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Abstract.

The behavior of a Langmuir probe modulated by an externally applied signal

differs from its static behavior owing to the presence of additional steady and alternating
components of probe current. These may be interpreted to yield data on such plasma param-
eters as electron temperature and density and electron velocity distribution. Considerable
progress has been made recently in this branch of plasma diagnostics. This work is surveyed
here and is extended by an analysis of a new ac method of determining electron density and
temperature. The new method depends on the measurement of probe admittance and should
have useful applications to ionospheric probing by rockets and satellites. Details of an illus-
trative example are given. Some of the implications of the theory presented bear on the
accuracy of probe measurements of electron velocity distributions made by second derivative

methods. These errors are discussed briefly.

1. INTRODUCTION

Determining static Langmuir probe character-
istics by varying the probe potential sufficiently
slowly for transient phenomena to be negligible,
while simultaneously recording the probe current,
has been a standard plasma diagnostic technique
since it was first developed by Langmuir and
Mott-Smith [1924] forty years ago. Although
considerable interest attaches to the dynamic
behavior of the probe under conditions in which
its potential contains time-varying components,
it is only comparatively recently that this field
has been extensively explored. As we shall
indicate below, study of dynamic probe charac-
teristics opens up a wide range of additional
diagnostic techniques involving data reduction
methods rather different from the usual semi-
logarithmic current/voltage plot associated with
the static probe.

To facilitate further discussion, we can con-

L A first draft of this paper, devoted mainly to
the admittance probe analysis given in section
2B, was written by Dr. Mlodnosky before his
death in June 1963. In view of the considerable
volume of work published recently in the field of
dynamie probes, it was considered necessary to
modify his discussion substantially to bring it up
to date. This has been done, with some additions
to the analysis, by the other author.

veniently differentiate three ranges of dynamic
probe operation: (1) very low frequency (VLF),
(2) low frequency (LF), and (3) high frequency
(HF). In the first of these, the frequency com-
ponents of the probe potential are considered to
be so low that ions and electrons respond without
delay, and there are no displacement currents.?
As the frequencies increase the second range will
be entered, where the ion mobility can be
considered to be zero, though the electrons can
still respond without delay. Further increases in
frequency will bring operation within the third
range, where the mobilities of both electrons and
ions can be regarded as zero and only displace-
ment current flows. For these frequencies, the
current flowing is determined by considering the
probe as a structure immersed in a medium whose
dielectric constant is dependent on the plasma
[Kane et al., 1962].

There will, of course, be two transition regions
which might be of interest. So far, attention has
been concentrated on the higher of the two,
between LF and HF behavior, and several
workers have shown that a resonance can occur
near the local electron plasma frequency. In

2 Note that this does not necessarily correspond
to the frequency band below 30 ke/s commonly
termed VLF.
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section 2, we shall discuss this phenomenon and
the characteristics of VLF and LF probes in
more detail.

2. Dynamic PRoBE CHARACTERISTICS

A. VLF probes. A number of pulsed probe
techniques have been developed in which the
pulse length is sufficient for the conditions of this
probe category to be met [Waymouth, 1959; Bills
et al., 1962]. They are of use in transient dis-
charges and where relatively rapid probe con-
tamination may be occurring. We shall omit
further discussion of them here, since they give
the normal static probe characteristic. Instead
we shall consider an arbitrary probe charac-
teristic of the form

= V) M

where both ¢ and V contain de and small-ampli-
tude time-varying components. These will be
denoted by subscripts 0 and 1, respectively.
'We have, on expanding by Taylor’s theorem,

i + () = i Vo) + Vl(t)f,( Vo)

LGS
+ L iy 4
This has been studied for general noise signals
elsewhere [Garscadden and Emeleus, 1962; Craw-
ford, 1963], but in the cases of interest to us the
modulating signal will be sinusoidal, so that

V() = V, sin wt (3)

Substituting (3) into (2) and collecting terms
gives
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Graphical differentiation is highly inaccurate for
such an application, and what was probably the
first application of a dynamic probe technique
was designed to avoid this difficulty by obtaining
the second derivative directly [Sloane and
MacGregor, 1934; wvan Gorcum, 1936]. The
principle of the method was to modulate the
probe potential with a small low-frequency
sinusoidal signal superimposed on the de¢ poten-
tial and to measure the increment in the direct
component. The variation of this with V, could
then be used to determine the velocity distribu-
tion.

Experimentally, it is more convenient to have
an ac output proportional to the second deriva-
tive, and direct measurement of the second
harmonic component suggests itself. There are
considerable practical difficulties in carrying out
this measurement, however, since a very high
degree of linearity is required from the modu-
lating and amplifying circuits, and the input
signal must be very pure. Details of a satisfactory
circuit have been published recently [Branner
et al., 1963]. An alternative approach, to ampli-
tude-modulate the applied ac potential, leads to
an output signal proportional to the second
derivative at the modulating frequency. This
technique has been developed by Malyshey and
Fedoroy [1953], who modulated their carrier with
a sinusoidal signal, and by Boyd and Twiddy
[1959], who employed square-wave modulation.
Direct differentiation of the probe characteristic
can be carried out electronically if the probe
potential is swept by a sawtooth waveform
[Crawford and Freeston, 1963], but considerable
difficulties are encountered if the measurement
is to be made in the presence of noise. If a second

o V_l2 17 _V_l4 1117 ..
Y = I:f(Vo) -+ 4 f (Vo) + 64 f (Vo) + :I (4)
uw(t) = [Vlf’( Vo) + %f’”( Vo) + :| sin w¢
- [l;l— f”(Vo) + Z_é f””( Vo) + - ] cos 2wt + -+ (5)

To first order, both the de and second harmonic
components depend on the second derivative of
the probe characteristic at Vo. Druyvesteyn [1930]
showed that electron velocity distributions could
be traced out directly by determining the second
derivative of a static probe -characteristic.

probe is available, this effect can be discriminated
against [Crawford et al., 1964].

Considerable simplification of (4) and (5) is
possible if the electron velocity distribution is
Maxwellian. Then, in the electron-repelling
region we have for the probe current
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i=1, exp[V/V.] — i (6)

where 7, and ; are the electron and jon saturation
currents, and V, is the electron temperature.
The probe potential is measured relative to space
potential and will be negative in the electron-
repelling region. It can be shown that (4) becomes

% = 'l:.Io( Vl/ V.) — % (7)

where I, is the modified Bessel function of the
first kind [Takayama et al., 1960; Crawford, 1963].
This expression is exact provided that the ac
signal does not drive the probe into the electron
saturation region at any time. If this occurs, a
more complicated analysis is required [Garscadden
and Emeleus, 1962; Crawford, 1963; Boschi and
Magtstrelli, 1963].

The fundamental component of (5) can be
expressed in terms of a conductance G(Vy)
given by

ara- (3)

M R

For V. < 0.3V,, this conductance can be
approximated to within 1 per cent error by

G(V,y) = (;6) exp [%‘:] = % (9)

This expression suggests the possibility of
obtaining both the electron temperature and the
ion saturation current from a plot of G(Vy)
against 1. We shall postpone further discussion
to section 3.

B. LF probes. In this frequency range, it will
be necessary to take account of the displacement
current 7y that flows while the probe surface
charge Q adjusts to follow the time-varying
potential. We have

Q=CV (10)

where C is the probe/plasma capacitance. Hence
. _dey) _ cdv , vdcC

“WETg T Ta T ()

The quantity (dC/df) will not be zero, since the
charge distribution which determines C is
changing in response to the potential variations.
Since we have postulated that the electrons can
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follow instantaneously, C is a function of V only,
and (11) can be written

; _d(ev)dy
T 4V dt

where we have introduced a voltage-dependent,
effective probe/plasma capacitance C,(V). If we
assume, as before, that V consists of a de term
Vo and a small sinusoidal signal V' sin wt, we can
expand by Taylor’s theorem to obtain for the
de component of C,(V)

e

Vl2 174
Co = Ca( Vo) + T C, (Vo)

V_l4 11 e -
+ 64 ¢ (Vo) + - (13
In the small-signal limit, (13) becomes
iy = C(Vo) dV/dit (14)

and we see that the effective admittance of the
probe is

Y(Vo) = G(Vo) + wC(Ve)  (15)

For measurement of the admittance to be useful
as a diagnostic technique, it will be necessary for
C,(Vo) to be easily expressible as a function of
the electron temperature and charge density.
An illustrative example is given in section 3,
showing that this may be so under some condi-
tions.

‘We have supposed that the electronic conduc-
tion current is the same in this region as in the
VLF range so that measurements of the incre-
mental de component should still be valid for
obtaining second derivatives of the probe
characteristic. This will not be true of the
second harmonic method unless attention is paid
to the phase of the output signal. From con-
sideration of the expansions of (5) and (13),
we see that the second harmonic component is
given to first order by

i) = —VT‘ [f17(Vs) cos 2wt

— 20C,/(Vy) sin 20t]  (16)

and that, if only the amplitude is to be measured,
it is required that

50[2C./(Vo)/f" (Vo' <1 (17)
for the error to be brought within 1 per cent.
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C. The resonance probe. We have already
shown that the incremental de component of the
electronic conduction current component will
remain unchanged as frequency is varied through
the VLF and LF ranges. It was first noted by
Takayama et al. [1960] that as the frequency of
the modulating signal is raised the resonance
effect shown in Figure 1 occurs. Preliminary
measurements of the static probe characteristic
suggested that the resonance occurred at the
local electron plasma frequency w,, given by

(18)

where n, is the electronic number density, ¢ and
m are the electronic charge and mass, and e is
the permittivity of free space.

A first attempt at an analysis of the resonance
effect for an infinite plane probe was made by
Ichikawa and Ikegami [1962] and was extended
later by Ichikawa [1963). The grossly simplified
model used led to the conclusions that resonance
should occur at w,, and that the sharpness of
the resonance depends on the combined effects of
Landau damping and electron-neutral collisions.

It is not immediately obvious that the reso-

2 2
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Fig. 1. Resonance probe characteristics.
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nance should occur at w,,, nor does it in fact
generally do so. The phenomenon is best under-
stood physically as a series resonance effect in
the plasma. At resonance the RF electric field
in the sheath becomes high and causes an
increased rectified component to flow. To describe
it completely, however, would require an electron
trajectory analysis considering the combined
influences of the de and ac electric fields and
taking into account finite probe geometry. This
is an extremely complicated problem. It has,
however, been attacked with considerable success
by Harp [1963] by direct measurement, and also
numerically using some computed results of
Pavkovich and Kino [1964]. Pavkovich and Kino
analyzed the distribution of a RF electric field
in a semi-infinite plasma having a wall sheath in
which the dc potential distribution was taken to
be parabolic. Measurements by Harp and Kino
[1964], using an electron beam probing technique
in a low-density mercury-vapor discharge to
determine dc and RF electric field strengths,
showed that the assumption about the de
potential profile is good and indicated -close
agreement between measured and computed
values of RF electric field components both in
phase and in quadrature with the injected RF
current.

Figure 2 shows a typical result for the quadra-
ture component computed by Pavkovich and Kino
[1964]. The loss component is relatively small
and is not shown. The field at large distances is
constant and is inversely proportional to the

N

PLANAR SOLUTION
(PAVKOVICH AND KINO)

DISTANCE FROM WALL

(IN DEBYE LENGTHS)

5 10 15 20
T +

SPHERICAL APPROXIMATION
(HARP)

Ere (RELATIVE UNITS)

=10

Fig. 2. RF sheath fields.
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zero-temperature diclectric constant of the
plasma. We note that the quadrature component
of potential could be obtained by integration of
the electric field. This would, however, lead to
an infinite result in the case of the semi-infinite
plane plasma. Harp [1963] pointed out that, for
the finite probes used experimentally, the electric
fields will fall off approximately inversely as the
square of distance at distances comparable to
the probe dimensions, and that the infinite
potential result will not occur in practice. It will
also disappear in the case of bounded plasmas.

As an illustrative example, consider a spherical
probe of radius a, equal to (97,), where A, is the
electronic Debye length. This implies approxi-
mate equality between the radius and the sheath
thickness. Harp [1963] modifies the computed
curve for planar geometry by multiplying it by
(a?/r2) to give the approximate curve applying
to spherical geometry shown in Figure 2. Inte-
gration of this yields a finite value for the
potential. If this is carried out for a range of
variation of the parameter (w/w,.), the resonant
point, at which the potential is zero, can be
determined. In the case under consideration, this
occurs at (0.6w,,), and experimental measure-
ments under appropriate conditions have con-
firmed the result to within an accuracy of 10
per cent. The following empirical formula is
deduced by Harp [1963] to generalize this example
to different probe radii:

Wye

{1+ (a/5r)}"”

For the frequencies above about (0.5w,,), the
results of Pavkovich and Kino [1963] show an
increasing component of RF electric field in
phase with the current. This is a collisionless
effect equivalent to Landau damping and would
probably preclude observation of the resonance
for probes of radius smaller than about (2),).

The theory has been further extended by Harp
[1964] to show that where Landau damping is
negligible the half-power width of the resonance
gives the electron-neutral collision frequency
and to describe the behavior of the probe at
potentials other than floating potential. His
conclusions can be used to explain the corre-
sponding experimental results obtained by Cairns
[1963] and by Peter et al. [1964]. It has also been
possible to extend the treatment to cover the
behavior of the probe in a static magnetic field

(19)

Wres —
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and to explain the resonant frequency shifts
observed under these conditions by Uramoto
el al [1963].

3. A Space AppLicaTioN OF THE LF PrOBE

A. Explicit forms of the parameters. It was
pointed out in section 2B that, for the admittance
measurement to be useful, a relatively simple
analytic form should be available for the effective
probe/plasma capacitance C,(V ). In this section,
we shall derive a very much simplified expression
for a plane satellite- or rocket-borne probe of
area A, flush-mounted normal to the direction
of motion. Conditions will be such that the
vehicle velocity u greatly exceeds the ion thermal
velocity but is much below that of the electrons
[Jastrow and Pearse, 1957]. This means that the
ion current swept up by the probe is unchanging
with potential and is given by

(20)
By assuming a Maxwellian electron velocity
distribution and ignoring secondary emission
effects we can derive the floating potential of the
probe V, from

i, = ¢, exp (V,/V,)

1, = An;qu

(21)
where

i, = An,g(qV./2xm)'"* (22)

and we can assume charge neutrality (n. =
n, = n,) in the undisturbed plasma.

To determine the probe/plasma capacitance,
only changes in electron surface charge need be
calculated: the vehicle motion ensures that the
ion current is unaffected by potential. Hence,
changes in the sheath and total surface charge
with potential can result only from electron
displacements.

Poisson’s equation in one dimension is

&' Vo/dz’ = —p/e (23)
where p is the net positive charge density, and
z is measured from the probe surface. Now the
ion density in the space-charge sheath is constant
at the ambient value, so that (23) becomes

)|
E =« exp V. 1 (24)

which can be integrated to give

(m)2 _ 2naqV, I:ex (ﬂ) -1 — Z‘ljl
dx - €y p Ve Ve

(25)
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Consider now the electric displacement D in
the plasma. We have

dD _ dD dz _ p

dVy dz dVy (dVo/d2)

If this is evaluated at the probe surface (z = 0),
we obtain

(26)

C,( Vo) _ P
i - [(d vo/dx>],-o @)
Substitution in (26) yields
vy - (5a)
{1 — exp (Vo/ Vc)} (28)

H(=Vo/ V) — [1 — exp (Vo/ VII}'”

where A, has been written for the Debye length

(nﬂq/el)Vo)l“-
The expression of (28) can be approximated by

o~ (-3 ] o

The comparison with the expression of (28) is
shown in Figure 3. For (—V/V,) greater than
3.25, the error will be less than 5 per cent. For
values greater than 5, the error is below 1
per cent.

Strictly, Boltzmann’s law for the electron
density distribution can only be used in (24)
and (25) for large negative values of (V/V,).
If the exact expressions are employed, the
exponential factors in (28) are both multiplied
by 0.5. Expression 29 is unaffected, however.

At floating potential we have, from (20)-(22),

vt (q_V-)”’]
vV, = I:u 2rm
and (29) becomes, finally,
o Ae, 1_ qV’)I/Z]}—I/Z
C(Vy) = (2”2)\‘,){1n [1w (21rm
(31)

For the conductance under similar conditions,
(9) and (20) yield

(30)

Angqu  Aegu
V. A

These can be combined to give an expression for
the electron temperature:

(V) = (32)
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Fig. 3. Approximation to probe capacitance
variation.

_ 2 mu’ Ae,G(V))
Vc - q exp [ uC,( Vf)2] (33)

After we have determined the electron tem-
perature, substitution in (32) will yield the
charge density.

B. Errors. It is important to see that the
simplification of (13) which we have used is in
order. By using (29), we have

3C.(Vs)
V(= Vo/ V) — 1T

If V, is put equal to (0.3V,), the value for
which errors in the conductance measurement
reach 1 per cent, then the first-order correction
in (18) is less than 1 per cent for (—V/V,)
greater than 2.3. The susceptance measurement
is, therefore, much less sensitive than the
conductance measurement to finite signal ampli-
tude effects.

We can also use the expression of (29) to
assess the errors in the Druyvesteyn analysis
described by (17). Upon substituting the appro-
priate expressions, assuming for illustration that
the electron velocity distribution is Maxwellian,
we obtain

w < [(_' Vo/V.)

oY (Vo) =

(34)

w — 11 exp (Vo/ V)
Wy (50m) "

(35)
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Fig. 4. Limits of accuracy of the Druyvesteyn
method.

The error increases, then, with increasing
(—Vo/V,), for a given applied frequency. Figure
4 shows the variation of (w/w,) with maximum
(—V/V,) measurable for the 1 per cent level
to be maintained.

C. Choice of working frequency. Before leaving
the low-frequency probe, we can calculate an
appropriate working frequency. The admittance
measurements will probably be most accurate
when real and imaginary parts are equal. This
gives
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solution would be to measure the conductance
at one frequency, and the susceptive component
at another, rather higher, frequency. The choice
of frequencies and amplitudes would then have
to be made carefully for -ecross-modulation
components to be negligible.

It is important to note from (36) that VLF
conductance measurements will be complicated
by the presence of an admittance component for
large values of (—V/V,). Simplifying, and
expressing (36) in terms of the ion plasma
frequency, gives

il e

am,
where M is the ion mass. Assuming that the most
likely ion is O+, and that it would be required to
vary (—Vo/V,) up to 10, yields a working
frequency of (0.013w,). Measurements could be
made for all higher densities and for densities
up to 2 orders lower when [G(Vo)/wC. (V)]
would reach 0.1.

(37

4, DiscussioN

We have tried to give in this paper an indica-
tion of the wide variety of ways in which the
response of Langmuir probes to periodic wave-
forms can be interpreted to yield information
either on laboratory plasmas or on charged
particles in space, and in particular we have

1=

172
(s g

wC’,( Vo) N
where (9) and (28) have been used. If measure-
ments are to be made at space potential, the
expression yields a working frequency of (0.4w,,)
and measurements could probably be made at
this frequency of densities up to 100 times
higher, when [G(Vo)/wC,(V )] could reach 10.

The range of measurement is widened con-
siderably if the probe is at floating potential, or
below. For a typical satellite orbit, « & 8.10¢
cm/sec and V, =& 0.15 ev. Use of (20)—(22)
gives equal real and imaginary components at a
working frequency of about (0.1w,.) for a probe
at floating potential. Measurements could be
made under these circumstances for densities up
to 100 times higher and 10 times lower.

If the range of electron densities expected is
greater than 3 orders of magnitude, a possible

G(Vo) _ ( Wye ) exp (Vo/ VI[(=Vo/ V) — (1 — exp (Vy/ Ve))]l/z

1 — exp (Vo/ V) (36)

shown that it is feasible to obtain electron
temperature and charge density data from
measurements of probe terminal admittance.
The techniques involved can be divided, in
general, into those capable of giving continuous
measurements of the relevant parameters and
those in which some sweeping action (of fre-
quency or probe potential, for example) takes
place and a finite time is required for the sam-
pling. Measurements of capacitance at frequencies
well above the local electron plasma frequency
and admittance measurements at a fixed probe
potential come into the former category; the
resonance probe and Druyvesteyn determinations
of electron velocity distributions fall within the
latter.

Of the methods involving sweeping, the reso-
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nance probe is particularly attractive. The
success of Harp’s [1963] analyses suggests that
this method can be developed into a powerful
tool for plasma studies. There still remain to be
explained one or two additional resonances that
have sometimes occurred at rather higher
frequencies than the main resonance. It seems
likely that these are due to standing-wave effects
in the finite geometry of the experimental system
or are related to the well-known Tonks-Dattner
resonances which have been explained recently
[Crawford and Kino, 1964; Nickel et al., 1963].

As far as the Druyvesteyn method is con-
cerned, the considerations of section 3B apply
to such applications as the recent measurements
with the Ariel satellite [Willmore et al., 1963].
That is, the working frequency must be limited
or the de component must be measured for
errors to be avoided.

The measurement of terminal admittance has
some important advantages over the use of a
static probe. For direct measurements in space,
the structure can be a long thin cylinder with
sufficient collecting area to measure very low
densities, say 1 to 10 electrons/cm?, The instru-
mentation is very simple, and conventional
impedance measuring techniques can be used.
Some measurements have already been made in
the lower ionosphere using a split dipole antenna
as the structure [Mlodnosky and Garriott, 1963].
This probe could certainly be applied to the
study of transient laboratory plasmas, but
difficulties may be encountered under certain
conditions in space. For example, the presence
of a large flux of very energetic particles, such
as Van Allen belt electrons, may alter the static
probe current and floating potential, thereby
changing the measured values of admittance.
Also, for some collector structures, a complicated
space-charge sheath forms because of cffects such
as the earth’s magnetic field, photoemission, or
motion of the vehicle, and it may not always be
possible to derive as simple an explicit form for
the effective capacitance as that of section 3A.
Under these conditions, the conductance may
still be calculable with considerable confidence,
however, and valuable information can be
obtained, as described in section 2A, by measuring
the conductance as the probe potential is swept.
One special advantage of this technique is that,
for all geometries of the probe structure, space
potential appears as a maximum in the con-
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ductance and is measured much more precisely
than by a static probe characteristic.

The most favorable conditions for use of the
admittance method are clearly those in which
the flux of very energetic particles is small and
the expression for the susceptance can be deter-
mined in a relatively simple form. This method
will be most advantageous when the electron
thermal velocity is very much greater than the
vehicle velocity. In the example of section 3A
the simplified form (equation 29) is only appli-
cable to values of (—V,/V,) greater than about 4.
The satellite example given in section 3C implies
a value of 2.1, and it would be necessary to use
an unsimplified form of (29) in the data reduc-
tion or to bias the probe.

Our description of the various frequency ranges
of probe operation was based on an arbitrary
neglect of either or both of the charged particle
mobilities. It seems very likely that at all
frequencies substantially bclow the -electron
plasma frequency the electron mobility can be
safely neglected and that the ion mobility is
negligible far below the ion plasma frequency.
The regions where these assumptions begin to
break down have received some attention
recently. At high frequencies, the experiments
on resonance probes are relevant, while extensive
studies have been carried out by Oskam et al.
[1964] to determine the response of low-pressure
discharges to square-wave and step-function
inputs. Their first-order analysis confirms the
importance of ion mobility and space-charge
sheath capacitance. An cxperimental study
giving very good agreement with the calculated
probe response to square waves and sinusoidal
signals fed to it through a series capacitance has
been published by Butler and Kino [1963].

Further work in this field is still required.
For example, it is clear that except for very
special conditions, such as those of section 3,
the time-averaged ion current can, in general,
vary between the VLF and the LF ranges. Some
detailed study of this variation and of any
resonances that may occur would be valuable.
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