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Abstract. A simple concise formulation of the problem of propagation in multicomponent
plasmas with static magnetic fields is given. Application to plasmas, such as the ionosphere,
containing electrons and multiple positive ions is considered. For each ionic species beyond
the first, a multiple-ion resonance and a multiple-ion cutoff frequency are found for propaga-
tion perpendicular to the static magnetic field as well as a cutoff and the expected ion gyro-
frequency resonance for the left circularly polarized (Alfvén) mode. Also, for each additional
ion a crossover frequency is found for which the two longitudinally propagating modes and
the transverse extraordinary mode have the same phase velocity. If a crossover frequency
moves through the frequency of a wave propagating in a slowly varying medium, the polariza-
tion of the wave is changed from predominately right circular to left circular or vice versa.

Introduction. Examination of the very low
frequency (VLF) recordings of the Alouette 1
satellite showed the existence of emissions at
frequencies of a few kilocycles which were ap-
parently generated in the immediate vicinity of
the satellite [Brice et al., 1964 ; Brice and Smith,
1964]. It was suggested by Brice and Smith
that the lower frequency cutofl of these emis-
sions was the lower hybrid resonance frequency
f. for the plasma surrounding the satellite. For
a moderately dense plasma containing electrons
and a single ionic species, this resonance fre-
quency is given by
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where f, is the electron plasma frequency, fa
the electron gyrofrequency, and M the mass-to-
charge ratio of the ions relative to that of the
electrons. In the ionosphere we expect more
than one ionic species, so that it is of interest
to determine the lower hybrid resonance fre-
quency for a plasma containing multiple ion
species. This interest has led to examination of
the problem of propagation in any multicom-
ponent plasma. Hines [1957], Buchsbaum
[1960], Yakimenko [1962], and Gintsburg
[1963] have considered this problem. Hines
gave the refractive index for many ions. In ad-
dition, he showed that for very low frequencies
in the ionosphere the upper frequency cutoff

1 Now at Faculty of Engineering, Carleton Uni-
versity, Ottawa, Ontario, Canada.

for propagation transverse to the static mag-
netic field was at a frequency well above the
ion gyrofrequency. This cutoff frequency is re-
ferred to as the lower hybrid resonance [Stiz,
1962]. Buchsbaum showed that in the presence
of two ionie species an additional resonance was
found for propagation fransverse to the static
magnetic field at a frequency between the two
ionic gyrofrequencies. Yakimenko and Gints-
burg, considering propagation of Alfvén waves
in the presence of multiple ions, showed that
a resonance existed at each ion gyrofrequency
with a cutoff at intermediate frequencies. The
derivation below proceeds in a straightforward
manner to yield relatively simple formulas de-
seribing propagation characteristics in a multi-
ple component plasma. We deduce that the
addition of each ionic species beyond the first
introduces two additional resonances, a cutoff,
and a crossover frequency. The crossover fre-
quency, initially named for a frequency at which
three limiting modes have the same phase ve-
locity, is shown also to result in a change of
modes for waves propagating in a slowly vary-
ing medium. Interesting features of propaga-
tion arising from the presence of multiple ion
species are illustrated graphically.

Refractive indices for the principal modes.
In the derivation below, we consider small sig-
nal sinusoidal plane waves in a uniform cold
plasma containing a static magnetic field. For
completeness, the derivation is started from
Maxwell’s equations and the Lorentz force law.
From Maxwell’s equations
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V XH=]J+4 ¢ dE/dt 2

= twple,E (4)

where p is the refractive index, and p? the effec-
tive relative dielectric constant for the medium.

Thus p* can be simply related to the current J
by

J = iwe(’ — 1E (5)

If the plasma contains many different species
of charged particles, the total current is, of
course, the sum of the currents arising from
each of the species. In a rectangular coordinate
system with a static magnetic field of magnitude
B/u. in the z direction, the velocities for a given
particle species with charge g, and mass m, are
found from the Lorentz force law

tomy, = ¢,(E, + v,B) (6)
twmy, = q.(E, — v,B) )
wmy, = ¢,E, (®

The effect of collisions can be readily included
in the above equations if we assume a collisional
damping term proportional to velocity. Then
the left-hand side of (6) becomes

m, (e, + v.v;) = twmo(l — i, /w) 9

(10)

and similarly for the other two equations. The
effect of collisions can be included by replacing
the mass of the particle m, by m,(1 — iZ,).

The equations are further simplified by the in-
troduction of polarized coordinates (z + )/ /2,
(x — 1y)/ V2, 2, and by using the convenient
subscript notation of Buneman [1961], so that,
for example,

twmw,(l — 1Z,)

n =@+ i)/ V2 (1)
vy = (0. — )/ V2 (12)
v = v, (13)
From (6), (7), and (8) we obtain
wmy; = ¢,(B — iv,B) (14
twmy_; = q.(E-; + -, B) (15)
wmvy = ¢,Eo (16)
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These equations can be collectively written as

ion (14 228} _ 2

m,e

(17)

where p = (—1, 0, 41). The current J,, due to
the rth species with number density N, is

I = N.q¢.’E,
7 dwm[l + (pg.B/mw)]  (18)
. X,
= —iew ] T o7 E, (19)

where X, is the ratio of the square of the plasma
frequency of the rth species to the square of
wave frequency, and Y, is the ratio of the
gyrofrequency of particles of the rth species to
the wave frequency, with the sign of Y, being
the same as the sign of the charge of the rth
species. The total current is then the sum of the
currents due to each species, so that we obtain,
using (5),

2 X r
by =1 ZPY,+1 (20

Equation 20 gives the refractive indices for
the three principal modes of propagation in the
plasma, the right (41) and the left (—1) cir-
cularly polarized longitudinal modes and the
transverse plasma mode (0). The terms longi-
tudinal and transverse refer here to the direction
of propagation with respect to the static magnetic
field.

Refractive indices for arbitrary directions of
propagation. The derivation below follows class
notes prepared by Buneman (private communi-
cation).

Without loss of generality, we can assume
that the propagation vector k lies in the z-z
plane, making an angle § with the z axis. The
wave equation can be written

¢V xV xE = —¢" §E/ot
so that
—’[F’E — k(k-E)] = ¢”'E

(21)

(22)

The relative dielectric constant e in these
equations must be interpreted as a tensor. This
complication is obviated by the use of polarized
coordinates. The polarized components of (22)
are given by
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cK'E, — ’k,(k-E) = w'n,’E,

From this equation we obtain
E, = 02[k'E/(czk2 - wzﬂpz)]kp (29)

Letting k = k/[k| and W (the phase velocity) =
o/ |k|, (24) becomes
k-E

= ww2 b (25)
It is seen that, when the divergence of F is zero
(k-E = 0), nonzero values of electric field can
be obtained only for the three principal modes
(W = W,). For this reason these modes can

also be called the ‘charge-free’ modes.
Let us now consider the summation

E, =

D kLB, = k. E, + RE_, + kB,  (26)
= k,E, + k,E, + k.E, 27
=k-E (28)

Multiplying both sides of equation 25 by %_,
and summing over p, we find

. E k-,
R G
=kE (29
Assuming that k-E is nonzero, we obtain
kb,

,Z 1 — Wz/sz =1 (30)
For the orientation of the axes chosen,
k.,=sin8 £, =0k =cos8 (31
so that
=%, =sin 0/\/5 Fo = cos 0 (32

Equation 30 then becomes

1 1
1 302
2 sin 0[1 — WZ/W-IZ + 1 _ WZ/W_IZ]
cos’ 8
+ 1 — W2/W02 =
which can be rewritten as

W, W, ]
1 3.2 1 1 _
1 sin 0[W12 — + Wil— W 2

o W ]_
-+ cos o[Wﬂz—Wz 11=0

1 (33)

(39
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L gin? O[W’WI’ + WW_,* — 2W":|
A NCARS S(AE o
2
+ cos’ 0[—W02W: Wz:l =0 (35
Introducing the quantity
W? =W+ W, (36)

we obtain
(W2 — W2H(W* — W, sin® 6
+ (W — W(W* — W_,®) cos® 6 = 0 (37)

Tt is seen that for zero angle of propagation
the two modes are the +1 and the —1 principal
modes. For ninety degrees, we obtain the 0
principal mode and the transverse extraordinary
(¢) mode. For the ¢ mode, the square of the
phase velocity is the average of the squares of
the phase velocities of the two longitudinal
(+1 and —1) modes. These four modes ob-
tained for the limiting angles of 0° and 90° will
be referred to as the limiting modes.

For any arbitrary direction of propagation
the phase velocities and hence refractive indices
of the two characteristic modes can be obtained
from (37) in terms of the phase velocities of
the four limiting modes.

Polarization. For the +1 principal mode,
the polarization is right circular; for the —1
mode, left circular; and for the 0 mode, linear.
Further, it is seen from (25) that for these
principal modes there is no component of elec-
tric field in the wave normal direction. For
W = W, the ratios of the r — f electric fields
are obtained from (25) as

E..1Ey: E,

_sino[  w? A ]

- 2 _W12 - .W2 W_12 W2
sing[  w?r W ]
2 Lwd-w w.,* — w?

B 2
tcos d ﬁ] (38)

The four values of interest are the components
E, and Ey together with E,, the component in
the wave normal direction, and E,, the compo-
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nent in the wave front and the z—z plane,
where
E,=E, cos § + E,sin @ (39
E, = E, cos 0 — E,sin 0 (40)

In discussing the magnitudes of the field com-
ponents of the wave, it is convenient to use as a
standard the fields obtained with the same
Poynting flux for propagation in free space. For
linear or circular polarization, the ratio of wave
electric field in the wave front, E,,, to the equiv-
alent free space value, E,,, is given by

Eo/E; = p" (41)
while for the magnetic field of the wave,
Ho _ 1n2
Hf, =u (42)
Group refractive indices. 'To obtain the group

refractive indices, we examine initially the prin-
cipal modes, then the transverse extraordinary
mode, and finally the modes for arbitrary angles.
The group refractive index m, can be obtained
from

D

2
Iu
% (43)

N IE

pp, = B+

Using (20), we obtain

(44)

_ _pYV. X,
Hplgp = Z (pY + 1)

For the transverse extraordinary mode, we ob-
tain from (35)

2”5—2 = 1_2 + p._1_2 (45)
Differentiating (45) with respect to v and multi-
plying by /2, we obtain

2 wﬁL:Leam 41 @duy

*2 dw 2 dw pot 2 e

Adding the left- and right-hand sides of (45)
and (46), and using (36), we get

(46)

% (I"'n”’yc) = 4 (llllln) + 4 (Illll-y 1) (47)

Examination of (44) and (47) shows that the
product of the refractive index and group re-
fractive index is very simply computed for the
limiting modes. Since (20) gives the value of u’
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rather than p, factors of u in (47) have delib-
erately not been cancelled.

The formula for calculating the group refrac-
tive index for arbitrary directions of propaga-
tion is obtained by differentiating (37) with re-
spect to o and multiplying by «/2, as before,
and then adding twice the left- and right-hand
sides of (37). This process yields the somewhat
lengthy but reasonably symmetrical form

gin® BI:(““" - MO—MZ“)(M_2 — w3
I Ko

)

+ cos® 0[(% — —”:Z')(u'z - p™)

Resonances and cutoff frequencies. In what
follows, the term ‘resonance’ will be used to
describe frequencies at which the refractive in-
dex is infinite (zero phase velocity) and the
term ‘cutoff’ for frequencies at which the refrac-
tive index is zero (infinite phase velocity). From
(20) it is apparent that for the principal modes
the resonance frequencies are those for which

pY, +1= (49)

remembering that Y, is positive for positively
charged species and negative for negatively
charged species. Thus for left (—1) circularly
polarized waves, a resonance is found at the
gyrofrequency of each of the positively charged
constituents; for right (41) circularly polar-
ized waves the resonances occur at the gyro-
frequencies of the negatively charged constitu-
ents. It is readily apparent that for the plasma
mode (p = 0) there are no resonances.

From (36) it is seen that resonances occur
for the transverse extraordinary modes (e)
when the squares of the refractive indices of the
+1 and —1 longitudinal modes are equal in
magnitude and opposite in sign. Using (20), we
obtain this resonance from

X,

Y
R w

=0 (50)
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X,
E———I_Y2=1 (52)

r

For arbitrary angles we note that (37) is of
the form

W+ aaW> +ap = 0 (53)

For a resonance, we require a, = 0. This condi-
tion is readily found to be

[1 — ZITX'F:IsinZo

+ 1= X]cos*0=0 (54)
if = X, isnot equal to 1.

For cutoff frequencies we require zero refrac-
tive index, so that for the principal modes

(55)

From (36) it is apparent that a cutoff fre-
quency (infinite phase velocity) for either the
+1 or —1 modes is also a cutoff for the trans-
verse extraordinary mode. Further, from con-
sideration of (87) it can be seen that a cutoff
frequency for any of the limiting modes will
also be a cutoff for one of the characteristic
modes for all angles.

It is of interest to consider the polarization of
waves at frequencies near cutoff and resonance
frequencies. It is seen from (41) and (42) that
cutoffs are characterized by large electric fields
in the wave front. Further, of the four limiting
modes, only the transverse extraordinary modes
can-have a component of wave electric field in
the direction of propagation. For this mode it
can be shown from (38) and (39) that

)
Z:sz,+1_1

T

E.=0 (56)
E _E _W —-W,S
iB, iEy W'+ W_? (57)

At a cutoff for the transverse extraordinary
mode, either W.* or W_;* tends toward infinity,
so that the magnitudes of E, and E, become
equal. Thus the electric field of the wave is cir-
cularly polarized and consists of one component
in the wave normal direction, while the other
lies in the wave front and is perpendicular to
the static magnetic field. The magnetic field of
the wave is parallel to the static magnetic field.

For resonance frequencies, the component of
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electric field in the wave front becomes small,
so that the principal modes are dominated by
large magnetic fields of the wave. In these cases,
the resonances are termed ‘electromagnetic.’
However, for the transverse extraordinary mode
near a resonance frequency,

le = — W—l2 (58)
w0 (59)
and, using (36) and (57), we see that
En ~ le _ ”’sz
R (60)

Thus for the ¢ mode the dominant wave field
near resonance is the large electric field compo-
nent in the direction of propagation. Resonances
for this case are termed ‘electrostatic.’

Propagation with multiple ion species. As an
illustration of the formulas derived above, their
application to a plasma containing electrons and
multiple positive ionic species is considered. For
frequencies of the order of or greater than the
electron gyrofrequency, ion effects on propaga-
tion are extremely small. We will therefore con-
centrate our attention on frequencies which are
considerably less than the electron gyrofre-
quency. For these frequencies there are no
resonances or cutoffs for the right circularly po-
larized (+1) mode if we exclude negative ions
from consideration. Furthermore, unless the
electron plasma frequency is much less than the
electron gyrofrequency, the plasma (0) mode .
will be a nonpropagating mode for the frequen-
cies of interest. It is shown below that for
medium and high density plasmas most of the
frequencies of interest are independent of the
electron plasma frequency, so that in Figures 1
through 4 the frequency has been normalized to
the electron gyrofrequency, the ratio being de-
noted by A so that

AN={f/fg=1/Y, (61)
To illustrate propagation characteristics, the re-
fractive index or phase velocity, or the squares
of these quantities, can be used. Because of the
relationship given by (36), we have chosen, for
the most part, to plot phase velocity squared as
a function of A, for the +1 or right circularly
polarized wave (R), for the —1 or left circularly
polarized wave (L), and for the transverse ex-
traordinary mode (e). For all these figures a
ratio of electron gyrofrequency to electron
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plasma frequency of 0.4 was used. All ions were
assumed singly charged.

Figures la, b, and ¢ show the phase velocity
squared as a function of A for plasmas contain-
ing only one ion (hydrogen), two ions (75%
H*, 259, He*), and three ions (75% H*, 20%
He?, 59, 0%), respectively.

For one ion (Figure 1a), the two frequencies
of interest are the well-known ion gyrofrequency
resonance for the L mode and the lower hybrid
resonance for the e mode, the former resonance
being electromagnetic and the latter electro-
static. The two-ion case shows many new fea-
tures: a cutoff for the ¢ and L modes, and an
additional resonance for the ¢ mode and one for
the L mode, and a frequency at which the phase
velocities for the R, L, and e modes are all
equal. The additional resonance frequency for
the L mode is, of course, the gyrofrequency of
the second ion. For reasons that will become ap-
parent later, the term ‘lower hybrid resonance’
will be used for the ¢ mode resonance frequency
which is above the highest ion gyrofrequency
and below the electron gyrofrequeney, i.e., the
highest ¢ mode resonance shown in Figure 1.
The existence of an additional resonance for the
e mode, as seen in Figure 1b, was noted by
Buchsbaum [1960]. This lower frequency e
mode resonance will be referred to as the ‘two-
ion resonance.’

Similarly, the cutoff shown in Figure 1b will
be called the ‘two-ion cutoff.” The frequency at
which the R, L, and ¢ modes have the same
phase velocity will be called the ‘crossover fre-
quency.’

The new features found when a second ion is
added are repeated with the addition of a third
ion (Figure 1lc), and the general pattern ob-
tained for four or more ions is readily apparent.
For more than two ions, the additional e mode
resonances can be referred to as ‘multiple-ion
resonances,” and the cutoffs as ‘multiple-ion cut-
offs.

For the R mode it is apparent that the intro-
duction of negative ions will introduce features
similar to those shown for the L mode in Figures
1b and c.

Phase velocity surfaces. For consideration of
propagation at arbitrary wave normal angles, it
is convenient to use phase velocity surfaces, i.e.,
polar plots of the phase velocity as a function
of the angle from the static magnetic field to
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Fig. 1. The square of phase velocity for three
limiting modes as a function of normalized fre-
quency N = f/fr for a plasma consisting of elec-
trons and (a) hydrogen, (b) 75% hydrogen and
25% helium, (¢) 75% hydrogen, 20% helium, and
5% oxygen.

the wave normal direction. The phase velocity
can be obtained from (37), which can also be
written in the form

2W® = W, sin® 0 + W.,°(1 + cos® 6)
+ [(W,® — W.,%)?sin* 0

+ (W — W_,)? cos® 6]* (62)
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The term contained within the radical sign of
(62) is positive definite and is zero between 0°
and 90° only if all four limiting modes have the
same phase velocity. Neglecting this circum-
stance, the radical is zero only for § = 0° and
W, = W.,,or § = 90° and W, = W,. For any
angle other than possible 0° or 90°, one mode
always has greater phase velocity than the
other, the former being called the fast mode and
the latter the slow mode. It is apparent, then,
that as the direction of propagation is varied
the fast mode for longitudinal propagation is
always transformed to the fast mode for trans-
verse propagation, and similarly for the slow
mode. From the above discussion, the general
nature of the phase velocity surfaces can be
deduced from the phase velocities of the four
limiting modes.

In Figure 1 the square of the velocity of the
0 mode is not shown, but it is small and nega-
tive. Thus for the frequencies and parameters
chosen, a maximum number of three of the
limiting modes can propagate. From Figure 1,
it is seen that when multiple ions are intro-
duced the fast mode in the longitudinal direction
can be either the right or left circularly polar-
ized modes.

Figures 2a and b show phase velocity surfaces
for frequencies slightly below and slightly above
a crossover frequency where three of the limit-
ing modes propagate. The fast mode for longi-
tudinal propagation is left circularly polarized
in Figure 2a and right circularly polarized in
Figure 2b. Figures 2¢ and 2d show phase veloc-
ity surfaces for frequencies at which two and
one limiting modes, respectively, can propagate.

The crossover frequency. From examination
of Figures 2¢ and b it is apparent that at the
crossover frequency propagation is isotropic for
the fast mode and the phase velocity follows
approximately a cosine law for the slow mode.
These two features are found for Alfvén propa-
gation when the frequency tends toward zero.
Experiments on Alfvén propagation are usually
difficult to perform, since collisions must be ex-
ceedingly infrequent. However, this difficulty
can be overcome by using plasmas containing
two or more ion species and propagating at a
crossover frequency.

Also, from Figures 2a and b we can anticipate
that if the crossover frequency moves through
the wave frequency the wave polarization will
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change from predominately right circular to
predominately left circular. This point is also
illustrated in Figure 3, where the phase velocity
squared is plotted as a function of A (=f/fx)
for several wave normal angles for a plasma
containing 809 hydrogen ions and 209 oxygen
ions. It is seen that for all angles the fast mode
passes through the crossover point and that the
slope of these curves is the same for all angles
other than zero. We can deduce that the group
velocity for the fast mode for nonzero angle will
be independent of angle. From the formulation
of polarization given above it can be deduced
that both the fast and slow waves are linearly
polarized at the crossover frequency for all wave
normal angles other than zero.

Useful approximations for ionospheric appli-
cations. In general we can assume that the
ionic mass is much greater than the electron
mass (M >> 1). Then if we define dense plasmas
as those for which f* > f.°, and moderately
dense plasmas as those for which Mf® > f4*, we
can say that the ionosphere is at least moder-
ately dense at all heights above about 80 km.
Frequencies of interest here are always less than
the geometric mean of electron and ion gyrofre-
quencies, so that fz* > f% and f* > ffz. The
usefulness of these approximations will be seen
in the next section.

Propagation with two-ion species. As was
discussed above, no essentially new features are
added when a third ion species is introduced, so
that it is instructive to derive more specific
formulas for the frequencies of interest for a
moderately dense plasma containing electrons
(¢) and two ion species (i1 and i2). For this
case, the lower hybrid resonance frequency is
found from (52):

Xc Xl’l
1+ Y,2_1+ Y,'lz_].
X€2 _
+ Yi—1" 0 (63)

Since the lower hybrid resonance (for one ion
species) is of the order of the ion plasma fre-
quency or the geometric mean gyrofrequency,
whichever is less, we can assume for a plasma at
least moderately dense that

Y2>»1 Y2kl

and (63) becomes

(64)
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Fig. 2. Phase velocity as a function of wave normal angle for frequencies (a) slightly be-
low a crossover, (b) slightly above a crossover, (¢) at which two limiting modes propagate,
and (d) at which one limiting mode propagates.
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Fig. 3. The square of phase velocity as a function of normalized frequency A = f/f=z in the
vicinity of a crossover for wave normal angles between 0° and 90°.

Y.z + X, = (Xu + X.‘z) Y02 (65)

If we define 4, as the fraction of the positive ion
charge density occupied by the jth ion species
and M, as the mass to charge ratio of the jth
ion species relative to that of the electron, then

A;

X, =X, o, (66)
Equation 65 can then be written
D T R ()
1 M i f 0

where f, is the lower hybrid resonance frequency.
Though (67) was derived for two ions, it is
equally valid for any number of ionic species.
The two-ion resonance frequency is always
intermediate between the two ionie gyrofrequen-
cies, as is the two-ion cutoff frequency and the
crossover frequency. To determine the two-ion
resonance frequency, equation 63 is written

X AlMlXe

— M,2

1+ o+

—-1'v2
4,M,X,
+ v2 — M22
for frequencies of the order of the ion gyrofre-
quencies

=0 (68)

Y2~ M (69)

so that the last two terms of (68) are of the
order of MX./Y ., which is much greater than
X./¥ 2 and for a dense or moderately dense
plasma is much greater than unity. When we use
these approximations, (68) becomes

AMl
_M2

from which we obtain the two-ion resonance
frequency

A2M2

=0

+ 7 (70)

fZIr =

o’ (A1M1+ AzMz) 71)
M M, \A.M, + A, M,

The two-ion cutofl frequency fu, is obtained
from (55) by putting p equal to —1. We then
obtain for two-ion species

X, Ang A2Xc

=1 (72

Y.+1 Y, — M,

and, for a plasma at least moderately dense, we
obtain

Y.— M,

1 A A,
Y, Y,—M,+ Y, — M, (73)
Noting that
2 4;=1 (74)

we obtain for the two-ion cutoff frequency
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fare = fH(Aﬁlz + %:) (75)

The crossover frequency f,, is obtained from

Xo Ys _ -Xl'l Yi'l — X|2 Yl'2
Y‘2 - 1 Y.]_z - 1 Yn22 -

from which we find (for ¥.,2 3> 1)

-=0 (76)

1 A
Yz = Y2
so that

1 4,
— Mlz + Y,2 — M22

(77)

fcrz = sz(];;:Z ;;:2) (78)

It should be noted that the lower hybrid reso-
nance frequency is independent of electron den-
sity only for dense plasmas. The multiple-ion
cutoff and resonance frequencies are independent
of density for plasmas which are at least mod-
erately dense, whereas the erossover frequencies
are completely independent of density.

As an example of the application of the
formulas derived above for the two-ion reso-
nance, cutoff, and crossover frequencies, con-
sider & plasma with 209 oxygen atoms and
809% protons, with an electron plasma frequency
of 400 ke/s and an electron gyrofrequency of
1 Me/s.

Then the lower hybrid resonance frequency
obtained from (67) is 7.83 ke/s, and the two-ion
resonance frequency is found from (71) to be
75.8 cps. The two-ion cutoff frequency of 136.5
¢ps is obtained from (75) and the crossover fre-
quency of 246 cps from (78).

A number of the features of propagation in a
multicomponent plasma are summarized in Fig-
ure 4. Figures 4¢ and b show the group velocity
and phase velocity as a function of normalized
frequency. In Figure 4c are sketched phase ve-
locity surfaces (not to scale) for frequencies in-
dicated. There are a sufficient number of sur-
faces shown to indicate the general nature of
propagation in the frequency range where ions
are important. The ion constituents are assumed
to be 809% hydrogen and 209 oxygen. The ion
gyrofrequencies are at a normalized frequency
of about 341 X 10® and 546 x 10~*. The two-
ion resonance occurs at 7.83 X 107, The two-ion
cutoff occurs at 1.36 X 10 and crossover at
2.46 X 10™. The figure also illustrates the well-
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known fact that the group velocity is zero when-
ever the phase velocity is either zero or infinite.

Determination of constituents. It has been
shown above that the number of multiple-ion
resonance frequencies, the number of multiple-
ion cutoff frequencies, and the number of cross-
over frequencies are each one less than the num-
ber of ionic species. Also, for plasmas at least
moderately dense, all these frequencies are in-
dependent of density and are functions only of
the electron gyrofrequency and the masses and
relative densities of the ionic constituents.

Thus, given the ion masses (or, more accu-
rately, mass-to-charge ratios) the relative den-
sities (4,) of each of the ionic constituents of a
moderately dense multiple-ion plasma can be
determined from a knowledge of either all the
multiple-ion resonance frequencies or all the
multiple-ion cutoff frequencies, or all the cross-
over frequencies (remembering that = 4, = 1).
If mass-to-charge ratios of the ions are not
known, they can be found from a knowledge of
the ion gyrofrequency resonances.

It is apparent that measurement of multiple-
ion resonance and cutoff frequencies may provide
a useful diagnostic tool for plasmas containing
multiple ion species, such as the earth’s iono-
sphere.

Related experimental data. As was noted
above, VLF emissions which are believed to
arise from the lower hybrid resonance have been
observed in satellites [Brice and Smith, 1964].
Very strong signals, apparently associated with
the proton gyrofrequency, have also been ob-
served [Smith et al.,, 1964]. In addition, propa-
gation phenomena believed to arise from the
lower hybrid resonance, a multiple ion cutoff,
and a crossover frequency have been found.
These will be discussed in detail at a later date.

Discussion. The results derived above have
already been found to be extremely useful in
the interpretation of rocket and satellite VLF
recordings. They also have obvious potential ap-
plication to the problem of determining the
ionic constituents of the ionosphere by, for ex-
ample, measuring the impedance of an antenna
in the ionosphere as a function of frequency.
Consideration of ionospheric parameters indi-
cates a desirable frequency range for such an
instrument of 10 eps to 30 ke/s. With this ex-
tended low frequency range, the effects associ-
ated with the lower frequency multiple ion cut-
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Fig. 4.

(a) Group velocity, (b) phase velocity, and (c) phase velocity surfaces as a function

of normalized frequency \ = f/f=.

offs and resonances may well be observed.
Simultaneous measurements of electron plasma
and gyrofrequency would be of interest.
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