of altitude in the topside ionosphere for 1-MeV electrons
at the loss cone pitch angle necessary for resonance with a
wave along L = 4. Also shown are the plasma frequency
determined from an r~* model and a DE model. (a)
Landau resonance. (b) Cyclotron resonance.

the plasma frequency {from a DE model, and the plasma
frequency necessary for interaction with loss cone electrons
with energies in the range 1 keV to 1 MeV (Landau) and 10
keV to 10 MeV (cyclotron). The altitude on Figures 2a and
2b is the radial altitude in units of Rg.

As expected from the calculations in section 2, larger gra-
dients in fp are needed for cyclotron resonance than for Lan-
dau resonance, and both are larger than predicted from a
diffusive equilibrium model except at the topside ionosphere.
Note that the plasma frequency profiles for the Landau reso-
nance interaction (16) is independent of the wave frequency
and that relativistic effects cause the profiles for high-energy
particles to be closer spaced.

Figure 3 shows the profiles needed in the topside iono-
sphere in more detail. In addition to the gyrofrequency
and the plasma frequency determined from a DE model we
have also shown the plasma frequency predicted by the =%
model:

nra(z) = neq( )" (18)

Where n,4(z) is the density along a dipole field line, ¢
the magnetic latitude, and neq the equatorial density at the
location of that field line.

The results for Landau resonance with 1-MeV electrons
at the loss cone are shown in Figure 3a, and the results for a
100-kHz wave in cyclotron resonance with 1-MeV electrons

are shown in Figure 3b. Plots like the ones in Figures 2
and 3 are very useful to graphically determine the resonant
energies and heights for which off-equatorial resonances are
likely to happen for a given density profile, and they repre-
sent an inviting avenue for evaluating resonant interactions
in other planetary magnetospheres.

We now leave the analytical treatment of the problem and
turn to computer calculations of the interaction length {; and
the interaction time t; expected in the topside ionosphere.
We follow electrons at a given pitch angle specified at z = z,
and characterize the strength of the interaction through the
interaction time:

t; =l,‘/'Uz(Zo) (19)

wlere v:(zo) is the parallel velocity of the electrons consid-
ered at z = 2z, and [; is the interaction length along the field
line defined implicitly through the relation:

zo+,

i

2o

Rs_(Z)dz |=

v:(2)

It is assumed in (19) and (20) that the interaction is
switched off when the variation in phase between waves and
paiticles reaches m/2. This approach is similar to the one
used by Neubert [1982] who studied the off-equatorial para-
metric interaction of two whistler waves and an ion acoustic

: (20)
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Fig. 4. (a) Interaction time t; and (b) corresponding en-
ergy as function of wave frequency for Landau resonance
(s = 0) and cyclotron resonance (s = 1) in the topside
ionosphere. It is assumed that the interaction length I; =
1000 km.
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Fig. 5. (a) Interaction time and (b) corresponding energy
as function of wave frequency in the equatorial region at
L = 4. It is assumed that the interaction length I; = 1000
km.

wave. To validate this criterion further, we mention that
when it is applied to the equatorial region along the field
line L = 4, with the assumption that the electron density
follows a DE model with a 140-kHz equatorial plasma fre-
quency, then a 3-kHz wave and loss cone electrons have ; =
1238 km for Landau resonance and I; = 926 km for cyclotron
resonance. The interaction length in the equatorial region
estimated by Matsumoto [1978] is of the order of 800-4000
km, depending on the wave amplitude. Equation (20) thus
represents a somewhat conservative estimate of I;.

We first assume that I; = 1000 km for both the topside
ionosphere and the equatorial region and will later return to
the estimation of I;. The interaction time as a function of
wave frequency for the topside ionosphere is shown in Figure
4a and the corresponding electron kinetic energy normalized
to the electron rest mass is shown in Figure 4b. The loss
cone pitch angle is assumed to be 60°, the plasma frequency
2 MHz, and the gyrofrequency 1 MHz.

Since the Landau resonance has been studied for waves
propagating at the Gendrin angle, the resonant parallel elec-
tron velocity is independent of the wave frequency. Thus the
interaction time is constant and equals 12 ms for the con-
ditions chosen. Note, however, that the interaction time
for cyclotron resonance, although frequency dependent, is
also nearly constant up to ~100 kHz in spite of the large
variation with frequency of the resonant energy, as shown in
Figure 4b. Since very large energies are needed for cyclptron
resonance at low frequencies, the constant interaction time
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below ~100 kHz is a consequence of the decrease in gyrofre-
quency for increasing electron energy. In the limit of very
low frequencies, f < fc, and for fp ~ f. the parallel ve-
locity for cyclotron resonance as found from (2) is simply
VR ™~ CcCOS a.

Similar plots for the equatorial region are shown for com-
parison in Figure 5. The loss cone pitch angle is now es-
timated to be 4°, and again the interaction length equals
1000 km. We have furthermore assumed that f, = 150 kHz
and fc = 15 kHz.

In general, the electron energy needed for resonance is
smaller in the equatorial region than in the topside iono-
sphere. This is partly due to the smaller pitch angle consid-
ered in the equatorial region and partly due to the difference
in the ratio fp/f. as the resonant velocity increases for de-
creasing fp/fc ratio.

With the current assumptions of plasma parameters and
equal interaction length in the two regions the interaction
time for Landau resonance is typically 5 times larger in the
equatorial region, while for cyclotron resonance the inter-
action time of a 3-kHz wave in the equatorial region is ~3
times larger than that for waves below ~ 100 kHz in the
topside ionosphere.

We now explore the resonances further by calculating the
interaction length defined by (20) as a [unction of altitude
above the earth’s surface from 200 km to 3000 km along
the field line L = 4. The interaction length assigned to
a location z = z, on the field line depends on the model
ol the ionosphere (fp(z), fe(2)), the wave [requency, and the
pitch angle and energy of the electrons for which the interac-
tion length is calculated. As the Landau resonance requires
smaller gradients in the plasma density than the cyclotron
resonance, we have decided on two models of the ionosphere.

The plasmafrequency and gyrofrequency profiles for the
model used for the Landau resonance are shown in Figure
6. They are characterized by a relatively low peak plasma
frequency, ~3 MHz and a gentle transition from the O%-
dominated region below 1000 km and the HT-dominated
region above 2000 km.

The interaction length for electrons in first-order Landau
resonance with a 10-kHz wave is shown as a function of alti-
tude in Figure 7. It is determined for electrons at tae pitch
angle amax, which gives the maximum interaction length
and corresponds to the pitch angle at which electrons are
also in second-order resonance with the wave, and for elec-
trons at the loss cone pitch angle. The top panel shows amax

2000 3000
L

ALTITUDE (km)
1000

0

UL T T T
10° 10
FREQUENCY (Hz)
Fig. 6. Model ionosphere used for calculating the Landau
resonance parameters shown in Figures 7 and 8.
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Fig. 7. Landau resonance in the model ionosphere shown
in Figure 6. From top to bottom are the pitch angle amax,
for which the interaction length /; maximizes (second-
order resonance), and the loss cone pitch angle a)oss. The
interaction length of loss cone electrons in first-order res-
onance; the maximum interaction length for electrons at
@max; and the corresponding electron energy.

and ajqss, where the loss cone mirror point is assumed to be
at 100 km altitude. The next two panels show the interac-
tion length found for electrons at ajoss and amax, respec-
tively, and the bottom panel shows the energy of electrons
in resonance at amax.

The altitude range where second-order resonance is pos-
sible (gradient matching) corresponds to the region where
amax > 0. While second order resonance is found from 300
to 2100 km, the region of interest is 500-1600 km, where
Omax 2 Qogs, assuming that the loss cone is devoid of par-
ticles. Here waves are in resonance with electrons at the loss
cone or outside the loss cone, and provided the interaction
length is of sufficient magnitude, strong interaction between
waves and particles may take place.

There are several peaks in I;, which reaches a maximum
of 635 km at 1592 km altitude for ajoss and 952 km at 1050
km altitude for omax. Note that the peaks in I, (aogs) cor-
respond to altitudes where ajo5; = amar. However, the
profiles of amax and I; are very sensitive to the variation of
fp with altitude. Thus the peaks in I;(omax) are a result
of the small bulge in the plasma frequency profile shown in

Figure 6.
Figure 8 shows the resonance in terms of I; at 1592 km
altitude, where I, maximizes for ajpgs and @ogs = Omax-

It is shown as a function of wave frequency (Figure 8a),
for electrons at the loss cone pitch angle (in second-order
resonance at this altitude, pitch angle (Figure 8b), for a 10-
kHz wave and a constant electron energy, which equals the
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energy of loss cone electrons in second order resonance with
the wave; and energy (Figure 8¢), for electrons at the loss
cone angle and a 10-kHz wave. The peaks in J; correspond
to values of & and E for which waves and particles are in
second-order resonance.

The interaction length increases with decreasing wave fre-
quency reaching 1224 km at 1 kHz. The shoulder at ~18
kHz is a consequence of the specific model parameters. The
interaction length, as a function of pitch angle, peaks as ex-
pected at the loss cone pitch angle. The width in pitch angle
al half maximnm is 2 1.2° while the width in energy is ~
12 keV.

The model used for the cyclotron resonance is shown in
Figure 9. It is a typical daytime model for magnetically quiet
periods [Rawer et al., 1978], with a peak plasma frequency
~5 MHz and the ion transition height at 1500 km.

Plots similar to the ones shown for the Landau resonance
are presented in Figures 10 and 11 for a 100 kHz wave for
the case of cyclotron resonance. Since the scale height in the
plasma frequency varies more rapidly at the ion transition
height than in the previous model, and the cyclotron reso-
nance, in general, requires smaller scale heights; the max-
imum altitude of second-order resonance, shown in Figure
10, is now lower and at 1270 km; and the maximum altitude
for which amax 2> a)oss 1s 1030 km.

The major differences from the case of Landau resonance
are the smaller interaction lengths and higher electron en-
ergies. Furthermore, the peaks in l; as function of pitch
angle and energy shown in Figure 11 are more narrow and
around 0.06° and 1.5 keV, respectively. Thus we expect the
cyclotron resonance interaction to be even more sensitive
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Fig. 8. The interaction length for loss cone electrons
in Landau resonance at 1592-km altitude as (a) function
of wave frequency, (b) function of pitch angle, and (c)
function of electron energy.
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clotron resonance parameters shown in Figures 10 and
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than the Landau resonance interaction to variations in fjp.
Finally, since the cyclotron interaction for parallel propa-
gating waves is a more complex function of the wave fre-
quency, the interaction length has a maximum, correspond-
ing to second-order resonance (10), at a particular value of
the wave frequency, which in this case is 100 kHz.

We end this section by presenting three-dimensional plots
of L;i(aoss) and t;(ajess) as a function of wave frequency
and altitude as calculated using the model in Figure 6 for
Landau resonance and Figure 9 for cyclotron resonance. The
results for Landau resonance are shown in Figure 12, and for
cyclotron resonance are shown in Figure 13.

4. DISCUSSION

It is of interest to apply the foregoing results to deter-
mine the pitch angle scattering that might be produced by
presently existing VLF, LF, and MF transmitters. In the
VLF range the Omega navigational transmitters operate in
the 10.2 to 13.6-kIlz range with a 10-kW power output. At
slightly higher frequencies (17.8-24 kHz), VLT" communica-
tions transmitters such as NAA and NLK radiate power in
the 10% to 103-kW range. Wave magnetic field amplitudes
directly overhead the transmitters at night at altitudes be-
tween 500 and 3000 km range {from 3 to 30 m~y [Inan et al.,
1984]. Nighttime amplitudes in the conjugate regions have
a similar range, although higher amplitudes here can be ex-
pected when the waves are amplified through the whistler
mode instability [Helliwell and Katsufrakis, 1974, Bell et al.,
1981; Bell, 1985].

Because of the higher refractive index of the ionosphere
at VLF fiequencies the wave normals of the input waves
over the transmitter will be roughly vertical. Thus the wave
normal angle 8, with respect to the earth’s magnetic field
lines, will be roughly equal to the complement of the local
magnetic field dip angle. In the conjugate region the wave
normals of nonducted waves {from the transmitter will lie
between the Gendiin angle and the resonance cone angle,
8, == cos™H(f/fc) [Edgar, 1976; Beil et al., 1981]. On the
other hand for ducted waves, # ~ 0 in the conjugate region.

There are numerous transmitters operating in the LF and
MF range, many of them at MW output power levels [Frost,
1984]. However, whistler mode waves can be produced near
the ion transition height (~1000 km) only if locally, f < fe,
or roughly, f < 800 kHz.

Typical nighttime wave amplitudes at 1000 km over the
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LF and MF transmitters are presently unknown, but cal-
culations [Helliwell, 1965} indicate that the nighttime iono-
spheric absorption loss is roughly 10 dB higher at 100 kHz
than at 10 kHz. This suggests that MW transmitters at
100 kHz could produce roughly 10 my wave amplitudes at
1000-km altitude over the transmitter.

For the case of Landau resonance we can use equations
(42), (48), and (51) of Bell [1984] to determine the pitch
angle change of resonant electrons at the position of second-
order resonance shown in Figures 7 and 8. Using the values
f =10 kHz, zo = 1592 km, E = 170 keV, a = )05 = 46°,
and I; = 635 km, we find that Aarms =~ 4° x 1073 for a
wave with a wave normal angle at the Gendrin angle and
with a wave magnetic field amplitude of 10 my. Repeating
this calculation for a 100 kHz wave with I; ~ 130 km (from
Figure 8), we find Aarms ~ 1072 deg.

These same electrons can also experience pitch angle scat-
tering near the magnetic equatorial plane through a cy-
clotron resonance interaction with ELF plasmaspheric hiss
[Lyons et al., 1972; Thorne et al., 1973]. Typical wideband
amplitudes of the plasmaspheric hiss lie in the range 5-50
m-~, and the total bandwidth is a few hundred hertz [Thorne
et al., 1973]. To estimate the pitch angle scattering due
to the hiss, we assume that the hiss extends with uniform
spectral power density over the range 100-500 Hz and has
a wideband amplitude of 25 my. We also assume that the
scattering takes place near L ~ 4, with fp ~ 200 kHz and
fe = 14 kHz. In this case we can use an expression given
by Roberts [1968] to calculate the local pitch angle diffusion
coefficient; Do ~ 1 deg?/s. The particle can be in resonance
with a component of the hiss band over the latitude range
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i N N
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£
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0 )J)\/‘
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[?)
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. )
r 1000 2000 2000
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Fig. 10. Cyclotron resonance in the model ionosphere
shown in Figure 9. This figure is equivalent to Figure 7
for Landau resonance.
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Fig. 11. The interaction length for loss cone electrons
in cyclotron resonance at 817-km altitude. This figure is
equivalent to Figure 8 for Landau resonance.

between £20°. Near L ~ 4 this latitude range represents
an interaction time of roughly 50 ms. Thus the rms pitch
angle change over the entire resonance region has the value
Aarms ~ 0.2°.

Since the expected scattering due to plasmaspheric hiss is
an order of magnitude larger than that due to Landau res-
onance at low altitude, we conclude that low-altitude pitch
angle scattering due to Landau resonance interactions does
not appear to be an important effect for input waves {from
mid-latitude VLF, LF, and MF transmitters.

For the case of cyclotron resonance interaction we can use
equations (47) and (51) of Bell [1984] to determine the pitch
angle change of resonant electrons at the position of second
order resonance shown in Figures 10 and 11. Using the val-
ues f = 100 kHz, z, = 817 km, E = 841.3 keV, o = apss,
and I, = 372 km, we find Aayms ~ 0.2° for a wave of 10-m~y
amplitude. Given the characteristics of the plasmaspheric
hiss as described above, it 1s found that the 841-keV elec-
trons can experience a cyclotron resonance with the hiss
over a 5° latitude range centered at roughly 23° latitude
near L ~ 4. Repeating the calculation described above, we
find Aarms ~ 0.1° for the total rms pitch angle scattering
due to the plasmaspheric hiss band. Since this value is less
than that due to the low-altitude scattering, we conclude
that low-altitude scattering effects could be important for
energetic electrons in the 800-keV energy range.

Electrons in second-order cyclotron resonance with a
monochromatic wave emitted from a ground-based trans-
mitter are expected to experience scattering in several con-
secutive bounces. The width in pitch angle of the cyclotron
resonance (Figure 11a) is ~ 0.06° for the model ionosphere
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chosen and imposes an apparent upper limit on the total
pitch angle scattering of the electrons. However, the influ-
ence of the wave field on the particle orbits is a second-order
effect as compared to the influence of the earth’s magnetic
field. Thus with a slightly different model ionosphere, sim-
ilar curves to the ones shown in Figures 10 and 11 would
result from a calculation including the Aarms pitch angle
scattering in the particle motion. The peaks in energy and
pitch angle are then indicative of the part of the electron
distribution interacting with the wave, rather than repre-
senting the bandwidth of the scattering in pitch angle and
energy. When interaction in consecutive bounces is consid-
ered, an indication of the upper limit of the total pitch angle
scattering possible is the maximum value along the field line
of amax — @|gss- For the cyclotron resonance interaction this
value is ~ 6°, which is reached at ~ 600-km altitude.
Nonlinear effects can be expected if the interaction en-
dures for a time roughly equal to the “trapping” time, that
is, the time required for the resonant particle to complete
one oscillation in the potential well of the wave. Using the
expressions given by Bell [1984], we find that for the pa-
rameters given above, the trapping time at low altitude has
the value of roughly 0.2 s for the case of Landau resonance
and 2 x 1073 s {for the case of cyclotron resonance. Since
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the trapping time for cyclotron resonance is roughly equal
to the interaction time defined by (19) of t; = 2.4 x 1073 s,
it appears possible that a nonlinear interaction could take
place at low altitude which might be analogous to the non-
linear whistler instability. In this case it might be possible
that wave amplification, enhanced resonant particle precip-
itation, and VLF emission generation could take place at
altitudes near the ion transition height.

The possibility of second-order resonance effects in the
topside ionosphere suggests an explanation for the “fast
Trimpi” effect [Armstrong, 1983]. In a normal “Trimpi” ef-
fect it is found that the amplitude and/or phase of subiono-
spherically propagating MF/LF/VLF signals are perturbed
at about the time of reception of a magnetospheric whistler.
It has been proposed that the signal perturbations are due to
energetic electron precipitation induced in the equatorial re-
gion by the correlated whistlers [Carpenter et al., 1984; Inan
and Carpenter, 1986]. In the “fast Trimpi” effect, VLF wave
perturbations are produced close to the time of a lightning
stroke rather than at the time of reception of the whistler
which generally follows the lightping stroke by about 2 S.

It has been suggested (W. C. Aimstrong, private com-
munication, 1985) that the “fast Trimpi” eflect might be
caused by energetic particle precipitation produced as the
wave energy from the lightning stroke propagates upward
through the topside ionosphere. The results of the present
study appear to lend further plausibility to this hypothesis.

In the work reported above we have concentrated on the
electron precipitation caused as a direct result of resonant
interactions with signals from transmitters and whistlers
within the topside ionosphere. However, it appears possi-
ble that scattering can alo be induced in the topside iono-
sphere by a multistep process such as a parametric inter-
action. In these interactions the input wave excites two or
more additional waves, and in principle, these new waves
may produce enhanced pitch angle scattering. For instance,
Neubert [1982] has considered a three-wave parametric in-
teraction in an inhomogenous plasma and found that the
gradients in the plasma parameters may favor interaction
in the topside ionosphere. Other works include Riggin and
Kelley [1982] and Lee and Kuo [1984], which discuss the
excitation of lower hybrid waves in the topside ionosphere
through a parametric interaction with a coherent whistler
wave as the pump wave. Under night time conditions, Lee
and Kuo [1984] estimate that these lower hybrid waves can
be generated within a few tenths of a second or less. The en-
hanced pitch angle scattering due to the lower hybrid waves
could possibly produce an effect similar to the “fast Trimpi”
events. Numerical calculations of pitch angle scattering in
the case of parametric interactions need to be carried out in
order to assess the importance of this effect in precipitating
energetic particles in the topside ionosphere.

5. SUMMARY

The strength of the Landau and cyclotron interactions of
coherent whistler mode waves and electrons has been charac-
terized by the interaction length !; and the interaction time
t; (equations (19) and (20), strong interactions having large
values of I; and ¢;. In an inhomogenous plasma, I; and ¢; are
dependent on the electron pitch angle, thus only electrons at
certain pitch angles will interact significantly with the wave.
When applied to the earth’s magnetosphere, the theory pre-
dicts enhanced interactions in the topside ionosphere. For
certain ionospheric plasma density profiles, electrons with
pitch angles at the loss cone angle interact most strongly
with the waves and may thus be scattered into the loss cone
and precipitate into the atmosphere. We find that scattering
of electrons in the topside ionosphere through a Landau res-
onance interaction with waves from ground based transmit-
ters is insignificant as compared to the scattering the same
electrons experience by plasmaspheric hiss. Cyclotron res-
onance scattering in the topside ionosphere, however, may
surpass the scattering induced by plasmaspheric hiss.

The electron energy required for resonance in the topside
ionosphere is generally larger than that required for reso-
nance at the magnetic equator. Furthermore, because of
the difference in the local fc the resonant wave {requencies
can be higher in the topside ionosphere compared to the
equatorial region. To establish a more quantative assess-
ment of the interactions and their significance 1elative to in-
teractions in the equatorial region, more experimental data
on electron distribution functions for electrons in the MeV
range and wave field amplitudes above VLF, LF, and MF
transmitters are required. In addition, existing computer
simulations should be extended to incorporate the case of
interactions in the topside ionosphere.
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