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A computer simulation approach is used to study the nonlinear cyclotron resonant interaction of
energetic electrons and coherent VLF waves, with special emphasis on the pitch angle scattering of the
particles. Complete equations of motion in an inhomogeneous magnetosphere are used, and the effects of
various parameters are studied. Comparison is made with linear theory, and a quantitative and easy-to-
use criterion to determine the applicability of linear theory under any given conditions is presented. For
example, in the case of equatorial scattering by a 5-kHz CW pulse near L = 4 it is found that linear theory
begins to break down when the wave amplitude exceeds 3 mvy. The full distribution of particles 1s
simulated by test electrons appropriately distributed in energy and pitch angle. By computing the
scattering of these test particles and integrating over energy and pitch angle, the precipitated flux is
obtained. The method used is quite general and can be used for any particle distribution. It is shown that
significant particle fluxes are precipitated by waves of moderate intensity. For instance, energetic (1-2
keV) electron fluxes as high as ~10~* erg/cm? s can be precipitated by a CW wave of 10-m+vy amplitude
and 5-kHz frequency on the L = 4 field lines. Such fluxes appear to be measurable with presently available
instruments. Since the energy density of the precipitated flux is 50 dB above that of the wave, the leverage
involved in the wave-induced precipitation process is quite high. Our results indicate that coherent VLF
waves can have a significant effect on the dynamics and lifetimes of energetic electrons trapped in the
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magnetosphere on magnetic shells illuminated by the waves.

1. INTRODUCTION

This paper presents a study of the nonlinear cyclotron reso-
nance wave-particle interaction in the magnetosphere. In par-
ticular, we consider the pitch angle scattering of energetic
electrons by coherent VLF whistler mode signals. However,
the results and the presentation also clarify many general
aspects of the interaction.

There has been considerable work done on the pitch angle
scattering of radiation belt particles by electromagnetic waves
[Roberts, 1966, 1968, 1969; Dungey, 1963, 1964; Gendrin, 1968;
Kennel and Petschek, 1966; Ashour-Abdalla, 1972; Kennel and
Engelmann, 1966; Kennel, 1969; Lyons, 1973, 1974a, b; Lyons et
al., 1971, 1972; Schulz and Lanzerotti, 1973]. Most of this
work, however, has addressed the problem of scattering by
wide band incoherent whistler mode turbulence. The idea has
been that the trapped particle population interacts through
cyclotron resonance with electromagnetic disturbances along
its orbit and is subjected to a series of scatterings that are
random in both direction and size. Hence the individual parti-
cles of the population undergo a random walk in pitch angle,
and diffusion in equatorial pitch angle space results. This
diffusion can then be studied by calculating the incoherent
diffusion coefficients and solving a Fokker-Planck equation
[Roberts, 1966].

This approach is well justified for studying particle scatter-
ing by certain kinds of magnetospheric signals, for example,
auroral VLF hiss or ELF plasmaspheric hiss, since such waves
are indeed wide band and highly incoherent [Muzzio, 1971;
Gurnett and Frank, 1972; Thorne et al., 1973; Laaspere and
Hoffiman, 1976].

The physics in our case is fundamentally different because it
involves highly coherent narrow band whistler mode waves.
When a particle population encounters such coherent waves,
the series of scatterings experienced by the particles is not
random in direction or size. The individual particles of the
population can be phase locked with the coherent signal for
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distances of many hundred wavelengths and undergo large net
pitch angle changes in a single encounter with the wave, It is
therefore incorrect to assume that the particles execute a ran-
dom walk in pitch angle during the course of one bounce
period when interacting with coherent waves.

The study of wave-particle interactions with coherent waves
is very important. Examples of highly coherent magneto-
spheric signals are natural whistlers [Helliwell, 1965], triggered
VLF emissions [Stiles and Helliwell, 1975], signals that are
injected into the magnetosphere by VLF ground transmitters
[Helliwell and Katsufrakis, 1974] and large-scale power grids
[Helliwell et al., 1975; Park, 1976], or signals from satellite-
borne VLF transmitters, such as the transmitter planned for
the Atmospheric and Magnetospheric Plasmas in Space mis-
sion.

During the past three years, VLF wave injection experi-
ments to study coherent VLF wave-particle interactions in the
magnetosphere have been carried out with the Stanford Uni-
versity variable frequency VLF transmitter at Siple Station in
the Antarctic [Helliwell and Katsufrakis, 1974]. One goal of
these experiments is to understand the mechanism of wave
growth. Another is to learn how to control the energetic parti-
cles by the injected waves. The latter problem is the subject of
this paper.

Once control is established, the energetic particles can be
used as tools to study other important processes. For example,
the control of energetic particle precipitation would permit
controlled studies of X ray, ionization, and radiation emission
processes in the ionosphere. Furthermore, modulation of pre-
cipitation flux might provide a means to produce Pc 1 ULF
waves [Bell, 1976] on a controlled basis. Reducing the particle
population in the radiation belts with appropriate transmis-
sions is another possible future application. Although ground
transmitters illuminate a relatively large region of the magnet-
osphere [Inan et al., 1977], satellite transmitters may be neces-
sary for applications requiring high wave amplitudes.

Theoretical studies of the coherent cyclotron resonance
wave-particle interaction have concentrated on wave growth
and generation due to the phase bunching of the energetic

3235



3236

particles [Brice, 1964; Bell and Buneman, 1964; Helliwell, 1967,
1970; Dysthe, 1971; Nunn, 1971, 1974; Palmadesso and
Schmidt, 1971, 1972; Matsumoto, 1972; Brinca, 1972; Bud'ko et
al., 1972; Helliwell and Crystal, 1973, Karpman et al., 1974a, b].

Pitch angle scattering induced by coherent waves has been
considered by only a few authors. Gendrin [1974] has com-
puted the pitch angle and energy perturbations of single parti-
cles in a homogeneous medium. Das [1971] and Ashour-Ab-
dalla [1972] have included the effect of the inhomogeneity but
have employed a linear theory in the solution of the motion
equations. Although it is generally accepted that linear theory
applies for small wave amplitudes, past workers have given no
quantitative justification for the assumptions. The main ad-
vantage of linear theory is that it considerably simplifies the
analysis.

In our approach we have employed a straightforward for-
mulation involving a test particle simulation using the non-
linear equations of motion for energetic electrons in a whistler
mode wave in an inhomogeneous magnetosphere. In this ap-
proach the effect of the signal on a particle population is
calculated by simulating the interaction for a sufficient number
of test particles. Each particle is considered independently of
the others, allowing sequential rather than parallel computa-
tion of the particle trajectories. Although the purpose of this
simulation is to compute the wave’s effect on the particles, our
results are also directly applicable to the problem of wave
growth and generation through phase bunching [Helliwell,
1967], since we compute the full phase motion of the particles
in order to obtain the total scattering.

Since we use a test particle approach, our calculations do
not directly include the effects of the electromagnetic fields
generated by the perturbed energetic particles. In effect, we
assume either that the currents stimulated in the energetic
particle population do not lead to significant damping or
amplification of the wave or that this effect has been included
in the model chosen for the wave field structure. A discussion
of this point is included in the final section of this paper.

In this report we have considered two cases of a mono-
chromatic whistler model signal, one in which the wave signal
is of constant intensity over the entire field line and one in
which the wave signal is of constant intensity over one half of a
magnetic field line. The case of a single frequency is not as
limiting as it might seem, since there is some reason to believe
that the interaction with a wave with linearly increasing or
decreasing frequency is quantitatively not much different
[Helliwell, 1970]. We also limit ourselves to wave propagation
strictly along the static magnetic field lines with k parallel to
B,.

The energy scattering of each test particle can be computed
together with its pitch angle scattering. However, herein we
have limited our discussion to pitch angle scattering. For most
of the particles involved in our calculations the energy scatter-
ing is less than ~2%, whereas pitch angle scattering is at times
as high as 90%. We have included some brief comments on
energy scattering in the figure captions.

In the next section we give a formal description of the
problem. We then describe the computer simulation. After
that we present and discuss the results for the pitch angle
scattering of single particles primarily for the purpose of dem-
onstrating the influence of different parameters. Finally, we
give a computation of the precipitated electron flux for a
particular case, from a full distribution of energetic electrons.

Our results clearly show the relationships between the total
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scattering and the various wave, medium, and particle parame-
ters. For example, they show that nonlinear effects are signifi-
cant for wave amplitudes as low as 3 m+y for a 5-kHz signal at
L = 4. We provide a quantitative criterion for determining the
applicability of the simple linear theory for a given problem.
The full distribution computations show that significant pre-
cipitated fluxes (~10~' erg/cm?s) can be produced with mod-
erate strength waves (10 m+y). These fluxes are within the
resolution of the particle detectors designed for the ISEE
(International Sun Earth Explorer) satellite program. Our re-
sults may therefore also serve as theoretical predictions for
that as well as other future experiments.

2. DESCRIPTION OF THE PHYSICS
Equations of Motion

We consider a circularly polarized monochromatic whistler
mode signal of constant amplitude propagating along the
static magnetic field B,. Since the magnetospheric medium is
slowly varying, i.e.,, the variations of medium parameters
within the space of one wavelength are negligible, WKB ap-
proximation can be used, and the wave magnetic field can be
expressed as

B. = B, I:a,,cos (wt— fzka'z)
0
+ a, sin (wt— fzkdz)]
(]

where z is the coordinate along B, w is the angular frequency,
k is the wave number, and a, and a, are the unit vectors in the
x and y directions, respectively. For whistler mode propaga-
tion, which is governed by the thermal (cold) component of
the plasma, k is given approximately by

1/2
wp w
(4 Wy — W

where ¢ is the speed of light, wp is the electron plasma fre-
quency, and wy is the electron gyrofrequency. In this ex-
pression it has been assumed that (wp/wy)? >> 1.

Strictly speaking, when a WKB approximation is used to
express the wave fields in a slowly varying medium, the wave
intensity must also be a function of z. In the magnetosphere,
B, is proportional to (wgk )" For the parameter values used
in this paper (see Table 1) the important wave-particle inter-
action occurs within +20° of the equator. Since the wave
intensity variation in that range is less than a few percent, we
have used a constant B,, in our computations.

We now consider the cyclotron resonance interaction be-
tween such a wave and energetic electrons trapped in the flux
tube surrounding the field line. Cumulative energy exchange
between the waves and electrons will occur only when the
Doppler shifted wave frequency is approximately equal to the
electron gyrofrequency, i.e.,

w+ kv, ~ wy (1)

where v, and k have the directions shown in Figure 1. Since wy
must exceed w in the whistler mode, (1) can be satisfied when
the resonant electrons and the wave travel in opposite direc-
tions. In the absence of the wave the particles are adiabatically
trapped in the earth’s magnetic field, and their motion, ne-
glecting the small longitudinal drift, is described by the rela-
tions
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TABLE 1. Parameter Values for the Example Case
Parameter Value
Field line L=4
Equatorial gyrofrequency Jheq = 13.65 kHz
Equatorial cold plasma density  n.q = 400 el/cc
Wave frequency f=5kHz

Equatorial parallel resonance ve = 1.899 X 10" m/s

velocity
Equatorial parallel resonant E~1keV
energy
Refractive index at the equator  n =~ 40
Wavelength at the equator Aw>2.2km

tr = 2w[k(eB,/m)v,] "% ~ 8 ms
for B, = 10 my, a = 30°,
U =Uyr

Ir ~ 1705 >~ 150km
for B, = my,a = 30°

Trapping period

Trapping length

5, = — 2t 9B
I 2B, oz
(2)
o = o, 9B,
+ 2B, oz

where the coordinate system and the variables are defined in
Figure 1. The effect of the wave on the particle motion is given
by the Lorentz force equation

(v ) - L vxn ®
where v = v, + v, is the total velocity of the particle. Writing
(3) in a more convenient form and also superimposing the
adiabatic motion of the particles as given by (2), we obtain the
complete equations of motion for the cyclotron resonance
wave-particle interaction:

. eB, . v,? 2

g, = (7)1;l sin ¢ — 2;H :z"' (4a)
s = eB,,,) ( 2) . LUy dwy

UL (m v, + X sin ¢ + ——2wH TS (4b)
. B.,

0 =wy— w—ko, — (ET)(U”-’-%)C(:Z(p (4¢)

In the above, the angle ¢ is the complement of the angle
between the electron’s perpendicular velocity (v.) and B,,.
Since the medium is inhomogeneous, the quantities wy and &
are functions of z, the distance along the field line. Equations
(4) are written in the laboratory frame, with the coordinate
system as described in Figure 1. For our purposes, no impor-
tant simplification results by transforming to either the wave
or the particle frame.

Equations (4) in whole or in part have been used to study
VLF wave particle interactions by many authors [Bell, 1964,
1965; Brice, 1964; Helliwell, 1967, 1970; Dysthe, 1971; Nunn,
1971, 1974; Palmadesso and Schmidt, 1971, 1972; Matsumoto,
1972; Ashour-Abdalla, 1972; Bud'ko et al., 1972; Crystal, 1975,
Helliwell and Crystal, 1973; Roux and Pellat, 1976, Karpman et
al., 1974a, b). Dysthe [1971] was the first to include the adia-
batic terms in (4a) and (4b).

The first terms of (4a) and (4b) are due to the wave-induced
longitudinal and transverse forces v, xB,, and (v, xB, + E,),
respectively. The additional terms give the adiabatic variations
of v, and v, that are superimposed on the wave perturbations.
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1t should be noted that although the presence of field-aligned
wave forces violates the assumptions underlying the first adia-
batic invariant [Roederer, 1970], the changes in v, and v, due
to changing static magnetic field intensity can still be described
by the differential adiabatic theory at each point during the
interaction.

Since the wave terms in (4a) and (4b) are proportional to sin
¢, it is apparent that the interaction is strongly controlled by
the third equation (4c) which gives the variation of ¢. Cumula-
tive changes in v, and v, will only result when ¢ (and ¢) is
small. The wave term in (4¢) (last term on the right-hand side)
gives the phase change due to the centripetal acceleration of
the particle resulting from (v, x B,, + E,) force. We have found
that for most magnetospheric parameters the effect of this
term is negligible, especially for large pitch angles and/or
small wave amplitudes. However, even for wave amplitudes as
small as 1 m+ this wave term becomes dominant as soon as the
pitch angle falls below 1° or 2°. Note that individual particles
that have somewhat larger initial pitch angles could still be
scattered down to these low pitch angles during the inter-
action. At that time this term must be present in the equations
in order to describe the correct physics.

In all our computations we have used the complete equa-
tions (4). We comment on the role of different terms as we
discuss the results.

Total Scattering and the Role of dwy/ 0z

The equations (4) define the motion of each individual elec-
tron. For a particle with initial velocities of v, and v, and an

SR
¥4

PARTICLE

(b)

Fig. 1. Coordinate system for the equations of motion. The z axis
is 'everywhere aligned with the magnetic field line. Shown in dashed
lines is the orbit of the electron in the x-y plane.
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initial phase of ¢,, these equations, when properly integrated
over time, give the resulting Ay, and Av, for that particle. In
other words,

T,
Av, . = f B0 dt )
0

where T; is the interaction time. In principle, the integration
must be carried out for 7, — o. However, because of the
changing wy due to the inhomogeneity of the field the reso-
nance condition (1) can be satisfied only over a limited region
along the field line for any given particle. When (1) is not
satisfied, it is apparent from (4c) that |$| would be large and
the wave contributions to ¢, and &, will be noncumulative.
Therefore a time T; can be defined over which the wave-
induced perturbations are significant.

The wave-induced changes Av, and Av, and the corre-
sponding pitch angle change A« are hereafter referred to as
scattering. As is apparent from (4), the point-to-point scatter-
ings (and therefore the integrated total scatterings) are depen-
dent on the initial values of v, and v,, as well as on the initial
phase ¢, between v, and —B,, at the time of encounter between
the wave and the particle. The scattering is also dependent on
wave parameters B,,, w, and k and medium parameters wy and
dwy/ dz. In general, when the resonance occurs away from the
equator, the cumulative interaction time is shortened (since
dwy/dz is larger), and the total scattering is smaller. The
quantity dwgy/ @z is the principal factor in determining the
interaction time 7.

In order to see the effect of dwy/dz clearly, we follow a
procedure similar to that used by Dysthe [1971]. Taking the
time derivative of both sides of (4¢) and neglecting the wave
terms on the right-hand side, we can make use of (4a) to
rewrite (4¢) as [Inan, 1977]

é+k (%)ul sing = I:%+ w;;wﬁw tan? a:| vy —a—awzﬁ 6)

In deriving (6) we have made use of the fact that in a
diffusive equilibrium model of the cold plasma, such as the one
used in this paper, the plasma frequency wp is approximately
constant along the field line and that for resonant particles v;,
~ (wy — w)/k. Equation (6) is a type of ‘pendulum’ equation
which gives the variation of the phase ¢. The forcing function
of this equation is proportional to dwy/ 2z, hence demonstrat-
ing the influence of the term dwy/ @z, i.e., the inhomogeneity
force, in controlling the interaction. The total interaction time
T is determined by the relative magnitudes of this forcing
function and the restoring ‘force’ (the wave force) of the
pendulum, which is proportional to k(eB,,/m)v.. When B,, =
0, it can be shown that (6) is equivalent to (15) of Helliwell
[1970] when N = 0 and 4 = 0 in the latter equation.

Method of Solution

Since the equations of motion are highly nonlinear, it is
difficult to evaluate the integrals in (5) by using analytical
methods unless one makes restrictive simplifying assumptions.
One common approach is to use linear theory [Das, 1971;
Ashour-Abdalla, 1972]. According to this theory, the per-
turbations in v, and v, are computed by using field com-
ponents at the position of the particle as given by the unper-
turbed (B, = 0) motion. In effect, the unperturbed phase
variation obtained from (4¢) with v, varying only because of
adiabatic forces is substituted into (4a) and (4b), and the
perturbations Av,, and Av, are computed. Although it is gener-
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ally agreed that linear theory is applicable for sufficiently low
wave amplitudes, none of the authors who have employed this
theory in their analyses have given quantitative criteria to
Jjustify their assumptions.

Our approach to the solution of equations (4) is to use a test
particle simulation of the wave-particle interaction. The idea is
that the perturbation of the full particle distribution can be
inferred by considering the effect of the wave on a sufficient
number of test particles that are appropriately distributed in ¢,
vy, and v,. With this point of view, the problem is one of
classical Newtonian mechanics. Namely, given a wave struc-
ture, the task is to simulate the equations of motion for indi-
vidual test particles. In the next section we describe the com-
puter simulation in some detail. With the simulation approach
it is possible to use the full equations of motion and to test
quantitatively the relative importance of different terms. Sec-
tion 4 gives a detailed quantitative study of the interaction
using single-particle trajectories and compares the results of
our full nonlinear analysis with those obtained by using linear
theory. As a practical application of the computer simulation,
in section 5 we calculate the precipitated flux for a particular
case. Although the precipitated flux is the important measur-
able quantity, the study of single-particle trajectories is impor-
tant for bringing out the physics of the interaction. Once the
physical behavior and the methods of calculation are estab-
lished, the full distribution calculations for different cases then
become straightforward computer experiments.

3. DESCRIPTION OF THE SIMULATION

The computer simulation employs a centered dipole model
for the static magnetic field and a diffusive equilibrium model
for the cold plasma density. The necessary input to this por-
tion of the program consists of wave frequency, L value, and
equatorial cold plasma density n.,. The parameters of the
medium, i.e., wy(z) and k(z), are then computed over the
length of the field line to which that particular calculation is
limited. These values are stored for later use in the simulation.

In a test particle simulation each particle must be identified
with a set of unique and constant parameters, For adiabatic-
ally trapped particles the equatorial pitch angle a., and equa-
torial parallel velocity v,.q are one such set of quantities. By
using the first adiabatic invariant the local pitch angle & and
parallel velocity v, at any other point z can be readily obtained
from aeq and vyeq:

SIN & = $iN Qeq(B(2)/Beq)™? (7a)

(76)

where B, and B(z) represent the equatorial and local values of
the static magnetic field, respectively.

In the absence of the wave a test particle described by oeq,
and v;eq, Will acquire the local pitch angle and parallel velocity
as given by (7a) and (7b) as it moves along the field line.
Significant cumulative interaction between the wave and the
particle will occur only in the vicinity of the point where v, ~
Ur, Ug being the local resonant velocity, given by vg = (wy —
w)/k. As indicated in Figure 2, this condition will be satisfied
in the vicinity of two locations along the field line, owing to the
symmetry of the dipole field. Since the wave-induced per-
turbations will be negligible outside these regions, the particle
motion at locations other than these can still be described by
(7a) and (7b). The encounter with the wave modifies the local
v, and a and, through (7a) and (7b), the equatorial parameters
Qeq and v, q to be associated with that particle.

Uy = (B(2)/Beq) '™ eq tan aeq/tan a
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PARTICLES
——y

EQUATOR

(a)

WAVE

SOUTH

NORTH {r EQUATOR *

START OF END OF
INTEGRATION INTEGRATION
(b)

Fig. 2. Complete interaction of the wave and a test particle: (@) In
general, the cyclotron resonance condition (1) will be satisfied at two
locations N and S along the field line. (b) Adiabatic variation of the
particle parallel velocity with distance from the equator. Shown in
dashed lines is the resonance velocity vg. The integration of the equa-
tions of motion starts at point N’ 2nd ends at S’ for the simulation of
the complete interaction.

For a monochromatic CW signal traveling from south to
north that has a constant intensity over the whole field line, the
complete interaction of each particle with the wave will involve
the following: As the particle approaches its point of reso-
nance in the northern hemisphere, the wave-induced per-
turbations become increasingly significant. When the particle
moves past its resonance point, having been scattered in aeq
and v,.eq, the perturbations decrease until it reaches the equa-
tor. Past the equator, the particle approaches its second reso-
nance point and is scattered again. Depending on the distance
between the two resonance points, the two encounters may or
may not be in phase with each other.

To simulate this complete interaction, the equations of mo-
tion must be integrated from the time the particle is close
enough (usually within 2-3% in v)) to its first resonance point
to experience significant perturbations to the time at which the
particle has passed significantly beyond its second resonance
point so that the wave perturbations become negligible.

Figure 2b shows the adiabatic variation of the particle paral-
lel velocity along the field line. Shown in dashed lines is the
local resonance velocity vg. The input to the main simulation
part of the program is a set of values aeq,, ¥)1eq, and an initial
phase ¢,. With these parameters specified, the program trans-
fers aeq and v ¢4 into local values a and v;, using (7a) and (7b),
going progressively away from the equator, and at each point
checking |v, — vg| in order to locate the vicinity of the
resonance point N. The integration is started at a point where
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v, is within some percentage of the resonance velocity of the
northern resonance point. We have found that when the par-
ticle is more than ~3% away from local resonance, the wave-
induced perturbations are not significant. This value is used in
our computations as indicated in Figure 2b. The integration is
carried out until the time where e = |(v, — vg)/va| > 0.05 and
d¢ > 2m. Both these criteria are very conservative and were
established by examining single-particle trajectories. If the
complete interaction is to be simulated, the integration is
carried out until the particle passes its resonance point S in the
southern hemisphere even if € gets to be greater than 0.05 in
between its first and second resonances.

At the end of the integration the local pitch angle ar (F for
final) and parallel velocity v,r at the pojnt where the in-
tegration is stopped are found. These values are then trans-
formed through (7a) and (7h) to equatorial values a.q, and
Diieq, for that particle. The difference aeq, — @teq, = Aeq gives
the total pitch angle scattering suffered by the particle.

For a monochromatic CW signal that is generated or
strongly amplified in a narrow regian around the equator, as
predicted by VLF emission generation theories [Helliwell,
1967, 1970; Nunn, 1974], the wave intensity can be assumed to
be constant on the northern side of the equator and zero on the
southern side. The complete interaction in that case involves
only one scattering in the vicinity of the resonance point N.

In addition to simulating the complete interaction of each
test particle with the wave, as is necessary for the full distribu-
tion computations, the computer code can also be used for
studies of different portions of the interaction. This is done in
the next section where we study the scattering of particles that
are initially resonant with the wave at the equator.

4. STUDY OF THE INTERACTION
Scattering of a Single Resonant Sheet

Our purpose in this section is to give a clear presentation of
the different aspects of the physics of the interaction.

Although the full distribution calculations give useful mea-
surable quantities, such as the precipitated flux, they are not
very helpful in understanding the physics of the interaction.
The behavior of single particles provides much better insight,
illustrating the effect of various parameters such as B, aeq,
Neq, L, and initial phase ¢,. We study the case of initially
resonant electrons, uniformly distributed in ¢ and moving
away from the equator. The interaction starts at the equator
for most cases. The use of initially resonant particles enables
us to present clearly the initial phase dependence. The equator
is chosen because the inhomogeneity there is a minimum, thus
enabling us to see the full effect of the wave forces. We must
emphasize at this point that this choice is made only to sim-
plify the presentation and does not affect the physics. In a
distribution of particles interacting with a wave at any instant
of time, there will be particles with many values of aeq and v eq
located at all points along the field line. In this section we
consider a sheet of electrons that meets the wave at the equator
with specified a.q and v, values. The results are qualitatively
representative of those for most other sheets in the distribu-
tion, although the amount of scattering will in general be
smaller for interactions away from the equator or for non-
resonant sheets,

The parameter values used for most of our calculations are
given in Table |; they represent a realistic magnetospheric
case. L = 4 is chosen because it is close to the location of the
VLF transmitter at Siple, Antarctica, from which many of the
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Agq(deg) $o=-2m/3 ¢
a4

Aaeq

¢o=-7/6

bo=7/6

T T T e e

o= /2

$o=27/3
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TIME (msec)

0 | 2 3 4
LATITUDE (deg)

Fig. 3. Single-particle trajectories for B, = 10 my. Both the total
scatiering Aaeq (solid lines) and the phase ¢ (squared points) are
shown as functions of time. All particles start at resonance at the
equator (see Figure 4, top panel) and move southward into the wave.
Particle trajectories for six different initial phases are shown. The
phases are chosen to illustrate typical trajectories The dashed lines are
the unperturbed phase (¢,) variation for the case of B, = 0. For all
trajectories, aeq = 10°.

experimental data have come. A wave frequency of 5 kHz is
chosen, a frequency often used in the Siple wave injection
experiments.

We first consider particles with an equatorial pitch angle
Gteq, = 10° and a wave amplitude of B, = 10 my. Figure 3
shows the computed trajectories for six particles distributed in
initial phase ¢,. We have plotted both Aa.q and phase ¢ at
each step of the interaction. The resonant interaction starts at
the equator for all particles.

Consider, for example, the particle with ¢, = —2x/3. As this
particle moves away from the equator, it suffers a positive
Aaeq, and as ¢ increases (the particle gyrating faster with
respect to the wave), the changes in Aa.q become smaller and
smaller. Eventually, the oscillations become insignificant, and
the particle leaves the interaction region with a net change in
equatorial pitch angle. Note that a.q of each of the six particles
in Figure 3 can be corisidered unaffected by the wave after
about 70 ms (3° latitude). Beyond this point the wave-induced
particle scatterings are not cumulative.
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Also shown in Figure 3 is the unperturbed phase ¢,(¢) (i.e.,
the phase variation for negligible wave intensity) for some
initial phases. The ¢,(t) variation for other phases is exactly
the same in form but shifted up or down depending on ¢,.

For particles starting at resonance (i.e., v, satisfies (1)), o~
0. For B, ~ 0, as the particle moves away from the equator wy
increases, therefore increasing ¢, which causes ¢ to increase, as
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Fig. 4. Single-particle trajectories for B, = 50 my. The format is the
same as Figure 3. For all trajectories, aeq, = 10°.
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can be seen from the ¢, variation in Figure 3. In other words,
o = ¢, > 0. For B, # 0, the interaction can be studied
qualitatively as follows.

1. For negative ¢, 6,0 < 0, (See equations (4a).) Hence v,
decreases while wy increases a$ the particles move away from
the equator. Therefore ¢, > ¢., and the time for which the
particle stays within resonance is shortened. Also, since the
initial wave-induced 5, is negative, the local pitch angle of the
particle increases, which in turn through (7a) transforms into
an increase in the equatorial pitch angle. As ¢ increases to the
point where sin ¢ changes sign (in this case becomes positive),
6, becomes positive and tends to decrease ¢. Since wy keeps
increasing, the wave forces offset the effects of the in-
homogeneity at this stage of the interaction. However, there
already is a large ¢, and the particle is no longer near reso-
nance. Therefore if the wave amplitude is not strong enough to
cause an oscillation (or reversal) in phase (i.e., trapping), the
phase angle ¢ continues to increase. When ¢ comes to the
point where sin ¢ again changes sign, ¢, again becomes nega-
tive. The periodic changes of sign of 4, lead to oscillations in
Aaeq. This behavior is most clearly illustrated by the case of
larger wave amplitudes, as in Figure 4. Since wy continuously
increases as the particle moves away from the equator, the
period of these oscillations decreases as the particle moves
away from resonance. Eventually, the particle acquires a net
pitch angle change Aa.q. Typical trajectories for the negative
initial phase case are shown in Figure 3.

2. For positive ¢,, 8,0 > 0, and the wave forces offset the
effects of the inhomogeneity. Therefore ¢ < ., and the time
during which the particle stays within resonance is increased,
hence allowing more scattering due to more exposure to cu-
mulative interaction. For the case of B, = 10 my, given in
Figure 3, we see that final scatterings for ¢ > O are generally
larger than those for ¢, < 0, although the final scattering
depends, as we shall later see, on a wide variety of parameters.
Note in Figure 3 that although the initial ¥, is a maximum for
¢o = w/2, the final scattering is the largest for ¢ = 27/3. This
occurs because for ¢, = 2x/3 the wave and inhomogeneity
forces balance each other over a longer distance and hence ¢
stays very close to zero, therefore increasing the time spent
within resonance. .

For an initial pitch angle of 10° a wave amplitude of 10 my
is not large enough to cause more than one oscillation in phase
¢. In Figure 4 we give the trajectories of seven particles for B,
= 50 my. In comparing Figures 3 and 4 we make the following
observations:

1. The oscillations in Aaeq as the particle moves away from
resonance are larger in amplitude for B,, = 50 my than for B,
= 10 my. This is expected, since the scattering at each point is
proportional to B,,.

2. For some of the phases (¢, = —7/2, —7/3, 0, n/3) the
particle phase ¢(¢) makes more than one oscillation. Hence the
particle is phase trapped, although only for a short while.
Trapping is maximum for ¢, = 0.

3. All the trapped particles end up with a negative Aa,.
This is because for trapped particles v, ~ vy = (wy — w)/k and
U, =~ Ug. Since vg > 0 when moving southward from the
equdtor, &, > 0 and, from (4b), 5, < 0. Thus the pitch angle
must decrease for all trapped particles as they move away from
the equator.

4. Consider the trajectory for the ¢, = —=/3 particle. The
second minimum of Aa, (at ¢ =~ 40 ms) seems much sharper
than for other cases. Note that the particles shown in Figure 4
have an equatorial pitch angle of a,q = 10°. The second
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minimum in Aa.q for ¢y = —w/3 is at about Aaeq = 9.5°. In
other words, as the pitch angle continuously decreases, it has
reached a point where it is very close to zero. At those low
pitch angles, v, is very small, and therefore the wave term
(= cos ¢/v,) in (4c) becomes significant, causing a large change
in phase which prevents the pitch angle from reaching zero.
This effect has been called the ‘loss cone reflection’ effect [Inan,
1977]. This example shows the importance of not deleting this
term in the computations. Without this term the pitch angle
would have gone negative. At the third minimum of Aa,, for
¢o = 0 we have the same effect, again clearly seen by an abrupt
change in ¢.

Note that the particles shown in Figures 3 and 4 have gone
through significant net pitch angle scatterings ranging from a
few percent to almost 100% of their initial pitch angle. It is
important to point out that the energy scattering of all of these
particles is less than a few percent. This is because the wave
magnetic field forces are the controlling forces in the cyclotron
resonance interaction in the magnetosphere. These forces
change the direction of momentum of the particle (pitch) and
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Fig. 5. Total scattering Aaeq versus initial phase for different wave
amplitudes for L = 4 and n,q = 400 el/cc: (@) aeq = 10° and (b) aeq =
30°. Each square in the figures shows the scattering of an individual
test particle. Twenty-four particles, uniformly distributed in ¢,, are
used in each sheet.
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Fig. 6. Comparison of resuits of linear theory and the full non-
linear analysis. The total scattering versus ¢ is given for aeq = 10° and
for different wave amplitudes. The format is similar to that of Figure
5.

not its energy. Some energy exchange occurs through the
electric field of the wave.

After the preceding discussion of the single-particle trajec-
tories it is enlightening to study the collective motions of
particles uniformly distributed in phase. As our tool for this
study we consider the variation of the final scattering Aaeq
versus initial phase. We have found that the nature of the
interaction and the effects of different parameters are most
clearly presented in such a format. Below, we give results of
our computations for 24 electrons equally distributed in initial
phase ¢,. We consider different cases to isolate the effects of
parameters such as B, aeq, Heq, poOsition of resonance, etc. The
results are obtained by integrating the full equations of motion
for each of the 24 electrons in the sheet to obtain the total final
scattering Aaeq. We then plot Aae, versus initial phase ¢, and
discuss each result qualitatively.

Effects of the wave amplitude. Figure 5a shows Aq.q versus
¢, for the parameters as given in Table 1 and for aeq, = 10°.
We have given results for a range of wave amplitudes from B,
= | mvy to B,, = 50 my. For low wave amplitudes such as B,, =
I my and 3 my we have ‘linear’ scattering. In other words, for
these cases the inhomogeneity is the dominant factor in con-
trolling ¢(¢) rather than the wave forces. Therefore ¢(r) ~
¢.(t), and linear theory can be applied. It can be shown that
the shape of the Aa,q versus ¢, curves is approximately sinus-
oidal for these cases [/nan, 1977]. In the rest of this paper the
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interaction will be termed to be in the linear mode whenever
Aaeq versus ¢, is approximately sinusoidal.

For B, > 7 my the curves change shape. For B, = 50 my
we have what we call the ‘trapped’ mode. The trapped mode is
one in which the wave forces play the dominant role in con-
trolling ¢. The phase ¢ in this case goes through more than one
oscillation due to sign changes of ¢. As was discussed above in
connection with Figure 4, the trapped particles end up with a
net negative change in pitch angle, thus producing a Aae,
Versus ¢, variation as shown in Figure 5a for the B,, = 50 my
case. Note that only particles in a range around ¢, = 0 are
trapped; the initial phases of other particles are not appropri-
ate for trapping. This is also seen in Figure 4.

Figure 5 gives only the final net scatterings. No time param-
eter is involved. For each case, the equations have been in-
tegrated for each electron in the sheet until the particle is no
longer significantly affected by the wave. The total pitch angle
change Aaeq is then plotted against ¢,. Note that for 7 my <
B, < 50 my the Aa versus ¢, curves resemble neither the linear
nor the trapped mode. This is because for these transition
values neither the wave force nor the inhomogeneity is clearly
dominant. For B, = 3 my and 5 my we observe from Figure
5a that there is an asymmetry between scattering for negative
and positive initial phases. This comes about because although
for all ¢, the inhomogeneity is the dominant factor, for posi-
tive ¢, the wave forces offset the effects of the inhomogeneity,
whereas for negative ¢, the wave force adds to the effect of the
inhomogeneity. Therefore for positive ¢, the particle stays in
resonance for a longer time and hence experiences larger scat-
tering.

For B, = 50 m+y, Figure 5 shows that the maximum nega-
tive scattering for a.q, = 10° is about Aaeq = 9°. Thus the
absolute pitch angle for these particles is reduced nearly to
zero. Similarly, for aeq = 30° the maximum negative scattering
is 24°, bringing this particle to the edge of the loss cone.

One important point that must be kept in mind is the
following: Figure 5a shows results for particles traveling away
from the equator. Consider the case of particles traveling
toward the equator. By studying (4c) we see that Aa,, versus
¢, variations would be approximately a mirror image of the
result for the B,, = 50 mvy, with the trapped particles having a
net positive pitch angle change. Therefore one should not try
to make predictions about the precipitated flux or other full
distribution quantities using only these results. The single-
particle results given in this section are intended only as an aid
to understanding the interaction and sorting out the depen-
dence of Aaeq On various parameters.

For higher a.q, one would expect the deviation from the
linear mode to start at lower amplitudes. In Figure 56 we show
the results for aeq, = 30° in the same format as Figure 5a. We
see that the case of B,, = 3 my is as much away from the linear
mode as the case of B, = 10 my for aeq, = 10°. This is
explained by the fact that the wave-induced &, is proportional
to v, B,, and therefore to tana, . As B, is increased further, we
again have a similar kind of transition to the trapped mode.
However, the minima of Aa.q are much deeper than they are in
the aeq, = 10° case. For B, = 50 my, for example, the most
stably trapped particle (¢, = 0) undergoes a net scattering of
almost 24°. The behavior in Figures 3, 4, 5a, and 556 also
clearly shows the difference between coherent and incoherent
interactions. In the coherent interaction the particle can be
phase locked with the wave and lose almost all of its per-
pendicular energy in a single encounter with the wave. In
contrast, in an incoherent interaction the scatterings suffered
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Fig. 7. The rms and mean scattering for linear and nonlinear
analyses as a function of wave amplitude. The mean scatterings for the
linear case is zero: (@) ateq, = 10° and (b) aeq, = 30°.

by the particle at each instant are random in direction and
magnitude. As a result the particles execute a random walk in
pitch angle space and a diffusion in the average direction of the
field results. Therefore the net total scatterings at each encoun-
ter with the wave are generally much smaller.

Comparison with the linear theory. At this point we are
ready to compare quantitatively the results of our full analysis
with those of linear theory. For purposes of comparison we
have arranged our computer program to integrate the motion
equations using linear theory if that is desired. Figure 6 shows
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a comparison of the linear and nonlinear analyses for a.q =
10°. For the linear case the Aaeq Versus ¢, variation is propor-
tional to B, sin (¢, + B8), where 8 is a function of initial v, and
v, [Inan, 1977]). We see from Figure 6 that the difference
between the linear and the nonlinear results becomes apparent
for B, S 5 my. Even for B,, = 3 my, the asymmetry between
the scatterings for positive and negative ¢, is apparent for the
nonlinear case. Note that for higher a.,, the deviation from
linear theory occurs at lower wave intensities. For instance, for
Qeq, = 30° and B, = 3 mvy the interaction is clearly nonlinear,
as can be seen from Figure 5b. Note also that for the linear
case the phase variation is the same for all 24 particles in the
sheet. Therefore they all spend the same amount of time in
resonance.
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Fig. 8. Initial pitch angle dependence of the total scattering versus
¢, for neq = 400 el/cc and B, = 10 mvy. The format is the same as that
of Figure 5.
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10°. For neq = | el/cc the parallel resonant particle velocity is relativ-
istic. However, the appropriate correction has not been made, since it
would only vary the amplitude of the scattering. Qur main concern is
the shape of the Aa.q versus ¢, curves.

Figures 7a and 7b compare the linear and nonlinear root
mean square scattering (i.e., (Aa®'?, where angle brackets
denote averaging over the initial phases) and the mean value
(i.e., (Aa)) of the Aaeq Versus ¢, curves for both aeq, = 10° and
30° cases. We see that for the nonlinear case the mean value
increases with wave intensity, whereas for the linear case it is
zero for all wave amplitudes. For aeq, = 30° and for small
wave fields of up to 3 my the rms scattering for both cases is
about the same. However, for higher fields the rms scattering
for the nonlinear case deviates from that of the linear case.
Therefore the use of linear theory when B,, > 3 my causes an
error in both mean and rms scatterings.

Since for B, = 40 mvy, Aadeq = aeq, the rms scattering
saturates for the a.q, = 10° case; however, for the higher initial
pitch angle (a.q, = 30°) the rms scattering is considerably
larger than the linear result over a wide range of wave ampli-
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tudes. The scattering is larger because the nonlinear formula-
tion takes particle trapping into account, and this effect con-
siderably increases the length of the interaction region over
which scattering takes place.

Since the Aa,q versus ¢, curve for the linear case is found to
have a sinusoidal shape, it is possible to readily identify linear
or trapped behavior by qualitatively examining the Aa,, ver-
sus ¢, curves. For example, for the case of Figure 5a we see
that deviation from a sinusoidal shape starts around B,, = 5
m+y and hence linear theory is applicable only for B, < 5 m~y.
In the following cases we shall use this concept to study our
results.

Dependence on equatorial pitch angle. To isolate the effect
of the initial equatorial pitch angle, we hold the wave ampli-
tude constant at B,, = 10 my and for the parameters of Table 1
compute the scatterings for different aeq,. Figure 8 shows Aaeq
versus ¢, curves parameterized in aeq. A wide range of pitch
angles 3° < a,q, < 85° is covered. Since the wave-induced o, is
proportional to v, and hence to tan a.q, for sufficiently small
pitch angles a linear Aaeq versus ¢, variation is expected.
Indeed, from Figure 8 we see that the variation for aeq, = 3° is
essentially linear. The deviation from linearity increases as aeq,
is increased, and we have the trapped mode for aq, > 30°. The
transition from the linear to the trapped mode is similar to that
shown in Figure Sa.

For a.q, > 60°, the minimum of the Aae, versus ¢, curves
starts to contract. Although the shape of Aa,q versus ¢, corre-
sponds to the trapped mode, the total scattering for each
particle continuously decreases. The reason for this is that for
these high values of a.q, the variation in the particles’ v, and v,
due to the adiabatic mirror force (second terms on the right-
hand side in (4a) and (4b)) becomes more and more rapid.
Therefore the resonance time and hence the scattering are both
reduced.

Dependence on the equatorial cold plasma density. One
other parameter which defines the properties of the medium
and the wave is n.,, the equatorial cold plasma density. The
wave number k is proportional to ne'/%. In Figure 9 we give
results for a B, = 50 my wave and a.q, = 10° particles at L =
4. We show Aae, versus ¢, curves for different #n., values,
ranging from 400 el/cc (inside the plasmapause) to | el/cc
(outside the plasmapause).

Figure 9 shows that for n,, = 400 el/cc a trapped mode
exists. Decreasing n., results in a transition similar to those
seen before, to a linear mode for n,, = 1 el/cc. This result
shows clearly that interactions outside the plasmapause result
in less scattering than those inside the plasmapause. This inter-
esting result can be understood as follows: As n., decreases,
the wave phase velocity increases, and the parallel resonant
velocity becomes higher. Higher-energy particles move more
quickly through the wave and hence have less time in which to
be scattered. Note that although the equatorial parallel reso-
nant energy is about 1 keV for n,q = 400 el/cc, it is approxi-
mately 40 keV for n,q = 10 el/cc.

Dependence on the geomagnetic latitude around which the
resonance occurs. Figure 10 shows Aa,q versus ¢, for B, = 50
my and aeq = 10°. The curves in this case are parametric in
the location of resonance. Hence the first 24 particles start
from the equator at resonance, the next start at resonance at 2°
latitude south of the equator, and the last start at resonance at
10° latitude. All particles travel southward away from the
equator. We observe that for resonance at the equator we have
a trapped mode, but as the resonance latitude is increased to
10° there is a transition to the linear mode. This is expected,
since the gradient of the earth’s magnetic field increases with
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distance from the equator, and for high enough latitudes the
effects of inhomogeneity can no longer be offset by the wave
forces. Because the inhomogeneity becomes the controlling
factor at higher latitudes, the shape of Aae, versus ¢, returns
to the linear form. Note that this behavior is limited to con-
stant frequency waves. For waves of changing frequency, max-
imum interaction may occur off the equator, as suggested by
Helliwell 1967, 1970].

Criteria for Determining Linearity

The linear theory procedure for computing the wave-in-
duced scatterings ¢, and o, was briefly described in previous
sections. A unique feature of linear theory is that the path
length over which resonance occurs is independent of wave
amplitude. For instance, if an electron is in resonance (¢ = 0)
with the wave at some point z, along the magnetic field line,
linear theory predicts that resonance will effectively terminate
at a point z,, defined implicitly by the approximate relation

21 d
Aq&zlrad:f fon = 0~ ko] 5 ®)

where wy, is the electron gyrofrequency at the resonance point
2y and vg = (wy — w)/k. It can be seen that z, does not depend
on B,, since in linear theory the wave-induced changes in v,
are ignored in integrating (4c). A rough method of establishing
the validity of linear theory in any particular case is to com-
pare the time the particle spends in the linear resonance region,
tr = (z; — z,)/vg, With the trapping time of the particle in the
potential well of the wave, tr = 2x[(eB,/m)kv.]~'/>. When
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tptr~' << 1, it can be concluded that nonlinear effects will be
negligible and that linear theory can be used, while if tgt7~! >
1, it can be concluded that nonlinear effects must be included.
The major problem with this criterion is that it is difficult to
apply when txtr~! ~ |, since the actual nonlinear resonance
time will generally exceed t. In this case, it is of interest to use
our results to attempt to establish a more accurate method to
determine the applicability of the linear theory.

The very similar behavior of the Aa., versus ¢, curves as
displayed in Figures 5-10 suggests that the nature of the inter-
action may be described by a single parameter which is a
function of B, aeq,, Meq (OT k), and dwy/8z. The controlling
factor in the interaction is the variation of phase, ¢, as given by
(4¢). Note that for all sheets considered in Figures 5-10 the set
of values used for ¢, is the same regardless of the values of the
different parameters. For resonant particles, ¢, ~ 0; for non-
resonant particles ¢, is a nonzero constant. The different be-
havior of the sheets, whether they interact in the trapped or
linear mode, is determined by the initial rate of change of ¢,
i.e., do. Neglecting the wave term in (4c) (the term propor-
tional to (cos ¢/v), ¢ is given by (6). The first term on the
right-hand side and the second term on the left-hand side of (6)
represent the inhomogeneity and wave forces, respectively. We
now define a quantity p:

_ eBy, Wy — W 5 ) dwy :I“

P Zk( o )tan a |:<3 + " tan® o 27 ¢))
This quantity is the ratio of the maximum absolute values of
the wave and inhomogeneity terms in (6). Hence the value of p
is an indication of the relative effectiveness of these terms.
Note that p is proportional to t7~%g~". Similar analyses of the
relative effects of the wave and inhomogeneity terms were used
by previous authors [Dysthe, 1971; Nunn, 1974; Karpman et al.,
1974a, b; Roux and Pellat, 1976). Note that p is a dimension-
less quantity dependent on B,, « (local pitch angle), k, and
Owy/0z.

We expect that p will be a useful quantity for differentiating
between linear and nonlinear interactions. For instance, linear
theory predicts that for a particle that is resonant with the
wave at some point z;, along the magnetic field line the reso-
nance will effectively terminate at a point z, defined by (8). If,
for any particular case, we compute the quantity p at z,, we can
determine whether the resonance interaction will proceed sig-
nificantly beyond z,. Thus if p < | at z;, we can conclude that
the wave forces are weaker than the inhomogeneity and that
linear theory should apply. If p > 1 at z,, we can conclude that
the resonance interaction will proceed significantly beyond z,,
that linear theory is not appropriate, and that a full nonlinear
treatment should be employed.

In practice the evaluation of p is simplified by the fact that
for the dipole model, p(z,) =~ p(z;), and thus p can generally be
simply evaluated completely in terms of the initial conditions.
A slight complication occurs when the initial resonance point
approaches the magnetic equator, since then p(z;) —» «© as
dwy/dz — 0. In this case, we must evaluate p at the point z,.
An analytic expression for z; can be found by using (6) and (8)
in the limit B,, = 0 together with the parabolic approximation
to the dipole field for locations close to the equator. We find

that
g = { 4URR2 11/3
? 3[Bwy, + (wy, — w) tan? ao])
where R is the geocentric radius, wy, is the gyrofrequency at

the equator, and q, is the initial pitch angle. This is similar to
the graphical results shown in Helliwell [1970].
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TABLE 2. Values of p for Different Cases

Cases Values

Case |: aeq = 10°, L = 4, n, = 400 el/cc

B, my 1 5 7 10 30 50

3 0.1 0.6 0.9 1.3 38 6.4
Case 2: aeq = 30°, L = 4, nq = 400 el/cc

B,, my 1 3 7 10 30 50

p 0.4 1.2 2.8 40 12.0 20.0
Case 3: ayq = 10°, B, = 50 my, L = 4

Neq, €l/cc 400 200 50 10 5 1

0 6.4 4.5 2.3 1.0 0.7 0.3
Case 4: B, = 10 my, L = 4, n,q = 400 el/cc

Qeq, deg 1 7 10 30 70 85

p 0.1 0.9 1.3 4.0 10.6 8.9

Therefore for resonances at the equator, p can be evaluated
at point z, using the value (dwy/8z2) |,, = Ywu,(22/R?). For the
parameters of Table 1,

2, >~ 576[3 + 0.63 tan® o] "** km

and using these, we obtain

6wH
0z .,

The quantity p(z;) can be determined simply in terms of initial
values by making use of the fact that wy(z;) > wy, and a(z;) >
a,. Thus two important features of the quantity p are that (1)
its value can be used to determine when linear theory is appro-
priate and (2) it can be evaluated simply in terms of the initial
conditions alone.

In the following we demonstrate that the transitions from
the linear to the quasi-trapped mode in Figures 5-10 occur at
or near the p >~ 1 threshold.

In Table 2 we give the values of p for the cases covered in
Figures 5-10. First, consider the wave amplitude dependence
as illustrated in Figure 5a for aeq, = 10°. Case 1 in Table 2
gives p for different B,,. From Figure 5a we see that significant
deviations of the Aa,, versus ¢, curves from a linear near-
sinusoidal variation start at about B,, = 7 my. Since p >~ 0.9
for 7 my, we can loosely conclude that linear theory fails for p
> 1.

Case 2 in Table 2 shows the corresponding values of p for
the different wave amplitudes of Figure 5b, for which aeq, =
30°. From that figure it is evident that a large deviation from
the linear mode is seen for B, > 3my compared to an almost
linear result for B, = 1 my. Hence we can say that the
deviation from linear theory starts at B, ~ 2-3 my. We see
from case 2 that p ~ | for these values. Therefore p = 1 again
is a reasonably good indication of the point beyond which
linear theory becomes inaccurate.

The value of p for the different n., values of Figure 9 is given
in case 3 in Table 2. We see from Figure 9 that linear theory
applies for r,, < 10 el/cc.

Figure 10 shows Aaeq versus ¢, for different resonance
points along the field line. It is evident from the figure that we
have a well-defined linear mode for resonances at latitudes of
>10°. For particles resonant at 10°, p(z,) =~ p(z;), and we can
use dwy/ 0z at 10° latitude for computing p. This gives p =
0.71. Note that the Aa.q versus ¢, curve for 10° latitude is very
nearly linear, whereas the one for 5° latitude is different from a
linear mode. Here we have p = 1.7 for resonance at 5° and p =
1.0 at 7.5° latitude. Therefore we see that p ~ 1 is again a valid
threshold point for determining linearity.

= 6.86 X 10-'[3 + 0.63 tan® os]"*®* rad/km

As afinal test of our criterion we use the ‘experimental data’
given in Figure 8. Case 4 in Table 2 gives values of p for the
Qleq, Values used in that figure. The deviation from the linear
mode starts around ae,, = 7° (this case is not illustrated in
Figure 8) and p = 0.9 at that point, again very close to thep ~ 1
criterion which was established above. The sharpness of the
minima for aeq = 5° given in Figure § is not so much due to
the deviation from linearity as it is due to the wave term in
(4c), since at that point, Aceq = Qeq,.

As we examine case 4 in Table 2 we see that p reaches at
maximum at about aeq, = 50°. The pitch angle dependence of
p is clear from (9). The maximum of this function occurs when
((wy — w)/w)tan?a = 9. For the parameters of Table 1, this
maximum is at & =~ 75°. From Figure 8 we see that for aeq, >
60° the Aa,q versus ¢, curves start to shrink while remaining in
the trapped mode. This correlation between case 4 in Table 2
and Figure 8 (i.e., the fact that both p and the scattering reach
their maxima for & =~ 65°-75°) is very interesting. It indicates
that not only is p useful as a threshold criteria for determining
linearity, but also its absolute magnitude may be a direct
indication of the amount of scattering. We have determined
that p can be used as an empirical parameter for easy computa-
tion of the scattering coefficients for the trapped mode. Our
results on this problem will be reported in a later paper.

With the above results and comparisons we have established
the following:

I. The quantity p can be used to determine whether the
linear theory is applicable for given interaction parameters.
The procedure is to compute p for the parameters of the
problem at hand.

2. Forp << | (p < 0.7), linear theory results are close to
those of the full nonlinear analysis.

3. Forp >>1(p > 3) we have a trapped mode, and the
linear theory is not applicable.

4. The linear theory results begin to deviate significantly
from those of the full nonlinear analysis for p > 1.

The criteria established above use only the initial values of
the parameters. Therefore one need not compute the particle
trajectories in order to use this criterion. This fact makes the
method very useful in determining whether one can usg a
simple linear analysis for the interaction of a particle with a
given pitch angle at any point along the field line with a wave
of any frequency and wave amplitude.

Previous authors, for example, Ashour-Abdalla [1972], have
used linear theory without quantitative justification. For the
parameters of Ashour-Abdalla [1972] and for equatorial inter-
actions we compute p = 0.6 for aeq, = 10°,p = 1.7 for eq, =
30°,and p = 2.5 for Qeq, = 50°. Note that none of these values
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for p satisfy p << 1, which guarantees safe application of linear
theory. Furthermore, for a.q, > 30°, p > 1. For this reason we
believe that the scattering coefficients given in that paper for
resonances close to the equator (within 500-1000 km) are
inaccurate for high pitch angles.

5. PrecIPITATED FLux FrROM A FuLL
DISTRIBUTION OF PARTICLES

In this section we present an application of our simulation
for the calculation of the one-pass precipitated electron flux
for a particular case.

Simulation of the Full Distribution

The full distribution of particles is simulated by a large
number of test particles. For energetic particles adiabatically
trapped in the earth’s magnetic field, the particle population in
every flux tube can be represented by an equatorial distribu-
tion function feq(V)eq> @eq)-

From this point on, we drop the subscript ‘eq’ for the
purpose of simplifying the text. Unless otherwise mentioned,
all quantities v, and « in this section represent equatorial
values. We have chosen to work with the distribution function
in the v,-a space as opposed to v-a or v,-v, spaces. This
formulation is convenient for our simulation, since it directly
shows the pitch angle scattering along the a axis and makes it
possible to uniquely identify each v, mesh point with a reso-
nance location through (1). The velocity space volume element
in terms of v, and « is v,*[(sin a)/(cos® a)] da dv, do.

For a given field line and a given wave, only a limited
portion of the total particle population represented by this
distribution will resonate with and hence be scattered signifi-
cantly by the wave. Therefore in our simulation we need only
consider that limited portion of the distribution. The am, is
determined by the loss cone. For given plasma and wave
parameters, amax is determined by the nature of the problem.
For example, for the computation of the one-pass precipitated
flux an amax < 7/2 can always be found such that for the given
parameters, particles with a > amax cannot be scattered into
the loss cone at the first encounter with the wave. On the other
hand, if one wishes to consider the steady state scattering
problem, it is necessary to take amax = 90°, since in this case
multiple scatterings can bring high pitch angle particles down
to the loss cone. The v, m;, is determined by the resonance
velocity at the equator. Particles with parallel velocities lower
than v, do not resonate with the wave at any point along
the field line. The upper limit v, ,ax is determined by the fact
that particles with higher v, resonate at points so far down the
field line that the scattering produced is less than one half of
the pitch angle mesh size used in the calculations. That is, for
given parameters we can find a v max such that the scattering
for particles with v, > v;max Will be negligible and need not be
considered. Once the shaded area is determined, this region in
the v-a space is divided into a number of mesh points. Each
mesh point is identified with a pair v, and «. The value of the
distribution at each mesh point is f(v,, ). Figure 115 illus-
trates such a representation of the distribution function. For
purposes of illustration we have chosen a uniform distribution
with a sharp cutoff at the loss cone. The mesh sizes in v, and o
are Av, and Aa, respectively. The number density of particles
with parallel velocities v, + (Av,/2) and pitch angles a + (Aa/
2) is given by
sin
cos®

AN = 2xf(v,, a)v,? "; Aa Av, (10)
where the factor 27 is due to integration over the cyclotron

phase ¢. We assume a uniform distribution in ¢.
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In our formulation each such population (v, + (Av,/2),a £
(Aa/2)) of particles is represented by test particles with paral-
lel velocity v, and pitch angle . When the mesh sizes Av, and
Aa are chosen adequately small, the motions of these test
particles accurately represent the motion of all particles with
v, £ (Av,/2) and a £+ (Aa/2).

Since the gyroresonant interaction is highly dependent on
initial phase, we use 12 test particles uniformly distributed in ¢
for each mesh point. In that case, each test particle with initial
equatorial values v, aq, and a phase ¢, represents the popu-
lation of particles with vy, = vy = (A0/2), @ = @ + (Aa/2),
and ¢ = ¢, = (w/12). The actual number density of such
particles is

AN sin
12 f(io, a0} 01e* cos“(:)o Ac Av, ( %)

(1)

The next step is to simulate the interaction for the test particle.
The test particle is allowed to go through the complete inter-
action as described in section 3. For a CW wave which has
equal intensity over the whole field line the equations of mo-
tion for the test particle are integrated from the point N’ in the
northern hemisphere where ¢ = (v, — vg)/vs = —0.03 to the
point S’ in the southern hemisphere where ¢ = +0.05 (see
Figure 2b). At the end of the interaction the test particle has
acquired a new equatorial velocity and pitch angle, namely,
v,r and ar (F for final) and must now be identified with the
mesh point (v,r, ar). This means in effect that all the particles
represented by this test particle have acquired parallel velocity
and pitch angle values in the ranges v, + (Av,/2) and ar +
(Aa/2), respectively. In order to conserve the total number
density of particles in the system the following changes must
be made in the values of the distribution function at (v, co)
and (vyr, ar):

Tnew(©10s @) = fo1a(V110, @) = B fora(Vio o) (12)
Frew@ir, ap) =forar, ar) + Afaa(vy, Q)
. y0%(sin o )/(cos® ) (13)

vy F(sin ar)/(cos® ar)

Using 12 such test particles for each mesh point and repeat-
ing the procedure for every mesh point, we obtain the per-
turbed distribution.

Figure 11c shows an illustrative sketch of the perturbed
distribution. After one pass of the wave the empty loss cone of
the initial distribution is partly filled. The total number of
precipitated particles and the precipitated flux can be obtained
by properly integrating the perturbed distribution over v, and
«. This is done in detail for the sample computation of the next
section.

Computation of Flux for a Particular Case

As an application of the technique described above, we
compute the precipitated particle flux for a particular case.
The medium and wave parameters given in Table 1 are used
for different wave intensities. For these computations a pitch
angle mesh size of 0.5° is used, with 60 mesh points in pitch
angle covering from a = 0° to 30° in 0.5° steps. Pitch angles
greater than 30° were not considered because even for the
largest wave intensity used in the calculations (B = 50 mvy) no
particles with a, > 30° are scattered into the loss cone during
one pass through the wave. A variable mesh size in v, is used
with mesh size increasing with v,,. About 85 bins in v, covering
the range from v, = 1.87 X 10* km/s (parallel energy of ~1
keV) to v, = 6.01 X 10* km/s (parallel energy of ~10 keV)
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Fig. 11. Simulation of the distribution function. (a) The general

distribution: The shaded area is the portion that will be significantly
affected by the wave. (b) Unperturbed distribution: In this illustration
a uniform distribution with f(v,, @) = 12 above the loss cone, and f(v,,
a) = 0 in the loss cone is shown. (¢) Perturbed distribution.

were used with mesh sizes ranging from 0.1 to 2.8%. The
resonance points are at the equator for the 1-keV particles and
at £20° for particles at 10-keV parallel energy (assuming aeq
=~ 15°). All together about 40,000-50,000 test particles are
used for each computation.

The initial unperturbed distribution is assumed to be of the
form
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fv,a) = %g(a) a > alc

(14)
fo,a)=0 a < atc
where 4 is a constant, g(a) is some function of pitch angle, and
a' is the halfwidth of the loss cone. The energy variation of
f(v, @) is in reasonable agreement with experimental measure-
ments of the trapped low-energy fluxes in the magnetosphere
[Schield and Frank, 1970]. In our computations we consider
two different distribution functions, (1) an isotropic distribu-
tion for which g(a) = gi(a) = 1 and (2) an anisotropic distri-
bution with g(a) = gia) = 0.2 sin®*? @ + 0.8 sin”? a. The two
distributions have the same value at « = 90°, and they are
sketched in Figure 12. Both isotropic and anisotropic distribu-
tions have been measured in the magnetosphere [Lyons and
Williams, 1975]. The particular anisotropic distribution of Fig-
ure 12b was reported by Anderson [1976] and is considered to
be highly anisotropic.

Note that both distributions in Figure 12 are essentially flat
for 0° < a < 30°. In our computations of the precipitated flux
due to one pass through the wave we consider only particles
with @ < 30°. Therefore for the purposes of the computer
simulation both distributions can be treated as isotropic, but
with different flux levels just above the loss cone.

Isotropic case. In this case the initial unperturbed distribu-
tion is

4
o, ) = A(;o# a s al
I

(15)

a< a't

floy, @) =0

With this as the input distribution, the test particle simulation
described in the last section is carried out, and the perturbed

gy{a)=1.0

1.0

(¢}

1 1 1 | 1 1 1 1
O 10 20 30 40 50 60 70 80 90
(@ a(deg.)

gla)=0.2 sin%%a + 0.8sin'%a

.o

0.5-

0 1 I 1 1 1 ] ] ]
O 10 20 30 40 50 60 70 80 90

a (deg.)

(b)

Fig. 12. Pitch angle dependence of the two distribution functions
used in the calculations: (@) an isotropic distribution and (b) an
anisotropic distribution,
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Fig. 13. Normalized particle distribution f(«). The dashed lines
represent the unperturbed distribution which is isotropic in pitch
angle. The solid lines represent the one-pass perturbed distribution.
The number density in any given range da is equal to f(a) sin a da.

distribution is obtained. The output of this computation is the
value of the perturbed distribution at the 30 X 85 = 2550 mesh
points, covering from a = 0°-30° and v, = v, to v, = 10"%p,,
where v, = 1.9 X 10" m/s is the velocity corresponding to 1-
keV energy, such that 0.5mv,? = 1 keV.

In the following we concentrate on the 1- to 2-keV total
energy band, First, in order to show the wave-induced pitch
angle perturbations of the distribution function we integrate
the distribution over v, to obtain

v =21/2vkcoBn

fla) = 27|'f floy, @), dv, (16)

where we again assume uniform distribution over ¢.

Figure 13 shows the normalized distribution f(«) versus o
for different wave intensities. The dashed lines show the unper-
turbed distribution which is isotropic above the loss cone, as is
clear from (15). The solid lines show the one-pass perturbed
distribution. Note again that only the 1- to 2-keV total energy
band is considered. The integral given in (16) is easily carried
out with the computer, using the mesh point values f(v,, )
and Av, =~ dv, and approximating the continuous integral by a
weighted sum of finite numbers of values of f(v,, ).

For B,, = 1 m~ the perturbations are small, and only a small
percentage of the particle population from the range just
above the loss cone has been precipitated. For B,, = 10 my the
loss cone is partly filled with particles scattered down from
higher pitch angles. Most of the particles scattered into the loss
cone originally had pitch angles in the 2°-3° range just above
the loss cone. For B, = 20 my and 50 m+y, the number of
precipitated electrons is higher than for B,, = 10 my, and there
are more particles deeper into the loss cone. Also, by observing
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the distribution at pitch angles above the loss cone we see that
contributions to the loss cone population come from a wider
range of pitch angles for higher wave intensities.

The total number density of precipitated electrons in the 1-
to 2-keV energy range is given by

ale 21/2ycosa
NT =2
0

) = Upcose

Sy, a),? :(‘)’s‘—a‘; dv, da[L3(1 + 3sin?\)2] (1)
where a'¢ is the loss cone angle (5.5° at equator for L = 4) and
the last factor L?(1 + 3 sin® A,)!/? describes the convergence of
the field lines which gives a reduced flux tube cross section at
the ionosphere as compared to that at the equator. In this case,
A, would be the latitude at which the L = 4 field line crosses
ionospheric heights, i.e., \; =~ 60°. Note that all evaluations in
the integrand are done using equatorial values, whereas Ny is
the precipitated number density at the ionosphere. The precip-
itated energy deposition rate in the same range is
sin o ( 0,2 \

alc 212y, co8a 1
= 2 —_
Q=2r fo f fo, ade, cosal 2 " costl

V) = vpcosa

*(vy) dv, da[L3(1 + 3 sin?A,)?] (18)
Both integrations (17) and (18) reduce to finite weighted sums
in our computer formulation. With the perturbed distribution
f(v, @) obtained at the mesh points, the energy deposition rate
Q is evaluated without difficulty. For B,, = 10 my we obtain

Q=42 X104 (19)

where A4 is the proportionality constant in (14) and (15). The
constant A can be evaluated in terms of measured number
density using (14). We find that 4 = 5.2 X 10°N,, where N, is
the number density of isotropically distributed electrons in the
1- to 2-keV energy range. Thus @ = 0.2N, ergs/cm? s for B, =
10 my. Figure 14 shows the energy deposition rate as a func-
tion of wave intensity. The dashed straight line gives the results
predicted on the basis of linear theory. The vertical scale on
the left is normalized to | N.|. The one on the right is normal-
ized to |®,|, the differential energy spectrum for o =~ 90°
particles with ~1-keV energy. As can be seen from Figure 14,
the precipitated flux increases with wave intensity for 8,, < 40
my and begins to saturate for B, S 40 my. The variation
should be compared to that of the rms scattering given in
Figure 7.

Schield and Frank [1970] have reported measurements of
low-energy electrons on the Ogo 3 satellite. Figure 6 of their
paper indicates number densities of 3 el/cc in the energy range
750 eV K .E < 50 keV inside the plasmapause at L = 4. Figure
4 of the same paper indicates that number density varies as v—*
with velocity (E~? with energy). Using this type of energy
dependence, we obtain N, = 1 el/cc in the.l- to 2-keV range.
Using this value for N, gives a precipitated flux of Q = 0.22
erg/cm? s for B, = 10 my wave intensity.

The energy deposition rate can also be expressed in terms of
the differential energy spectrum & [Schield and Frank, 1970].
Using (15), we find 4 = 2®,, where &, is the differential energy
spectrum in el/cm? sr s keV for the ~1-keV electrons. Simi-
larly, we find Q = 10-°®, erg/cm? s for B, = 10 my.

A more recent measurement of low-energy electron fluxes
on the Explorer 45 (S?) satellite was reported by Anderson
[1976]. For disturbed premidnight conditions and for ~1-keV

erg/cm? s
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ONE-PASS PRECIPITATED FLUX (e?s/cmz-sec) IN THE 1-2 keV
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Fig. 14. The one-pass precipitated flux in the 1- to 2-keV range as a function of wave intensity. This result is for an
isotropic distribution. The vertical scale on the left gives the flux (ergs/cm? s) normalized to | N, |, where N, is the electrons
per cubic centimeter in the 1- to 2-keV range. The one on the right gives flux normalized to |®,]|, the differential energy
spectrum in el/cm? sr s keV, for ~1-keV electrons at a =~ 90°.

electrons with isotropic distributions the energy spectrum @, is
of the order of ~10° el/cm? sr s keV, resulting in an energy
deposition rate of @ =~ 0.1 erg/cm?®s.

Anisotropic case. For this case the pitch angle dependence
is g(a) = 0.2 sin®? & + 0.8 sin*? a, as plotted in Figure 12. For
a < 30° this distribution can be approximated by

4
J(on, @) = (0.15)4 2% o <o 30°

(20)
f,a)=0

a L at

When the distribution given by (20) is used as the initial
distribution in our simulation, the results should be the same
as those for the distribution given by (15) within a factor 0.15.
Therefore for this anisotropic case and for B,, = 10 my, Q =
6.35 X 10714 erg/cm? s, where A4 is the proportionality con-
stant in (14) or (20).

The differential energy spectrum for the anisotropic distri-
bution is & = (4/2E)[0.2 sin"2 o + 0.8 sin’? ], where E is the
energy. Substituting £ =~ 1 keV and a = 90°, we obtain 4 =
2®,, where ®, is the spectrum in el/cm? sr s keV for ~1-keV
electrons at @ = 90°. That this is the same relation as the
isotropic case is not surprising, since the two distributions
used in the calculations (Figure 12) were chosen to have the
same value at o = 90°. This gives @ = 1.3 X 10-°%, erg/cm?s
for B, = 10 my.

We again use the data reported by Anderson to find abso-
lute values for the energy deposition rate. For 1-keV electrons
with anisotropic distributions similar to that of the second
panel of Figure 5 the differential energy spectrum for o = 90°
particles is ®, =~ 10° cm~2 sr=! s~! keV~!. Hence the energy
deposition rate @ = | X 10-% erg/cm? s.

These values show that the one-pass fluxes in the 1- to 2-keV
range precipitated by a 10-my CW signal at 5 kHz can be as
much as 1 X 1072to0 0.2 erg/cm? s depending on the anisotropy
of the distribution function. Such fluxes are well within the

resolution of most particle detectors. The intensities approach
that of a moderate aurora.

Leverage

In the cyclotron resonance interaction, large pitch angle
changes induced by the wave on the particles do not necessar-
ily require a large amount of energy exchange. The basic
reason for this is the fact that the wave perturbations are
caused mainly by the wave magnetic field which changes the
direction of momentum (i.e., pitch angle) of the particle with-
out changing the energy much.

We have shown in the previous section that energy fluxes of
as much as 0.2 erg/cm? s can be precipitated by waves of 10-
my intensity. It is instructive to compare the energy density of
the precipitated flux and that of the input wave and compute
the leverage involved in the wave-induced precipitation proc-
ess.

For longitudinal whistler mode propagation the wave
Poynting flux is given by | P| = (¢/nu,) | B, |?, where B, is in
milligammas, c is the velocity of light, n is the wave refractive
index, and g, is the permeability of free space. For the parame-
ters of Table 1, n =~ 40 at the equator. Using this together with
B, = 10 mv, we obtain the wave energy flux |P| =~ 6 X 10-®
W/m?. A precipitated flux of 0.2 erg/cm? s is equivalent to an
energy density of about 0.2 X 10-°* W/m?. This shows that the
leverage involved in this interaction is ~10°, or 50 dB. There-
fore significant particle fluxes can be precipitated by waves of
moderate intensity.

The above calculations relate to the energy densities. We can
also consider the total input and output power and compute
the leverage on an integrated basis. The Siple VLF transmitter
operates with a total radiated power ranging from 100 W to 1
kW, If we assume that the precipitated flux is distributed over
an area of 100-km radius, the total precipitated power is ~ 107
W, a factor of ~10° larger than the radiated power. Hence the
power leverage of the interaction is ~50 dB. The input power
of the transmitter is ~100 kW. Since an output of ~10" W is
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obtained, the net power gain is ~20 dB. The source of this
extra power is of course the energy of the trapped energetic
particles.

Note that these numbers are obtained by considering only
the 1- to 2-keV energy band. The same wave will also precipi-
tate particles with higher energies. Therefore the total leverage
and the power gain will be somewhat larger than those com-
puted above. Furthermore, we have implicitly assumed that
100 kW of input power is necessary for generating a 10-my
signal. This is very likely to be an overestimate. Recent results
from a power step (up and down) experiment using the Siple
transmitter have shown that magnetospheric signals of the
same intensity can at times be produced with lower power
levels, so long as this level is above a threshold value.

6. CONCLUSIONS AND DISCUSSION

We have analyzed the nonlinear gyroresonance interaction
between energetic electrons and coherent VLF waves in the
magnetosphere. In our study we have focused on magneto-
spheric parameters appropriate for the L = 4 field line. This is
the approximate location of the Siple VLF transmitter in
Antarctica, the source of many of the data concerning non-
linear interactions between coherent VLF waves and energetic
electrons in the magnetosphere.

We have used a computer simulation of the full nonlinear
equations of motion for energetic particles interacting with a
longitudinal whistler mode wave in an inhomogeneous magne-
toplasma. We have studied in detail interaction of single parti-
cles and a full distribution of particles with a given wave. The
interaction of a full particle distribution is determined by using
a test particle approach. In this approach, in order to estimate
the perturbation of the full distribution, the complete trajec-
tories of a representative number of particles distributed ap-
propriately in phase space are computed.

We have shown how the nonlinear pitch angle scattering
varies as a function of particle pitch angle, wave amplitude,
cold plasma density, and resonance position along the mag-
netic field line. We have compared the nonlinear theory with
the well-known linear theory and have derived a quantitative
criterion for determining the applicability of linear theory in
any particular case. In particular, our results indicate that
nonlinear effects are significant for wave amplitudes as low as
3 m« for a 5-kHz signal near the magnetic equatorial plane at
L >4

Our full distribution calculations show that significant pre-
cipitated energetic electron fluxes can be produced with mod-
erate strength VLF waves. For example, our results indicate
that at L ~ 4 a 10-my, 5-kHz wave can produce a precipitated
energy flux of 1- to 2-keV electrons of as much as 10! erg/cm?
s, the exact value depending upon the value of the energetic
electron distribution function near the loss cone. We have
shown that significant leverage is involved in the wave-induced
particle precipitation process. Typically, the energy density of
the precipitated flux is 50-60 dB higher than that of the wave.
We have computed the ionospheric perturbations due to these
precipitated fluxes and have shown that significant density
enhancements can be induced in the nighttime ionosphere.

Measurement of the Precipitated Flux

Assuming that our calculations of wave-induced precipi-
tation are correct, the question arises as to how the precipi-
tation flux itself or the resulting ionospheric perturbations can
be detected.

The most direct method of detection is to employ satellite
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particle detectors. However, this method has drawbacks at
both high and low altitude. At high altitude near the magnetic
equatorial plane the precipitating fluxes are less intense, and
the particle detectors must be directed into the loss cone. Since
the half angle of the loss cone is very small (~5° at L = 4), the
pointing accuracy of the detector must be high, and its angular
resolution must be at least equal to the loss cone half angle. At
low altitude (~500 km) the loss cone half angle approaches
90°, and the detector pointing accuracy and angular resolution
are not critical parameters. However, the satellite velocity is
high (~7 km/s), and the region of precipitation may be small
(~100-km scale), so that the time available for flux measure-
ments may be severely limited.

A second method involves the use of photometers at ground
stations such as Siple Station, Antarctica. If an experiment
lasts for several weeks, there is a good probability that the
precipitation region will sometimes be located within 100 km
of the transmitter. In this case, enhanced photoemission from
the atmosphere should be readily detectable on the ground
near the transmitter if the precipitated flux exceeds 0.01 erg/
cm? s. Recent photometer measurements at Siple Station have
shown that significant enhancements in the photometer output
can be produced by precipitation induced by VLF whistler
mode noise bursts at 2-4 kHz (J. Doolittle, private communi-
cation, 1977).

A third method makes use of precipitation-induced modifi-
cation of the D region. Energetic electrons are precipitated
into the atmosphere, penetrate the D layer, and change the
properties of the earth-ionosphere wave guide. These changes
are detected by monitoring the amplitude and/or phase of
VLF waves propagating over long distances (~1000 km) in the
earth-ionosphere wave guide. This type of modification has
already been observed to occur as a result of precipitation of
30-keV electrons by whistlers [Helliwell et al., 1973]. It appears
that the same type of interaction should take place whether the
coherent input wave is a signal from a VLF transmitter, a
natural whistler, or a discrete emission.

Still another method is the use of high-altitude balloons to
detect Bremsstrahlung X rays produced by the precipitating
electrons. For example, Rosenberg et al. [1971] have measured
one-to-one correlation between VLF emissions and bursts on
the balloon X ray measurements.

Additional methods of precipitation detection include
riometer and ionosonde techniques.

Intensity of Coherent Waves
inthe Magnetosphere

Although we have presented our results for a wide range of
wave intensities, we have stressed the results for a 10-my wave
amplitude. Evidence in support of this value comes pre-
dominantly from high-altitude satellite data. For instance, the
amplitude of the VLF stations NAA (17.8 kHz) and NPG
(18.6 kHz) were measured by a VLF experiment on the high-
altitude satellite Ogo | when this satellite crossed the magnetic
field lines linking the transmitters (L = 3). It was found that 10
my was a representative amplitude for the transmitter signals
near the magnetic equatorial plane [Heyborne, 1966].

VLF waves in the magnetosphere produced by the relatively
low power (output of >1 kW) Siple Station transmitter have
frequently been observed on satellites [[nan et al., 1977]. In one
representative case a wave amplitude of 0.3 my was measured
when the satellite (Imp 6) was at a latitude of 20°S on the field
line (L ~ 4) linking the transmitter. Since the satellite inter-
cepted the signal on the transmitter side of the equator and
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before the signal had traveled once over the field line, it was
concluded that the wave was unamplified. Considering the
commonly observed 30-dB amplification of VLF signals in the
magnetosphere [Helliwell and Katsufrakis, 1974], the signal
intensity at the equator could have been as high as 9 my. Thus
it may be the case that even low-power transmitters can pro-
duce wave amplitudes of 10 my near the magnetic equatorial
plane. The amplitude of the naturally occurring highly coher-
ent VLF signals known as ‘chorus’ has been measured on a
number of satellites [Burtis and Helliwell, 1976; Tsurutani and
Smith, 1974; Taylor and Gurnett, 1968]. The amplitude of these
quasi-coherent signals near 5 kHz has typically been found to
lie in the range 2-20 my.

Furthermore, because of the predicted high radiation effi-
ciency of dipole and loop antennas at VLF frequencies in the
ionosphere and magnetosphere [Wang and Bell, 1972], it ap-
pears possible to produce an unamplified 10-mvy wave near the
magnetic equatorial plane on the L = 3-5 field lines using a 1-
kW VLF transmitter on a low-altitude satellite.

Similarly, a high-altitude satellite-based VLF transmitter of
1-kW output operating within a few thousand kilometers of
the magnetic equatorial plane could be expected to produce a
wave field exceeding 100 my within 1000 km of the equatorial
plane.

Thus a 10-my amplitude is representative of highly coherent
VLF wave types that can presently be found, or that may be
introduced in the future, in the magnetosphere. When these
waves are present, strong pitch angle scattering of energetic
electrons can be expected. Details of this scattering will depend
upon the spectral form of the coherent wave. Our present
results, which are based on the assumption of a fixed frequency
wave, are meant to apply primarily to the case of VLF wave
injection experiments involving fixed frequency inputs near the
- L = 4 field lines. These experiments can be either ground,
space station, or satellite based. However, our results can also
be applied to the case of pitch angle scattering by chorus and
whistler elements so long as the wave frequency changes slowly
with time.

Self-Consistent Field Structure

The particle scattering calculations presented in the main
body of this report have not directly included the effects on the
wave of the electromagnetic fields generated by the perturbed
energetic particles. In effect we assume either that the currents
stimulated in the energetic particle population do not lead to
significant damping or amplification of the wave or that this
effect has been included in the model chosen for the wave field
structure. It is assumed, in other words, that the wave field is
known as a function of space and time.

It is not within the scope of this paper to consider how the
wave function is established along the path of integration. The
propagation and dispersion of VLF waves in the magnet-
osphere are mainly controlled by the cold plasma. However, it
is widely believed that VLF waves are amplified or damped as
a result of interactions with energetic electrons in the magnet-
osphere. One of the wave particle interactions to which VLF
wave amplification and emission generation in the magnet-
osphere are most commonly attributed is the cyclotron reso-
nance interaction. The wave amplification or damping in this
type of interaction is due to the wave’s phase bunching of the
energetic particles which creates a net current [Helliwell, 1967,
1970; Helliwell and Crystal, 1973; Nunn, 1974]. Experimental
and theoretical evidence indicates that the source of generation
of cyclotron growth is in the equatorial plane [Helliwell, 1967;
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Helliwell and Katsufrakis, 1974; Tsurutani and Smith, 1974].
Furthermore, there is evidence that the growth is temporal in
nature and occurs within ~500 km of the equator. Since for
these cases the waves originate or are significantly amplified at
the equatorial plane and propagate down the field line, one can
assume that the wave signal is present only over half the field
line, starting at the equator. The self-consistency of this model
has been demonstrated by Nunn [1974].

In most of our computations we have used a wave field that
has a constant intensity over the entire field line. We have,
however, computed the precipitated flux for the case of a wave
which has a constant intensity over one half of the field line
and negligible intensity over the other. Our result shows that
the precipitated flux for the case of the half-field-line wave is
not more than 20% lower than that for the full-field-line case,
when the same maximum wave amplitude is assumed in each
case. This is a reasonable result when one considers that parti-
cles which scatter into the loss cone generally are near the loss
cone to begin with and thus have little perpendicular energy to
transfer to the wave during the scattering process. Con-
sequently, the details of the wave’s amplitude and phase
changes due to feedback effects generally depend almost en-
tirely upon the higher pitch angle particles. Thus since the
particles near the loss cone are effectively decoupled from the
wave-particle feedback system, we would expect them to re-
spond mainly to the gross properties of the wave (for example,
average wave amplitude) rather than to the details of the
feedback process. Since the gross properties of non-self-consis-
tent full-field-line wave and the self-consistent one-half-field-
line wave are similar, we then expect the precipitated fluxes to
be similar also.
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