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The Siple experiments have led magnetospheric
arch into an exciting new stage. A major task

is to develop new theories to explain the re-
jis. Classical plasma physics has not dealt with
Jerent wave generation, although the evidence
jizests that the phenomenon should be found in
gally all plasmas. An important objective is to
et the effects of precipitation induced by Siple
fuals, as bas been done with natural vir waves
pscnbergetal., 1971; Helliwelletal., 1973). Space
psions of this experiment would combine electron
d wave injection to further extend control of
pperimental parameters. Plans are being made for
g such an experiment to be performed on a
ntific payload (amps) of a forthcoming space

be done from the ground.

B Uimately the Siple experiments should aid in
derstanding how the delicate outer fringe of our
mosphere moderates the sun’s influence on the
er atmosphere. Such understanding will have a
kin predicting and adapting to climatic changes.
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Siple transmitter signals as
diagnostic probes of
the magnetosphere

D. L. CArPENTER and T. R. MILLER
Radioscience Laboratory
Stanford University
Stanford, California 94305

Natural very low frequency (vir) whistlers from
lightning propagate on magnetospheric field-
alined paths from hemisphere to hemisphere.
A well established theory relates the observed
frequency-time or dispersion characteristics of a
whistler to the electron density along its path and
to the path equatorial radius (e.g., Helliwell, 1963).
This theory enables us to obtain much detailed in-
formation on the distribution and dynamic be-
havior of the magnetospheric plasma. The area of
Siple and Eights stations possesses exceptional
properties as a whistler-receiving location (e.g.,
high conjugate lightning rates, low-local noise). For
example, the data acquired there have provided
much knowledge of the important geophysical
known as the plasmapause (Carpenter,
1966). At this field-alined boundary, typically four
earth radii distant at the equator, the plasma den-
sity may drop by from one to two orders of magni-
tude within a fraction of an earth’s radius (Ange-
rami and Carpenter, 1966). Figure 1 shows two
equatorial profiles of electron density deduced
from Siple whistlers. Dashed curves provide esti-
mates of the general trends shown in the data, One
example (circles) involves quiet magnetospheric
conditions; the profile extends relatively smoothly
to ~5.5 earth radii and the plasmapause is not de-
fined. The other case {triangles) involves moderate-
ly disturbed conditions; the plasmapause is present
near four earth radii, which is near the field lines
connecting Siple, Antarctica, and Roberval, Quebec
(Canada).

What role can the Siple transmitter signals play
as diagnostic probes of the magnetosphere? A study
has been made of the circumstances of transmitter
signal reception at Roberval. Travel time versus
frequency characteristics of the Siple signals were
compared to those of whistlers. Figure 2 shows fre-
quency (1.5 to 3.5 kilohertz) versus time records
of frequency ramps transmitted at Siple (above)
and received =3.2 seconds later at Roberval (be-
low). The double ramp structure at Roberval (lower
left) shows evidence of propagation on more than
one path, while the curvature of the received ramps
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Figure 2. Frequency-time records showing frequency ramps {
SI~-RO

as transmitted at Siple (above) and received =3.2 seconds

later at the conjugate station Roberval {below). Horizontal
fines on the Roberval record are due to local power system
s : - gurrents. _

pérmits reconstruction of the key propagation
features of the paths. '
Briefly, it was found that Siple signals reproduce

many features of whistlers, but in a way that com- -

plements the conventional whistler experiment.
For example, the received transmitter signals fre-
quently propagate on only one or two of the many
paths followed simultaneously by whistlers. This is
shown in figure 1; for each case the data point cor-
responding to the path followed by the transmitter
signals is marked by a T. Further, the Siple paths
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Iny . . .
‘ﬂ“" 4 arcular region with a radius of about 500
feters, a substantial portion of the energy

Plembe /e ober 1975

. the lower atmosphere. Further, magneto--

radiated by the Siple transmitter enters the iono-
sphere and propagates into the magnetosphere in
the whistler mode. The path of propagation in the
magnetosphere may be either ducted or non-
ducted. Ducted signals follow geomagnetic field-
alined paths and may emerge from the ionosphere
and be observed at ground stations (Helliwell,
1965). Nonducted waves follow more complicated
paths: they tend to remain above the lower boun-"~
dary of the ionosphere, and are not usually ob-

‘served on the ground (Smith and Angerami, 1968).

The properties of ducted signals are by far the
best understood; most of our knowledge about
whistlers, very low frequency (VLF) emissions, and
wave-particle interactions in the magnetosphere
derives from their study. The nonducted mode
nonetheless is important; about 90 percent of the
energy radiated by a viF ground transmitter will
propagate through the magnetosphere in this
mode. .

It generally can be expected that the nonducted
waves from the Sipie transmitter will interact with
energetic particles in the magnetosphere and will

produce vLF emissions and particle scattering in -

the same manner as ducted waves. The nonducted
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Figure 1. Very low frequency (VLF) spectrogram showing

Slple transmitter pulses and stimulated emissions as ob-

served over the Morthern Hemisphere by the polar-orbiting
' satellite I1S1S-2.
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