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Abstract

A three-dimensional Monte Carlo model of the uniform relativistic runaway electron

breakdown in air in the presence of static electric and magnetic fields is developed

and used to calculate electron distribution functions, avalanche rates and the direction

and velocity of avalanche propagation. We also derive the conditions required for an

electron with a given momentum to start an avalanche in the absence of a magnetic

field. The results are compared to previously developed kinetic and analytical models

and our own analytical estimates, leading to the conclusion that the avalanche rates

used in many early models are overestimated by a factor of ∼10.

The Monte Carlo simulation results are used in a fluid model of a runaway electron

beam in the middle atmosphere accelerated by quasi-electrostatic fields following a

positive lightning stroke. We consider the case of lightning discharges which drain

positive charge from remote regions of a laterally extensive (>100 km) thundercloud,

using a cartesian (translationally symmetric in a horizontal direction) two-dimensional

model. Unlike the cylindrically-symmetric model, this model can be applied to a

case of a geomagnetic field with arbitrary direction. In particular, we consider the

case of a thunderstorm located at ∼45◦ geomagnetic latitude. We also consider a

cylindrically symmetric model with a vertical axis of symmetry, constrained to a

vertical geomagnetic field.
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In both models, the optical emission intensities produced by the runaway electrons

or secondaries produced by them are found to be negligible compared to the emissions

produced by thermal electrons heated in the conventional type of breakdown. The

calculated γ-ray flux is of the same order as the terrestrial γ-ray flashes observed by

the BATSE detector on the Compton Gamma Ray Observatory.

The energetic electrons leaving the atmosphere undergo intense interactions with

the background magnetospheric plasma, leading to rapid nonlinear growth of Lang-

muir waves. Based on the energy and pitch angle distribution of the runaway electron

beam determined as a function of the intensity of the parent lightning and the ge-

omagnetic latitude, the pitch-angle scattering of the electrons due to beam-plasma

interaction during their propagation along the geomagnetic field line is estimated.

The beam electrons are strongly scattered by the waves in both pitch angle and

energy, leading to the formation of an isotropic thermal distribution with a typical

energy of ∼1 MeV within one interhemispheric traverse along the Earth’s magnetic

field lines. While those electrons within the loss cone precipitate out, most of the

electrons execute bounce and drift motions, forming detectable trapped curtains of

energetic electrons surrounding the Earth.

Electrons with pitch angles below the loss cone encounter the Earth’s atmosphere

at the conjugate point, are scattered and produce light, ionization and γ-ray emis-

sions, much like a beam of precipitating auroral electrons. A Monte Carlo approach is

used to model the interaction of the downcoming electrons with the conjugate atmo-

sphere, including the backscattering of electrons as well as the production of optical

emissions, enhanced secondary ionization and γ-ray emissions. Results indicate that

these conjugate ionospheric effects are detectable and may be used to quantify the

runaway electron mechanism.
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Chapter 1

Introduction

1.1 Motivation

This dissertation concerns the investigation of the mechanisms and resultant effects

of runaway acceleration of relativistic electrons above thunderstorms. The motivation

for this study was the recent discoveries of (i) lightning-associated luminous high al-

titude glows in the mesosphere, dubbed “Red Sprites” by Sentman et al. [1995], and

(ii) terrestrial γ-ray flashes (TGF) observed on the Compton Gamma Ray Observa-

tory satellite (CGRO) [Fishman et al., 1994]. Although these two phenomena were

scientifically first documented within the last decade, they were both predicted, and

the significance of the role of accelerating relativistic electrons above a thundercloud

in these phenomena was proposed as long ago as 1925. Wilson [1925] observed that

“while electric force due to thundercloud falls off rapidly as [the altitude] increases,

the electric force required to cause sparking (which for a given composition of air is

proportional to its density) falls off still more rapidly”, and “there will be a height

above which the electric force due to the cloud exceeds the sparking limit”, thereby

1



CHAPTER 1. INTRODUCTION 2

+ + +
- --

+
-

+
- +CG

Elves

Cameras 

Sprites

Blue Jet

80 km

100 km

60 km

40 km

20 km

0 km

Temperature
profile

Runaway
electrons

γ-rays

~270K

~220K

~300K

~200K
THERMOSPHERE

MESOSPHERE

STRATOSPHERE

TROPOSPHERE

Electron
density

Post-discharge
electric field

~ tens of MV

Figure 1.1: Mesospheric phenomena caused by lightning discharges.

causing what is now called Red Sprites, the giant discharges between the cloud and

ionosphere. He also noted that above a certain energy, “the faster the β-particle moves

the smaller is the rate at which it loses energy in collisions”, becoming a so-called run-

away electron, and “a particle may thus acquire energy corresponding to the greater

part of the whole potential difference between the poles of the thundercloud”. The

resulting energetic β-particle radiation “may excite . . . γ radiation” [Wilson, 1925].

The phenomena cause by lightning-mesosphere electrodynamic coupling are depicted

in Figure 1.1.

1.1.1 Red Sprites

Red sprites [Sentman et al., 1995] (see Figure 1.2) are large-scale luminous glows

occurring above thunderstorms at altitudes 50–90 km, exhibiting predominantly red

color. They have a lateral extent of tens of kilometers, occur several milliseconds
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after a large cloud-to-ground (CG) discharge and last up to several tens of millisec-

onds. They are believed to be caused by the heating of the ambient electrons by

quasi-electrostatic post-discharge electric field [e.g., Pasko et al., 1997]. Other lumi-

nous phenomena, which are not investigated in this dissertation are blue jets and elves.

Blue jets [e.g.,Wescott et al., 1998a] occur at lower altitudes than sprites (Figure 1.1),

exhibit blue color, and are also believed to be caused by the quasi-electrostatic field

[Pasko et al., 1996]. Elves are highly transient phenomena (<∼1 ms duration), believed

to be caused by the electromagnetic pulse (EMP) from lightning [Inan et al., 1997].

Several authors suggested that sprites and blue jets were produced solely by relativis-

tic runaway electrons [e.g., Roussel-Dupré et al., 1998]. In our work (Chapter 4 and

[Lehtinen et al., 1999]) we find that the optical emissions produced by the runaway

electrons are much less intense than the luminosities observed in sprites. The fact

that runaway electrons do not play an important role in red sprites is also suggested

by (i) the observation of a sprite following a negative discharge [Barrington-Leigh

et al., 1999], which creates an upward-directed electric field unable to cause the run-

away electron avalanche; (ii) the columniform sprites [Wescott et al., 1998b], i.e., a

type of narrow sprites at high (∼75–90 km) altitudes, are vertically oriented, while

the runaway electron theory (see Chapter 4) predicts structures to be aligned with

the magnetic field [Lehtinen et al., 1999].

1.1.2 Terrestrial γ-Ray Flashes (TGFs)

The γ-ray detectors of the Burst and Transient Source Experiment (BATSE) on the

Compton Gamma Ray Observatory (CGRO) have detected transient γ-ray bursts

originating below the satellite [Fishman et al., 1994]. The CGRO satellite orbit is at

∼500 km altitude and 28.5◦ inclination. The BATSE instrument consists of 8 large
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Figure 1.2: Red sprites and elves.

area detectors of 2000 cm2 each, which detect photons in four energy channels of

20 to 50 keV, 50 to 100 keV, 100 to 300 keV and >300keV. The angular resolution

of the instrument for TGF is 10◦ to 20◦, and the efficiency is >∼30%. The detected

terrestrial γ-ray flashes (TGF) have time duration of the order of 1 ms (Figure 1.3),

consist of photons with energies of 20 keV to 2 MeV, and exhibit a hard spectrum

consistent with bremsstrahlung [Nemiroff et al., 1997]. Since these bursts are asso-

ciated with thunderstorm centers and have been associated with individual lightning

flashes [Inan et al., 1996b], they may be caused by the relativistic electrons acceler-

ated by thunderstorm-related electric fields. The fact that the γ-photons produced at

low altitudes (<30 km) experience strong Compton scattering and attenuation due

to the photoeffect before leaving the atmosphere suggests that the γ-ray production

occurs above the cloud (Figure 1.1).
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1.2 Other Evidence for Runaway Breakdown

1.2.1 Conjugate Effects

The effects of runaway electrons which leave the atmosphere and precipitate at the

geomagnetically conjugate location include light emissions, γ-ray emissions and ion-

ization enhancements [Lehtinen et al., 2000b] and are considered in Chapter 6. The

experimentally documented terrestrial γ-ray flashes [Fishman et al., 1994] may be

caused by either the runaway electrons in the hemisphere of the lightning discharge

or by the precipitating electrons in the conjugate hemisphere. Such precipitatoin

would also produce relatively intense but brief optical emissions (see Chapter 6). An

interesting example of optical emissions with properties similar to those expected

are the so-called fast atmospheric pulsations (FAPs) [Ögelman, 1973]. The events

observed by Ögelman [1973] have a typical timescale of 1 ms, have emissions within

4300 to 6300 Å spectral range, sometimes (<∼5% cases) have a horizontal extent of up

to 175 km, but they are never so broad as to be caused by astrophysical phenomena.

Some such events are associated with lightning [Winckler et al., 1993] and can be

interpreted as red sprites and elves (see above, also Figures 1.1 and 1.2). However,

other similar events are not associated with lightning [Nemzek and Winckler, 1989],

suggesting that they may be caused by precipitation of electrons of ∼2 MeV energy

[LaBelle, 1988]. The source considered by LaBelle [1988] was the radiation-belt elec-

trons scattered by lightning-induced waves in the magnetosphere and was criticized

by Vampola [1988] on the basis of the fact that the energetic electron flux in the inner

belt was too low to cause the observed optical emissions. This critique does not apply

to the precipitating runaway electrons in the hemisphere conjugate to lightning since

they are supplied by an external source. At the same time, Ögelman [1973] observed
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a clear 10 kHz modulation in most events, which is not inherent in any aspect of the

runaway electron beam processes discussed here. It thus remains to be seen whether

FAPs are indeed conjugate signatures of the runaway breakdown.

1.2.2 Laboratory Observations

There have been many observations of runaway electron breakdown and associated

x-ray emissions in tokamaks [e.g., Kurzan et al., 1995; Kuznetsov et al., 1999]. The

conditions of a tokamak, however, have very little in common with the Earth’s at-

mosphere (high temperature and ionization, different constituents). An experimental

setup of conditions closest to those of the Earth’s atmosphere were implemented by

Gurevich et al. [1999a]. In the experimental setup, the breakdown occured in mag-

netic field which ensured the cyclotron resonance of accelerating electrons with the

applied electric field. Optical, x-ray and radio emissions were measured. The exper-

iment clearly showed the presence of relativistic electrons. However, some results of

the experiment cannot be completely understood in terms of the runaway electron

avalanche theory at present time [Gurevich et al., 1992]. For example, the relativistic

breakdown was observed only when the electric field was ∼20 times higher than that

predicted to be necessary.

1.2.3 Other Observations in the Earth’s Atmosphere

Other observations of runaway electron acceleration in the Earth’s atmosphere in-

clude x-rays inside thunderclouds and satellite observations of upward moving en-

ergetic electrons. X-rays inside a thundercloud were observed in a series of balloon

experiments [McCarthy and Parks, 1985; 1992; Eack et al., 1996a;b]. The most evi-

dent mechanism for the x-ray generation is the bremsstrahlung process which occurs
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during an energetic runaway electron avalanche due to large electric fields inside the

thundercloud. This process is not necessarily related to the lightning discharge pro-

cesses [Eack et al., 1996b; Gurevich et al., 1997; Gurevich and Milikh, 1999b].

The observations of upward moving energetic nonrelativistic (∼1 keV) electrons

were made by the DE 2 satellite above a hurricane [Burke et al., 1992]. As a possible

hypothesis, Burke et al. [1992] sugest a mechanism of runaway electron acceleration

by an electric pulse from a lightning flash which penetrates into ionosphere.

1.3 Scientific Contributions

Despite the ingenious prediction by Wilson [1925] of acceleration of runaway elec-

trons above thundercloud, the possibility of their avalanche was overlooked. The

first analytical study of the avalanche process involving ∼MeV electrons suggestion

that accelerating electrons will create more energetic electrons was made by Gure-

vich et al. [1992]. After this analytical quantitative description of the avalanche

process, other calculations were made [Roussel-Dupré et al., 1994; Gurevich et al.,

1996; Symbalisty et al., 1998; Babich et al., 1998]. However, as it was pointed out

[Babich et al., 1998], the models by different authors gave conflicting results. This

motivated us to create our own model [Lehtinen et al., 1999]. A number of papers

analyzed connection of high-energy (20 keV to 10 MeV) runaway elecrons produced

above thunderstorms and driven upward by the thundercloud electric field to the red

sprites [Bell et al., 1995; Lehtinen et al., 1997; Roussel-Dupré et al., 1998; Yukhimuk

et al., 1998; Yukhimuk et al., 1999; Lehtinen et al., 1999; Kutsyk and Babich, 1999]

and terrestrial gamma ray flashes [Lehtinen et al., 1996; Roussel-Dupré and Gurevich,

1996; Lehtinen et al., 1999]. The results of Lehtinen et al. [1999] are presented in
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this dissertation. The runaway electron escape from ionosphere, their propagation

in magnetosphere and precipitation at the geomagnetically conjugate point was also

studied [Lehtinen et al., 2000a;b].

The specific scientific contributions of this work are:

1. The formulation of a 3D Monte Carlo model of runaway electron avalanche in

applied electric and magnetic fields and the determination of avalanche rates

and runaway electron distribution functions (Chapter 2).

2. The formulation of a fluid model of runaway breakdown in the middle atmo-

sphere in 2D in Cartesian and cylindrical coordinates, taking into account the

effects of the geomagnetic field (Chapter 4).

3. The calculation of optical and γ-ray emissions due to runaway electrons in the

middle atmosphere (Chapter 3).

4. The assessment of the interaction of runaway electron beams with the cold

magnetospheric plasma during its interhemispheric traverse and the formation

of energetic electron curtains (Chapter 5).

5. The determination of the effects of the runaway electrons at the geomagnetically

conjugate point, namely the optical and γ-ray emissions as well as the ionization

enhancements (Chapter 6).



Chapter 2

Monte Carlo Model

The relativistic runaway electron breakdown process was previously studied not only

in relation to non-ionized air but also in relation to high-energy plasmas, such as in

tokamaks and astrophysical plasmas. Analytical studies considered uniform break-

down [Sizykh, 1993; Gurevich et al., 1992], spatial propagation and diffusion of a

runaway beam [Gurevich et al., 1994], breakdown in the presence of a magnetic field

[Gurevich et al., 1996], and the runaway process in a high-energy plasma [Bulanov

et al., 1997]. The numerical solution of the kinetic equation describing the relativistic

runaway breakdown in the absence of a magnetic field was obtained in air [Roussel-

Dupré et al., 1994; Symbalisty et al., 1998] and in high-energy helium [Babich and

Kutsyk, 1995]. One-dimensional (1-D) Monte Carlo models of thermal runaway with

strong fields E/N > 3× 10−19 V-m2 were applied to nitrogen [Kunhardt et al., 1986]

and neon [Shveigert, 1988].

In an earlier study of the relativistic runaway electron process [Lehtinen et al.,

1997], the avalanche rates were taken from a nonmagnetic kinetic model [Roussel-

Dupré et al., 1994], and the direction of avalanche propagation was calculated from

10
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the equation of motion of an individual electron [Gurevich et al., 1996].

It has since been shown [Symbalisty et al., 1997] that the avalanche rates as re-

ported by Roussel-Dupré et al. [1994] were not accurate, both because of numerical

problems in the computations and owing to the fact that the effects of the magnetic

field were neglected.

In this Chapter we use a Monte Carlo technique in order to model runaway

avalanche in the presence of a magnetic field. This more general method also al-

lows us to address existing discrepancies between the results of different models of

this phenomenon. Avalanche rates and the direction and velocity of avalanche propa-

gation are accurately determined from our Monte Carlo model and used in Chapter 4

in two-dimensional Cartesian and cylindrically-symmetric models of the runaway pro-

cess in the middle atmosphere. The Monte Carlo model considered here allows an

arbitrary direction of the geomagnetic field.

We use the following notation and variables throughout this work:

E, B external electric and magnetic fields, assumed constant and uniform in the

Monte Carlo calculations;

p, E , v electron momentum, kinetic energy and velocity, respectively;

γ = (1− v2/c2)
−1/2

= 1 +
E

mc2
electron relativistic factor;

Nm altitude-dependent molecular density of air;

Zm � 14.5 average molecular nuclear charge for air;

qe � −1.602× 10−19 C electron charge;

m � 9.109× 10−31 kg electron mass;

c � 2.998× 108 m-s−1 speed of light;

r0 = q2
e/(4πε0mc2) � 2.818× 10−15 m classical electron radius.
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2.1 Model Description

The Monte Carlo model of runaway breakdown makes use of a set of test electrons,

for which phase space coordinate information is stored. The motion of energetic elec-

trons is described by the Langevin equation, which includes the electric and magnetic

forces and a stochastic force Γ(t), which describes the elastic and inelastic collisional

scattering of electrons:

dp

dt
= qeE +

qe
mγ

p×B + Γ(t). (2.1)

The model is based on solving equation (2.1) numerically for each electron in the set,

with a time step ∆t. The collision term Γ is divided into two parts, one involving

the processes of electron energy loss and described in terms of a dynamic friction

function and the other involving angular diffusion (direction of momentum change)

determined on a statistical basis. The latter includes the finite probability that some

of the collisions lead to the generation of new energetic electrons by ionization, which

must be added to the existing set of test electrons.

Typically, there are many more electrons at lower energies than at higher ener-

gies due to the (E ′)−2 dependence of the ionization probability for production of a

secondary electron of energy E ′, as is shown later. For simplicity, we only consider

electrons with E > Emin and choose Emin = 2 keV. Any electrons for which the ki-

netic energy decreases below Emin are dropped from the set. For an ionizing collision

leading to the production of a secondary electron with energy E ′ > Emin, momentum

vectors of both electrons after the ionizing collision are calculated on the basis of the

ionization cross section. For E ′ < Emin, the processes of energy loss and velocity di-

rection change for the primary electron are described in terms of the dynamic friction
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function and angular diffusion, respectively.

2.1.1 Dynamic Friction Function (Stopping Power)

The energy losses for energetic electron motion in a collisional gas are due to excitation

and ionization processes and can be described in terms of a dynamic friction force

FD(E) [Bethe and Ashkin, 1953, p. 254], effectively acting in the direction opposite

to the electron motion:

FD(E) = NmZmκ

{
log

[
mv2E

E2
ion(1− v2/c2)

]
−

(
1 +

2

γ
− 1

γ2

)
log 2 +

(γ − 1)2

8γ2
+

1

γ2

}
,

(2.2)

where log[·] indicates the natural logarithm throughout this dissertation and

κ = 2πr2
0mc2(c/v)2 (2.3)

and Eion is the average ionization energy, being Eion�80.5 eV for air [Roussel-Dupré

et al., 1994]. This force has a minimum (Figure 2.1) at electron kinetic energy E �

2.39mc2 � 1.22 MeV, which is equal to the electric force due to the runaway threshold

field Et, determined by

Et

Nm

� 21.7× 2πZmr
2
0mc2e−1 � 8.05× 10−21 V-m2 = 8.05 Td, (2.4)

where Td is a “townsend”, a convenient unit of E/N .

Because the ionization with creation of electrons with energy E ′ > Emin is included

explicitly in our model, we must exclude the energy losses associated with it from the

dynamic friction:

F excl
D (E) = FD(E)− F ion

D (E), (2.5)
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Figure 2.1: Dynamic friction function. Solid line represents the full dynamic
friction function FD given in equation (2.2), while the dashed line is the dynamic
friction F excl

D with ionization excluded given in equation (2.8).

where F excl
D (E) is now the dynamic friction term that is used as the first part of the

stochastic force Γ(t) in (2.1). If we neglect the ionization energy Eion � Emin the

ionization loss is given by

F ion
D (E) = NmZm

∫ E/2

Emin

E ′dσion

dE ′ dE
′, (2.6)

where the differential ionization cross section dσion/dE ′ is given by the Møller formula

[Bethe and Ashkin, 1953, p. 277; also expression (2.14) below] and is a function of

both E and E ′. Electrons emerging from a collision are indistinguishable, and we label

the one with the lower energy as the secondary electron. Therefore, the maximum

energy that can be lost in a collision is E/2.
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Substituting the Møller cross section we find

F ion
D (E) = NmZmκ

{
log

[ E
2Emin

]
+

(γ − 1)2

8γ2
−

E2
min

2(mc2 + E)2
−

(
1 +

2

γ
− 1

γ2

)
log

[
2(E − Emin)

E

]
+ 1− Emin

E − Emin

}
, (2.7)

F excl
D (E) = NmZmκ

{
log

[
2Eminmv2

E2
ion(1− v2/c2)

]
−(

1 +
2

γ
− 1

γ2

)
log

[ E
E − Emin

]
+

Emin

E − Emin

− v2

c2
+

E2
min

2(mc2 + E)2

}
(2.8)

Note that equation (2.6) is meaningful only for E ≥ 2Emin, and therefore for Emin <

E < 2Emin we still use expression (2.2) instead of equation (2.8). Both FD(E) and

F excl
D (E) are plotted in Figure 2.1 as functions of E .

For the electron energies of interest in the mesosphere (< 100 MeV, as limited by

the total electric potential difference between the thundercloud and the ionosphere),

the radiative losses due to bremsstrahlung are negligible [Jackson, 1975, p. 718] and

are not accounted for in our model.

2.1.2 Angular Diffusion

The angular scattering of electrons is mostly due to their elastic collisions with nuclei.

The contribution of this process is greater by a factor of atomic charge Za = Zm/2

than the contribution of collisions with electrons.

Although the elastic collisions are frequent, the average angle of scattering is small,

and we can choose our time step ∆t much greater than the time between collisions.

We incorporate small-angle collisions into the Monte Carlo model as random changes

of the direction of p by an angle ∆Θ.
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To find ∆Θ for given ∆t, we calculate a random variable µ = cos(∆Θ), which has

a probability distribution f(µ, t = ∆t). This distribution is normalized to unity, i.e.,

∫ 1

−1

f(µ, t)dµ = 1

and satisfies an initial condition such that f 	= 0 only at ∆Θ = 0 (the direction of an

electron is fixed):

f(µ, t = 0) = δ(µ− 1−)

where by 1− we mean that the delta function is fully included when integrated with

upper limit 1. For energetic electrons undergoing elastic collisions with nuclei, the

probability distribution function f(µ, t) satisfies the diffusion equation, derived in

Appendix B [Roussel-Dupré et al., 1994]:

∂f

∂t
= D

∂

∂µ

[
(1− µ2)

∂f

∂µ

]

where the angular diffusion coefficient D is related to the time rate of change of the

mean (ensemble average) square angle, an explicit expression for which is given in

(2.12)

D(p) =
1

4

d〈Θ2〉
dt

This relation follows from the general theory of the Langevin and Fokker-Planck

equations [e.g., Risken, 1989, pp. 35–36]. The solution to the diffusion equation is

f(µ,∆t) =
∞∑
n=0

(
n +

1

2

)
Pn(µ)e−Dn(n+1)∆t (2.9)
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where Pn are the Legendre polynomials. For D∆t>∼1, in calculations we take into ac-

count only the terms n=0 and 1 in equation (2.9). For small D∆t we can approximate

equation (2.9) as (see Section A.2)

f(µ,∆t) � 1

2D∆t
exp

(
− 1− µ

2D∆t

)
(2.10)

For extremely small scattering angles ∆Θ, equation (2.10) is not well suited for com-

putation as explained in Appendix A. In such cases we take a fixed ∆Θ [Risken, 1989,

p. 60]:

∆Θ ≡
√
〈Θ2〉 =

√
d〈Θ2〉
dt

∆t. (2.11)

Equation (2.11) is valid for multiple scattering for distributions of the random single-

scattering angle with finite variance, as is the case here because the singularity of the

Rutherford formula for the scattering cross section at small angles [Bethe and Ashkin,

1953, p. 273] is absent due to screening (see below).

The time rate change of the mean square angle for electrons, scattered by neutral

atoms is [Jackson, 1975, p. 649]:

d〈Θ2〉
dt

= v
d〈Θ2〉
ds

= 2πNav

(
2Zar0c

2

γv2

)2

log

[
θmax

θmin

]
, (2.12)

where Na = 2Nm is the number density of atoms. The angle θmin is the minimum

angle of scattering, below which the scattered angular distribution falls substantially

below the Rutherford formulas for a Coulomb potential. This minimum angle is

determined by Fermi-Thomas screening of the nucleus by bound electrons. The angle

θmax for electrons is ∼1 radian for electrons in air with energy less than ∼50 MeV, so

that the size of the nucleus is not important [Jackson, 1975, p. 646]. The minimum
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angle is θmin = Z
1/3
a (mc/p)/ξ, where ξ = 192 [Jackson, 1975, p. 645], or ξ = 65.3

[Mott and Massey, 1965, p. 469]. In our calculations we choose [C. L. Longmire and

H. J. Longley, unpublished report, 1973] θmax = 2 radians and θmin = Z
1/3
a (mc/p)/65.3

from [Mott and Massey, 1965]. Upon subsitution, we find

d〈Θ2〉
dt

=
4πNmZ

2
mr

2
0c

4

v3γ2
log

(
164.7

Z
1/3
m

p

mc

)
. (2.13)

2.1.3 Production of New Electrons via Ionization

Production of secondary electrons in ionizing collisions is described by the Møller for-

mula [Bethe and Ashkin, 1953, p. 277] for relativistic scattering of two free electrons,

one of them being initially at rest. In this way, we neglect the ionization energy

I � Emin. The differential ionization cross section per unit secondary electron energy

interval is [Bethe and Ashkin, 1953, p. 277]

dσion

dE ′ = κ

{
1

E ′2 −
1

(E − E ′)E ′
(2E + mc2)mc2

(E + mc2)2
+

1

(E − E ′)2
+

1

(E + mc2)2

}
(2.14)

where κ is defined in equation (2.3), E is the initial kinetic energy, and E ′ is the kinetic

energy of the secondary electron after collision.

The total ionization cross section for all secondary electron energies E ′ > Emin and

up to the maximum energy of E/2 is

σtot(E) =

∫ E/2

Emin

dσion

dE ′ dE ′ (2.15)

= κ

{
1

Emin

− 1

E − Emin

+
E − 2Emin

2(mc2 + E)2
+

mc2(mc2 + 2E)
E(mc2 + E)2

log

[ Emin

E − Emin

]}
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The probability of ionization during time step ∆t by an electron is then

P = NmZmvσtot(E)∆t (2.16)

The random secondary electron energy Esec in the Monte Carlo code is found on the

basis of the random variable

X(Esec) =
1

σtot(E)

∫ Esec

Emin

∂σion

∂E ′ dE ′ (2.17)

uniformly distributed in the interval [0, 1]. Inversion of (2.17) to find Esec is approxi-

mated by using only the first term in (2.14):

∂σion

∂E ′ (E , E ′) � κ

E ′2∫ Esec

Emin

∂σion

∂E ′ (E , E ′) dE ′ � κ

(
1

Emin

− 1

Esec

)

σtot(E) �
∫ E/2

Emin

κ

E ′2 dE ′ = κ

(
1

Emin

− 2

E

)
,

so that

Esec �
EEmin

E −X(E − 2Emin)
. (2.18)

Numerical inversion of X(Esec) using the exact expression (2.17) can be realized using

Newton’s method, but does not give significantly increased precision compared to

(2.18). In fact, the error in Esec as determined with (2.18) does not exceed ∼ 5%.

The components of the electron momenta after the collision are determined from

the conservation of energy and momentum. The angles are most efficiently found from

scalar products of energy-momentum four vectors [Jackson, 1975, p. 531] of electrons

before and after a collision. For example, if p0, prest and p1, p2 are respectively the
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energy-momentum four vectors of the moving and resting electrons before and after

a collision, then p0 = {mcγ0,p0}, prest = {mc,0}, p1 = {mcγ1,p1}, p2 = {mcγ2,p2},

and prest +p0 = p1 +p2. Using the fact that p2 = p ·p ≡ m2c2γ2−|p|2 = m2c2 for any

electron state, from (p0−p1)
2 = (p2−prest)

2 we promptly find p0 ·p1 = m2c2(γ0γ1−γ2)

and

cos(p̂0,p1) =

√
E1(E0 + 2mc2)

E0(E1 + 2mc2)
, (2.19a)

sin(p̂0,p1) =

√
mc2(E0 − E1)
E0(E1 + 2mc2)

, (2.19b)

where p̂0,p1 refers to the angle between the momentum vectors p0 and p1, E0,1 =

mc2(γ0,1 − 1) are the kinetic energies of corresponding electrons and where we have

used |p| = mc
√

γ2 − 1 for each state and γ2 = γ0 + 1 − γ1. The direction of the

momentum of the other electron is found by interchanging the indices 1 → 2. The

angles for the electron directions were also given in previous works on the runaway

breakdown process [e.g., Roussel-Dupré et al., 1994].

2.1.4 Dimensionless Variables

To simplify numerical coefficients in the equations describing collisional processes in

the program, we use dimensionless values of electron momentum, energy and velocity,

and time:

Ē =
E

mc2
; p̄ =

p

mc
; v̄ ≡ β =

v

c
; t̄ =

t

τ
(2.20)

where

τ = (2πNmZmr
2
0c)
−1 (2.21)
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is the characteristic time scale of the process. With this choice, NmZmκ/(mcτ) = β−2

and the equation of motion (2.1) does not depend on Nm and therefore on the altitude

at which the process occurs. The sea level value of Nm � 2.688×1025 m−3 corresponds

to τ � 172 ns.

We calculate avalanche rates and average velocities as a function of electric and

magnetic fields and the angle between them and use the following dimensionless sub-

stitutes for these parameters:

δ0 =
|E|
Et

; η0 =
c|B|
Et

; µ0 = cos(Ê,B) (2.22)

where Ê,B denotes the angle between the two vectors.

2.2 Runaway Breakdown Results

If a strong enough uniform electric field E (such that E = |E| >∼ Et) is applied to

a uniform volume of air with a certain number of seed energetic electrons present,

then the number of energetic runaway electrons grows due to impact ionization via

the collisions between energetic electrons and neutrals, and a runaway breakdown,

or avalanche occurs. The temporal growth rate of the number NR of energetic elec-

trons depends nonlinearly on both magnitude and direction of E with respect to the

magnetic field B. In this Section, we use the Monte Carlo method to determine

the temporal growth of the runaway electron number density, as well as the electron

distribution functions.
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Figure 2.2: Temporal growth of the number of particles. Shown are the results
of Monte Carlo calculations for different values of δ0 for the case B = 0.

2.2.1 Avalanche Rates and Distribution Functions

We choose E = Exx̂ + Ezẑ and B = Bzẑ and store momentum components px, py,

pz and coordinates x, y, z for each electron in the set. The calculation is started by

introducing a few electrons of energy 1 MeV in the direction opposite to E. In the

absence of a magnetic field the number of electrons grows as shown in Figure 2.2 for

three different values of normalized electric field δ0. One can see from Figure 2.2 that

the growth is exponential. Assuming the time dependence of the energetic electron

number NR(t) to be proportional to eγRt, we can find the avalanche rate γR. Figure 2.3

shows the calculated avalanche rates expressed in a dimensionless form for different

δ0 as a function of normalized magnetic field η0 for B ⊥ E. The data for this plot are

given also in Table 2.1. The statistical error in γR is calculated using the fact that

the error in the number of particles is
√
NR.

Calculated rate values γR at η0 =0 are ∼10 times less than those of Roussel-Dupré
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η0\δ0 2 5 8 15 30
0 0.955± 0.053 4.94± 0.27 10.3± 0.6 22.5± 1.3 60.4± 3.6
1 0.867± 0.051 5.08± 0.29 9.68± 0.57 22.9± 1.3 56.9± 3.4
2 . . . 4.93± 0.29 10.4± 0.6 23.2± 1.4 59.8± 3.5
5 . . . 4.05± 0.24 9.68± 0.55 23.2± 1.4 59.4± 3.7
8 . . . 0.151± 0.009 8.12± 0.47 22.7± 1.3 57.0± 3.3
15 . . . . . . 0.741± 0.041 20.9± 1.2 57.8± 3.6
30 . . . . . . . . . 9.87± 0.58 56.9± 3.4

Table 2.1: Monte Carlo results for runaway avalanche rates. Dimensionless
avalanche rate γ̄R = γRτ for different parameters δ0 = E/Et and η0 = cB/Et for
E ⊥ B. Three dots correspond to a situation without an avalanche. All results were
derived for 1500 test particles.
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Figure 2.3: Runaway avalanche growth rates. Runaway avalanche growth rate
γR multiplied by the characteristic time τ defined in equation (2.21) constitutes a
dimensionless indicator of the growth rate. Plotted are the magnetic field dependence
of the dimensionless avalanche rate for different values of electric field for E ⊥ B.
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et al. [1994], which were used in our previous calculations [Lehtinen et al., 1997], and

which were apparently inaccurate [Symbalisty et al., 1997] as discussed in Section 1.1.

With the lower values of γR, larger electric fields or longer avalanche distances are

required in order to produce a significant number of runaway electrons in the middle

atmosphere (see Chapter 4). Figure 2.4 shows the distribution of particles in the

momentum space for different values of η0, for B ⊥ E. Results indicate a significant

E × B drift in addition to the motion in the plane of E and B. Figure 2.5 shows

the self-similar electron momentum distributions which grow uniformly with time at

the same rate at all momenta. They were obtained in the absence of a magnetic field

for two different values of δ0. The electron momentum distributions were calculated

using a total of 2 × 104 Monte Carlo particles, by counting the number of particles

in each bin of ∆(log E) � 0.22, ∆(cos θ) = 0.2. The statistical error estimate for the

θ = 0 curve is shown with horizontal dashed lines. In form, the distribution functions

resemble those obtained by kinetic calculations [Roussel-Dupré et al., 1994].

2.2.2 Analysis of Avalanche Rates

We now consider the case without a magnetic field, i.e., B = 0. The motion of

electrons is then axially symmetric with the axis of symmetry being along the electric

field. We choose without the loss of generality E = −Eẑ. An electron whose initial

momentum p0 = p0ẑ is directed opposite to E can become a runaway electron or start

an avalanche, or can gradually lose energy in collisions and thermalize. Its “fate” is

determined by the rate of frictional energy loss (dynamic friction function) and by

the rate of parallel momentum loss (redirection to perpendicular components due to

angular diffusion) due to elastic collisions.

The collisions of electrons with neutrals is a stochastic process; therefore we can
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only assign a probability for an electron to become a runaway or start a runaway

avalanche. Using the Monte Carlo technique, we can estimate this probability by

running the simulation many times and approximating the probability with the frac-

tion of runs in which the electron eventually gains energy >∼ 50mc2. In Figure 2.6, we

plot the probability for an electron with given initial momentum vector to become a

runaway, calculated in this way. The electric force qeE on the electron is upward. The

probability for an electron to start an avalanche (i.e., create several new electrons)

was also calculated and turned out to be almost the same, within statistical error.

The white line is a separatrix of the runaway region calculated from the deterministic

equation of motion (2.1) with Γ = −p̂FD, which neglects stochastic scattering [Gure-

vich et al., 1992; Roussel-Dupré et al., 1994]. For higher momentum values outside the

separatrix, in the absence of angular diffusion, electrons are in the runaway region,

whereas inside it, they are gradually slowed down. As expected, since the motion

of the electrons is stochastic, our Monte Carlo results indicate that this boundary

is in fact diffuse. There is a finite probability for an electron with a small energy

(less than the minimum energy given by the white line) to become a runaway, if it

by chance experiences less energy losses than average. On the other hand, there is a

possibility for electrons with higher energy to lose all of their energy in collisions and

thermalize. The boundary of the runaway region, as calculated using Monte Carlo

calculations, lies at a higher value of p than predicted by the deterministic separatrix,

due to elastic scattering. This value is estimated analytically as explained below and

is represented in Figure 2.6 by the black circle.

We now confirm the results of our Monte Carlo computation by finding the

avalanche rates analytically from the Fokker-Planck equation [Roussel-Dupré et al.,

1994] for the momentum distribution function f(p, t) = f(p, µ, t), where µ = cos θ, θ
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being the angle between the electron momentum and electric force qeE. This equation

can be written in the form (see Appendix B):

∂f

∂t
=

1

p2

∂

∂p

{
p2(FD − qeEµ)f

}
+

∂

∂µ

{
(1− µ2)

(
−qeE

p
f + D

∂f

∂µ

)}
+ Si(p) (2.23)

where FD is the dynamic friction force, D is the angular diffusion coefficient due

to small-angle collisions, Si(p) is the ionization integral depending on the electron

momentum space distribution f :

Si(p) = Si(p, µ) =

∫
NmZmv

′ dσion

d3p

∣∣∣∣
p′
f(p′)d3p′. (2.24)

Note that here the primed variable p′ is the momentum of the primary electron and p

of the secondary electron, contrary to the convention of (2.14) and equations following

it. In equation (2.23), the derivative terms in the right-hand side can be interpreted as

follows. The derivative ∂/∂p describes changes in p without changes in direction, due

to dynamic friction and an electric force component qeE cos θ. The derivative ∂/∂µ

describes changes in the direction of p, due to an electric force component qE sin θ,

which “bunches” electrons in the forward direction, and the angular diffusion which

scatters electrons away from the forward direction. Let us assume that the equilibrium

in angles is achieved much faster than it takes for p to change, due to the relatively

high value of D. This condition must be true in particular near the boundary of the

runaway region, where p changes relatively slowly (see below). The equation for the

angular equilibrium is obtained by equating the ∂/∂µ term in (2.23) to zero:

∂

∂µ

{
(1− µ2)

(
−qeE

p
f + D

∂f

∂µ

)}
= 0,
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the solution of which is

f(p, µ, t) = C(p, t) exp

(
qeE

pD
µ

)
. (2.25)

We now return to equation (2.23). After substituting a self-similar distribution

function such that ∂f/∂t = γRf , and averaging over angles, (2.23) can be rewritten

as

γRfp =
1

p2

∂

∂p

{
p2[FD − qeEM(p)]fp

}
+ Sip(p), (2.26)

where

fp(p, t) =
1

2

∫ 1

−1

f(p, µ, t)dµ,

M(p) =
1

2fp

∫ 1

−1

µf(p, µ, t)dµ,

and

Sip(p) =
1

2fp

∫ 1

−1

Si(p, µ)dµ.

The function M(p), which is just the average value of µ at given p, can be found

using equation (2.25).

The growth rate γR can be found from equation (2.26) using an analysis analogous

to [Gurevich et al., 1994]. First, we note that after we integrate equation (2.26)

over p (with weight 4πp2), by taking the lower limit at momentum ps such that

FD(ps) = qeEM(ps), the ∂/∂p term disappears. In other words, there is no electron

flux through the sphere p = ps. We should thus take ps to be the boundary of the

runaway region, defined in this case as the locus of points on which ∂/∂p = 0. The

equality FD = qeEM also intuitively means that the dynamic friction force is balanced

by the electric force component qeE cos θ parallel to p. The value of ps as calculated
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for the case of Figure 2.6 is represented in Figure 2.6 by a black circle.

Following Gurevich et al. [1994], we assume that in the ionization integral Sip the

electrons are described by a monoenergetic beam:

fp(p
′) =

NR

4πp2
δ(p′ − p0)

where δ(·) is the Dirac delta function. The ionization integral reduces to

Sip =
1

4πp2
NRNmZmv0

dσion

dp
.

We now integrate equation (2.26) from ps to ∞ (with weight 4πp2) to obtain:

γR

∫ ∞

ps

fp4πp
2dp = NRNmZmv0

∫ ∞

ps

dσion

dp
dp

Equating the total number of runaway electrons in the left-hand side to N , we find,

after changing the integration variable to energy E :

γR = NmZmv0

∫ ∞

Es

dσion

dE dE ,

where Es is the critical runaway energy, corresponding to ps, and E0 (corresponding

to p0) is the typical energy of electrons in the beam. This expression for γR is similar

to that obtained by Gurevich et al. [1992], although there is a significant conceptual

difference. Gurevich et al. [1992] neglect angular diffusion and use instead of Es the

minimum energy of an electron moving initially perpendicular to the electric field

necessary for it to become runaway. The differential ionization cross section per
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energy interval dE (for small E) is

dσion

dE �
2πr2

0mc4

v2
0E2

New electrons can be produced by a beam of energy E0 only in the interval Es < E <

E0/2, therefore dσion/dE ≡ 0 outside of this interval. We find

γR =
1

NR

∂NR

∂t
=

2πNmZmr
2
0mc4

v0

∫ E0/2

Es

dE
E2

=
2πNmZmr

2
0mc4

v0

(
1

Es
− 2

E0

)
,

or in dimensionless units

γ̄R = γRτ =
1

β0

(
1

γs − 1
− 2

γ0 − 1

)

Using a more exact expression for the ionization cross section as given by (2.14), we

find

γ̄R =
1

β0

[
1

γs − 1
− 1

γ0 − γs
+

γ0 − 2γs + 1

2γ2
0

− 2γ0 − 1

γ2
0(γ0 − 1)

log

(
γ0 − γs
γs − 1

)]
(2.27)

For γ0 →∞, we have

γ̄R =
1

γs − 1
. (2.28)

The justification of the choice of a monoenergetic distribution function and γ0 →∞ is

essentially simplicity of treatment and our estimates indicate that these choices lead

to negligible error. The correct rate is obtained by a convolution of (2.27) with the

electron distribution function. Using self-similar distributions obtained in our Monte

Carlo model, we find that the result of this convolution is different from the expression

given by simple formula (2.28) by a factor ranging from∼0.8 at Es = 500 keV to ∼1.01
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Figure 2.7: Comparison of different runaway avalanche models. Dimensionless
runaway avalanche growth rate γ̄R = γRτ in the absence of magnetic field, as a
function of electric field, obtained by different models: (1) analytical expression (2.28),
(2) Monte Carlo, (3) Symbalisty et al. [1998], (4) analytical expression (2.28) without
elastic scattering, and (5) Roussel-Dupré et al. [1994].

at Es = 10 keV.

The analytical result in (2.28) agrees well with our Monte Carlo calculations, as

illustrated in Figure 2.7. The rate comparisons and values of Es are also presented in

Table 2.2.

If we “turn off” elastic angular scattering by substituting M(p) ≡ 1, the avalanche

rates are larger by a factor of ∼4, as shown in Figure 2.7.

2.2.3 Discussion

The avalanche rates calculated by different authors and presented in Figure 2.7 are

apparently quite different. While the results of Roussel-Dupré et al. [1994], as was

shown by Symbalisty et al. [1997; 1998], were overestimated due to numerical error,
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δ0 2 5 8 10 12
γ̄R, model 0.986± 0.014 5.18± 0.08 9.92± 0.15 13.30± 0.19 17.14± 0.25
Es, keV 549 103 54 41 32

γ̄R = mc2/Es 0.930 4.92 9.41 12.6 16.0

Table 2.2: Comparison of Monte Carlo results with analytical estimates.
The Monte Carlo results and analytical estimates of the runaway electron avalanche
rate calculations for B = 0. The Monte Carlo model results were derived for 2× 104

particles.

the rates calculated with a two dimensional kinetic model of Symbalisty et al. [1998]

still appear to be greater than both the predictions of our Monte Carlo model and our

analytical computations by a factor ranging from ∼1.5 at δ0 = 2 to ∼3.5 at δ0 = 10.

The source of this discrepancy probably lies in the formulation of the ionization

process. Assuming that the scattering occurs only at a right angle with respect to

the primary electron momentum [Roussel-Dupré et al., 1994], the differential cross

section for creation of electron with momentum p and energy E by an electron with

momentum p′ and energy E ′ can be written as

∂σion

∂E∂Ω
=

dσion

dE
δ(cos ξ)

2π
,

where dΩ is the element of solid angle, ξ is the angle between p and p′ and δ(·) is the

Dirac delta function. We can write

cos ξ = cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ),

where (θ′, φ′) and (θ, φ) are the directions of incident and secondary electrons, respec-

tively.

Neglecting the ionization energy, the ionization integral (2.24) can be transformed
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into the form [Roussel-Dupré et al., 1994]:

Si(p) = NmZmv

∫
dΩ′

∫ ∞

2E

∂σion

∂E∂Ω
f(p′)

p′2

p2
dE ′.

Integrating over φ′ using the properties of the Dirac delta function, we find

Si(p) = NmZmv

∫ 1

−1

dµ′
∫ ∞

2E
G0(µ

′, µ)
dσion

dE f(p′)
p′2

p2
dE ′,

where µ′ = cos θ′, µ = cos θ, and

G0(µ
′, µ) =

∫ 2π

0

δ(cos ξ)

2π
dφ′ =




1

π
√

1− µ′2 − µ2
if µ′2 + µ2 < 1

0 if µ′2 + µ2 ≥ 1

Instead of the above more complete expression, Symbalisty et al. [1998] have the

following ionization integral:

Si(p) = NmZmv

∫ ∞

2E

dσion

dE (E , E ′)1
2

[
f(p′, µ′+) + f(p′, µ′−)

] p′2

p2
dE ′,

where µ′± = ± sin θ = ±
√

1− µ2. This corresponds to a substitution G0(µ
′, µ) →

G1(µ
′, µ), where

G1(µ
′, µ) =

1

2

[
δ(µ′ −

√
1− µ2) + δ(µ′ +

√
1− µ2)

]
.

Physically, the usage of G1 instead of G0 means that only scattering in the plane of E

is allowed, i.e., p, p′, E are forced to lie in the same plane. To examine the numerical

difference in the determination of the avalanche growth rate γR calculated using G0
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and G1, let us take a distribution with a spread angle θb in the beam:

f(p′) =
F (p′)

2πp′2
δ(µ′ − µb),

where µb = cos θb > 0. We then have

Si(p) = G0,1(µb, µ)NmZmv

∫ ∞

2E

dσion

dE
F (p′)

2πp2
dE ′.

The rate of change of the total number of particles is thus given by

(
∂N

∂t

)
ion

=

∫
Si(p)d3p = K

∫ 1

−1

G0,1(µb, µ)dµ

where K is a proportionality constant. Therefore the rate [γR]G1 calculated using

Roussel-Dupré et al. [1994] and Symbalisty et al. [1998] formulation of the ionization

integral is greater than [γR]G0 by a factor of

[γR]G1

[γR]G0

=

∫ 1

−1
G1(µb, µ)dµ∫ 1

−1
G0(µb, µ)dµ

=
µb√

1− µ2
b

= cot θb,

As the beam gets narrower at higher applied electric fields δ0 = E/Et, the factor

cot θb grows, and we have a growing discrepancy between two models.

In view of the key importance of the avalanche rate in the overall development of

the runaway electron beam, it is important that the more accurate rates [γR]G0 are

used in any quantitative model of this highly nonlinear process.
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2.2.4 Direction and Velocity of Avalanche

Of practical interest is the case when the breakdown does not start uniformly every-

where in space, but instead starts at some localized point and propagates in space.

Such a case of non-uniform breakdown was previously studied analytically [Gurevich

et al., 1994]. Here we instead use the Monte Carlo technique, since it traces the spacial

coordinates x, y, z of each particle. To calculate the e-folding distance, in addition

to the temporal avalanche growth rate, we should also know the mean velocity of

the beam. In previous works [Gurevich et al., 1996; Lehtinen et al., 1997], the mean

beam velocity was calculated on the basis of the deterministic equation of motion of

an “average electron,” neglecting stochastic scattering, an assumption which leads to

inaccurate results. With our Monte Carlo method, the beam velocity vR is accurately

determined by sampling the average coordinates of electrons that move away from

the starting point. For example, we find that the average velocity of avalanche prop-

agation in the absence of the magnetic field is |vR| � 0.9, and with no dependence

on the applied electric field within the calculation error. This value for |vR| is used

in Section 4.3 when we study the runaway process in the middle atmosphere.



Chapter 3

Optical and γ-Ray Emissions

Once we know the energetic electron distribution and number density, we can proceed

to calculate the detectable electromagnetic emissions associated with them. In this

dissertation, we consider emissions in the optical and γ-ray ranges. Other emissions,

e.g., radio frequency emissions, which might also be produced [Roussel-Dupré et al.,

1998] are not considered here. The optical emissions are produced in the process

of relaxation of electronic levels of atmospheric constituents. The cross-sections of

optical level excitation by electrons have maxima at nonrelativistic electron energies

(in the range of 10 to 100 eV), so that the relativistic electrons do not excite the

molecules directly. Instead, they first produce nonrelativistic secondary electrons

of required energies. There is another source of optical emissions which is relevant

in a regular spark discharge when no relativistic electrons are present, i.e., when

the thermal electrons are accelerated by the applied electric field to the energies

required for optical excitations. This ambient heating process is also included in our

calculations for optical emissions in the middle atmosphere (Chapter 4), and is well

described elsewhere [Pasko et al., 1997]. Unlike optical emissions, γ-ray emissions can

37
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be produced only by relativistic electrons in the process of bremsstrahlung, which is

due to electromagnetic emission by an accelerating electron scattered in the field of

atomic nucleus (and, to a lesser degree, in the fields of individual electrons in an

atom).

3.1 Optical Emissions

We calculate the optical emissions of molecular bands using a steady-state solution

for excited state populations, similar to that utilized and described by Bell et al.

[1995]. The steady-state solution can be used because the lifetimes of the levels (less

than several µs [Jones, 1974, p. 119]) are small compared to the characteristic time

scale of the change in the relativistic electron distribution ∼1 ms for our problem,

as indicated by the terrestrial γ-ray flashes shown in Figure 1.3. We consider the

following optical emission bands:

1. First Positive N2 group (1P), due to the transition between states B3Πg →

A3Σ+
u (denoted in this work B → A for brevity).

2. Second Positive N2 group (2P), due to transition C3Πu → B3Πg (C → B).

3. First Negative N+
2 group (1N), due to transition B2Σ+

u → X2Σ+
g (B → X).

4. N+
2 Meinel group (M), due to transition A2Πu → X2Σ+

g (A→ X).

5. First Negative O+
2 group (1N), due to transition b4Σ−g → a4Πu (b→ a).

The emission intensities for the so-called forbidden “auroral” lines of atomic oxy-

gen [Rees, 1989, p. 177], namely the red line (doublet) at 6300 Å and 6363 Å, due

to the “forbidden” transition O(1D2) → O(3P2,1) and the green line at 5577 Å,
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due to the “forbidden” transition O(1S0) → O(1D2), can be calculated by solving

the time-evolution equations for excited state populations. However, due to the

fact that the time scale of the atomic oxygen forbidden radiation transitions (>∼1 s

[Chamberlain, 1961, p. 580]) is much longer than the beam duration scale (∼1 ms),

the emissions due to these lines are in our case negligible compared to those of the

molecular bands.

The electronic (optical) level excitation rates are calculated differently for neutral

and ionized molecules, as described below, and also in a manner similar to the method

used by Bell et al. [1995]. The excitation rate Rk
α, defined as the number of molecules

of species α in excited state k produced in unit time per unit volume, is given by

Rk
α = Nα

∫ ∞

0

vfE(E)σkα(E)dE . (3.1)

In this equation, Nα is the density of unexcited molecules, σkα(E) is the optical level

excitation cross-section which depends on the energy of the colliding electron E , v

is the colliding electron velocity, corresponding to energy E , and fE(E) is the elec-

tron energy distribution function. The distribution function fE(E) is defined so that

fE(E)∆E gives the number of electrons in energy range [E , E + ∆E ] in a unit volume.

For neutral molecules, it is known that the cross-sections σkα(E) have a maximum

at low electron energy Ekα, of the order of ∼10–100 eV, and a shape width ∆Ekα of the

same order. We therefore can write approximately

Rk
α � Nαv(Ekα)fE(Ekα)[σkα]max∆Ekα, (3.2)
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where [σkα]max � σkα(Ekα) is the maximum value of the cross-section, and the prod-

uct fE(Ekα)∆Ekα can be interpreted as the number density of the relevant excitation-

producing electrons.

The Monte Carlo model used in this work, designed specifically for energetic elec-

trons, does not allow calculation of the electron distribution at energies less than the

threshold Emin = 2 keV. Therefore, we can estimate the value of fE(Ekα) only indi-

rectly by calculating the ionization produced by electrons with E > Emin which have

the known Monte Carlo distribution function fMC
E (E). We have

fE(E)|E<Emin
� 1

T (E)
∑
β

Nβ

∫ ∞

Emin

v′σion
β (E ′, E)fMC

E (E ′) dE ′ (3.3)

where T (E) is the average lifetime of electron of energy E before thermalization,

σion
β (E ′, E) is the differential ionization cross-section for species β as a function of

the primary (E ′) and secondary (E) electron energies, v′ is the velocity of primary

electrons, and the summation is over all atmospheric species β. In this estimate,

we neglect the ionization process in which the electrons of energy E are created by

electrons with small energies E ′ < Emin. In the middle atmosphere, with nitrogen and

oxygen being the dominant species, we can use the average ionization cross-section

σion
m � 0.2σion

O2
+0.8σion

N2
and molecular density Nm = NO2 +NN2 , and avoid summation

in equation (3.3).

The lifetime of electrons is given by

T (E) =
S(E)
v

(3.4)

where

[S(E)]m =
8.93× 1019 + 1.11× 1021([E ]keV)1.67

[Nm]m−3

, (3.5)
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is the electron range, defined as the distance that an electron with initial energy E

traverses before it thermalizes, and v is the electron velocity. The electron range

expression is taken from Rees [1989, p. 40]. For the values of E which are relevant

for optical excitations we can neglect the energy-dependent term.

The integration in equation (3.3) is performed over the distribution obtained in

the course of the Monte Carlo calculation, given by

fMC
E (E) = K

Ns∑
i=1

wiδ(E − Ei) (3.6)

with the sum of Dirac δ-functions taken over Ns quasi-particles with weights wi and

energies Ei, and where K is the normalization coefficient determined by the fact that

K
∑

wi must be equal to the number density of energetic electrons. The presence of

the δ-functions converts the integral of the form
∫
fMC
E (E)G(E)dE with G(E) being

an arbitrary function of E to a sum over quasiparticles K
∑

wiG(Ei).

Using equations (3.2) through (3.6), we find the excitation rate for the optical

level k to be

Rk
α � 8.93× 1019 ×KNα[σ

k
α]max∆Ekα

Ns∑
i=1

wiviσ
ion
m (Ei, Ekα). (3.7)

In calculations of optical emissions in the stratified atmosphere, we also take into

account the fact that the emissions come from different altitudes with different atmo-

sphere densities.

The excitation rates of ionized states are calculated in a different, but somewhat

analogous manner. Since the ambient ionization in the atmosphere is very small,

the excitation of molecular ions is not an important process. Instead, the ionization

by electron impact leads to the production of ions already in the excited states.
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According to Rees [1989, p. 271], the creation of N+
2 has branching ratios pA = 39%

and pB = 11%, for levels A and B, respectively, and the creation of O+
2 has pb = 15%

for level b. Aside from the need to take into account the branching ratio p, excitation

rate Rk
α for the ionized states is given by an expression similar to (3.1), except for the

fact that σkα(E) should be replaced by the total cross-section [σion
α ]tot(E) for ionization

by an electron with initial energy E :

[σion
α ]tot(E) =

∫ E−Iα

0

σion
α (E , E ′) dE ′, (3.8)

where E ′ is the energy of the secondary electron, Iα is the ionization potential, and

the integration is performed over the secondary electron energies E ′.

Following the analysis performed above and using the total ionization cross-section

in place of the level excitation cross-section σkα(E), we arrive at the expression for

excitation rate for ions, somewhat similar to equation (3.7):

Rk
α � pkα × 8.93× 1019 ×KNα[σ

ion
α ]totmax∆E ion

α

Ns∑
i=1

wiviσ
ion
m (Ei, E ion

α ) (3.9)

where Nα is the non-ionized species density, σion,tot
α,max is the maximum of the ionization

cross-section, and ∆E ion
α is the width of the total ionization cross-section curve.

The ionization cross-section of species α for the purposes of this work was fitted

with expression analogous to Rees [1989, p. 43]:

σion
α (E , E ′) � 2πr2

0Zα
v2(Eiα + E ′)2

(3.10)

where r0 is the classical electron radius, Zα is the molecular nuclear charge, E , E ′ are

respectively the energies of primary and secondary electrons, v is the velocity of the



CHAPTER 3. OPTICAL AND γ-RAY EMISSIONS 43

primary electron and Eiα is the typical ionization energy. For main molecular species

we have EiN2 = 13.0 eV, IN2 = 15.6 eV, ZN2 = 14, EiO2 = 17.4 eV, IO2 = 12.2 eV,

ZN2 = 16. The values of Ekα, σkα,max, ∆Ekα for relevant species are given below:

1. The First Positive Group of N2 (level B): [σBN2
]max = 1.1× 10−20 m−2, ∆EBN2

=

10 eV, EBN2
= 12 eV.

2. The Second Positive Group of N2 (level C): [σCN2
]max = 3.8×10−21 m−2, ∆ECN2

=

10 eV, ECN2
= 16 eV.

3. The First Negative N+
2 group (1N) (level B): [σion

N2
]totmax is calculated from equa-

tions (3.8) and (3.10), ∆E ion
N2
� 38.5 eV, [E ion

N2
]max � 23.5 eV.

4. N+
2 Meinel group (M) (level A): see item 3.

5. The First Negative O+
2 group (1N) (level b): [σion

O2
]totmax is calculated from equa-

tions (3.8) and (3.10), ∆E ion
O2
� 41 eV, [E ion

O2
]max � 22 eV.

The volume emission rates εbα of species α in the band b are obtained from the

excitation rates as a solution of a steady-state level population equation, because the

level lifetimes are small compared to the characteristic time scale of 1 ms relevant for

our problem. In the following equations, εbα is the volume emission rate of species α

in the band b, Λk
α is the inverse lifetime of level k in s−1, Γkα,β is the quenching rate

due to collisions with species β, with the lifetimes and the quenching rates taken from

Jones [1974], p. 119:

1. The First Positive Group of N2 (1P):

ε1P
N2

= (RB
N2

+ ε2P
N2

)
ΛB

N2

ΛB
N2

+ ΓBN2,N2
NN2
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Here we take into account “cascading” from the higher level by the way of the

emission of the Second Positive Group of N2.

2. The Second Positive Group of N2 (2P):

ε2P
N2

= RC
N2

ΛC
N2

ΛC
N2

+ ΓCN2,O2
NO2

3. The First Negative N+
2 group (1N):

ε1N
N+

2
= RB

N+
2

ΛB
N+

2

ΛB
N+

2

+ ΓB
N+

2 ,(N2,O2)
(NN2 + NO2)

4. N+
2 Meinel group (M):

εM
N+

2
= RA,N+

2

ΛA
N+

2

ΛA
N+

2

+ ΓA
N+

2 ,N2
NN2

5. The First Negative O+
2 group (1N):

ε1N
O+

2
= Rb

O+
2

Λb
N+

2

Λb
N+

2

+ Γb
O+

2 ,N2
NN2

The optical emission intensity in Rayleighs of a particular band is given as [Cham-

berlain, 1961, p. 569]:

Ibα = 10−10

∫
εbαdl,

where ε is in m−3-s−1 and the integration is along the line of sight, measured in m.
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3.2 Gamma-Ray Emissions

In this Section we consider the production of γ rays in the bremsstrahlung process

and their propagation through the atmosphere.

3.2.1 Gamma Photon Production

If an electron with primary energy E passes through the field of a nucleus (or atom)

it is in general deflected. Since this deflection involves a certain acceleration, the

electron must emit radiation, in a process called bremsstrahlung (braking radiation).

The bremsstrahlung process is characterized for our purposes by the doubly dif-

ferential cross-section which is the differential cross-section of the bremsstrahlung

photon production in a unit solid angle and a unit energy interval (we are not inter-

ested in the direction of the electron momentum after interaction).

We can approximately write the doubly differential cross-section as a product:

∂2χ

∂Eph∂Ω
= Φ(θ)

dχ

dEph

(3.11)

Here θ is the angle between the velocities of the incident electron and the emitted

photon; dΩ is an elementary solid angle in the photon momenta space; dχ/dEph is the

differential cross-section for producing a photon of energy Eph in a unit interval of Eph,

integrated over all directions of the produced photon momentum; and Φ(θ) charac-

terizes the angular distribution of bremsstrahlung. The function Φ(θ) is normalized,

so that
∫

4π
Φ(θ) dΩ = 1, and is given by [Jackson, 1975, p. 705]:

Φ(θ) =
3

16π

1

γ2(1− β cos θ)2

[
1 +

(cos θ − β)2

(1− β cos θ)2

]
, (3.12)
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where γ = 1 + E/(mc2) is the electron relativistic factor and β = v/c is the dimen-

sionless velocity.

The expression for the cross-section dχ/dEph was obtained by Heitler [1954, p. 245]

in the Born approximation:

dχ

dEph

= χ0
1

Eph

p̄′

p̄
(χ1 + Lχ2) (3.13)

where the notations are:

L = log

[
p̄2 + p̄p̄′ − γk

p̄2 − p̄p̄′ − γk

]
= 2 log

[
γγ′ + p̄p̄′ − 1

k

]

χ1 =
4

3
− 2γγ′

p̄2 + p̄′2

p̄2p̄′2
+

ζγ′

p̄3
+

ζ ′γ

p̄′3
− ζζ ′

p̄p̄′

χ2 =
8

3

γγ′

p̄p̄′
+

k2

p̄3p̄′3
(γ2γ′2 + p̄2p̄′2) +

k

2p̄p̄′

[
ζ
γγ′ + p̄2

p̄3
− ζ ′

γγ′ + p̄′2

p̄′3
+

2kγγ′

p̄2p̄′2

]

ζ = log

[
γ + p̄

γ − p̄

]
= 2 log(γ + p̄)

ζ ′ = log

[
γ′ + p̄′

γ′ − p̄′

]
= 2 log(γ′ + p̄′)

χ0 =
Za(Za + 1)r2

0

137

and r0 is the classical electron radius (see Chapter 2), Za is the atomic number, γ

and γ′ are respectively the relativistic factors of electron before and after collision,

k = Eph/(mc2) is the dimensionless photon energy, p̄ = p/(mc) = γβ and p̄′ =

p′/(mc) = γ′β′ are respectively dimensionless electron momenta before and after

collision. In the expression for χ0 we took into account the contribution from the

atomic electrons [Heitler, 1954, p. 391]. Based on the law of conservation of energy,

we have E ′ = E − Eph. The momentum is in general not conserved because some

momentum is transfered to the nucleus.
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For relativistic electrons Φ(θ) falls off fast for large θ, so that the bremsstrahlung

radiation is forward-directed. The angle θ of bremsstrahlung radiation can be found

if the directions of the photon (θph, φph) and the initial electron momenta (θe, φe) are

given, i.e.:

cos θ = sin θe sin θph cos(φe − φph) + cos θe cos θph.

In the above equation θe is the angle between the velocity of an electron and the

vertical, θph is the angle between the radiated photon and the vertical, and φph is the

corresponding azimuthal angle.

The specific emissivity of γ rays (the number of photons radiated by a unit volume

per unit solid angle of photon momenta per unit photon energy interval per second)

is then given by:

εγ(r, Eph, θph) =

∫
f(r,p) v Φ(θ)

{
2NN2

dχN

dEph

+ 2NO2

dχO

dEph

}
d3p, (3.14)

where r is the radius-vector of the source (the electron-nucleus system), f is the

electron phase space distribution function, v is the initial electron velocity, NN2 and

NO2 are atmospheric molecular densities of nitrogen and oxygen respectively (the

density of other elements is negligible). The integration is taken over the electron

momentum space.

In our calculations of the bremsstrahlung emissions we made the following ap-

proximations in determining the cross-sections:

1. Born approximation. The Born approximation conditions which were used

in (3.13) are [Heitler, 1954, p. 242]:

Za
137β

� 1;
Za

137β′
� 1
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where β = v/c and β′ = v′/c are the initial and final velocities of the electron

in units of c. When these conditions are not valid, the electron wave function

cannot be approximated as a plane wave, and the Coulomb correction has to

be made [Koch and Motz, 1959]. However, the contribution of nonrelativistic

electrons to bremsstrahlung is small, and in our calculations we neglect the

bremsstahlung when the Born approximation conditions are not valid. For the

atomic nucleus charges Za = 7 (nitrogen) and Za = 8 (oxygen) the electron

energy at which Za � 137β is ∼1 keV, so that for relativistic electron initial

and final kinetic energies the Born approximation conditions are fulfilled.

2. No screening. The field of the nucleus is screened by the atomic electrons

leading to the reduction of the bremsstrahlung intensity. This effect is par-

ticularly strong when [Koch and Motz, 1959] 137k � γγ′Z
1/3
a , i.e., for a high

electron energy and low photon energies, as shown in Figure 3.1. The solid

curve is plotted for the limit of complete screening, when the cross-section is

[Heitler, 1954, p. 249]:

dχ

dEph

= χ0
4

k

{[
1 +

(
γ′

γ

)2

− 2

3

γ′

γ

]
log(183Z−1/3

a ) +
1

9

γ′

γ

}
.

For the electron and photon energies of interest here, this effect gives <∼30% re-

duction of bremsstrahlung emission and is neglected in our model calculations.

This is an acceptable error, because, as we show in Chapter 4, the energetic run-

away electron number density in the atmosphere at the altitudes of maximum

γ-ray emissivity depends very strongly on the parameters of the thunderstorm

above which they originate. Therefore, the determination of runaway elec-

tron density involves uncertainties substantially larger than ∼30%, so that the
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Figure 3.1: Bremsstrahlung cross-sections. Cross sections are shown with and
without screening effect for E=5.11 MeV.

screening correction would not significantly modify our conclusions regarding

the properties of the γ emissions.

3.2.2 γ-photon Propagation in the Atmosphere

The most important processes which attenuate the γ radiation produced by brems-

strahlung during its transport in the atmosphere are the Compton scattering and the

photoelectric effect.

The Compton scattering describes the process in which a photon changes its direc-

tion and loses a part of its energy after a collision with an electron which is initially at

rest or slowly moving. The cross section for this process is given by the Klein-Nishina
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formula [Heitler, 1954, p. 219]:

dσC
dE ′ph

= πr2
0

mc2

Eph
2


Eph

E ′ph

+
E ′ph

Eph

+

(
mc2

E ′ph

− mc2

Eph

)2

− 2

(
mc2

E ′ph

− mc2

Eph

)
 , (3.15)

where Eph and E ′ph are initial and final photon energies, m is electron mass and r0 is

the classical electron radius. The final photon energy E ′ph can lie in an interval from

[E ′ph]min = mc2Eph/(mc2 + 2Eph) to Eph.

The photoelectric effect describes a process in which the photon is absorbed when it

removes an electron from an inner K-shell. The cross-section used in our calculations

is given analytically [Price et al., 1957; Heitler, 1954] and includes relativistic effects

[Heitler, 1954, p. 209] as well as K-absorption edge effects [Heitler, 1954, p. 208]:

σP = σ0F
3

2

Z5
a

1374

(
mc2

Eph

)5

(γ2 − 1)3/2

[
4

3
+

γ(γ − 2)

γ + 1

(
1− 1

2γ
√

γ2 − 1
log

γ +
√

γ2 − 1

γ −
√

γ2 − 1

)]

where σ0 = (8/3)πr2
0, and γ = 1 + Eph/(mc2) is the photoelectron relativistic factor.

The absorption edge factor is

F = 2π

√
Eion
E

e−4ξ cot−1 ξ

1− e−2πξ
; ξ =

√
Eion

Eph − Eion

where

Eion =
Z2
amc2

2× 1372

is the K-electron ionization energy. The analytical formula for σP agrees with tab-

ulated data [Storm and Israel, 1970; Hubbell, 1969] with ∼10% accuracy for photon

energies Eph > 1 keV.



CHAPTER 3. OPTICAL AND γ-RAY EMISSIONS 51

Other physical processes, which are neglected in our calculations, include Rayleigh

scattering and pair production. Rayleigh scattering is the coherent scattering of a

photon by atomic electrons at small angles without energy loss. The ratio of the

total Rayleigh cross-section to the Compton scattering cross section per atom for

Eph > 10 keV is [Price et al., 1957, p. 31]

σR
Zaσtot

C

� 1.1× 10−5Z
5/3
a

Eph

� 1 (Eph in MeV)

indicating that the Rayleigh scattering effect can be safely neglected. At low photon

energies Eph <10 keV the Rayleigh scattering cross-section is much smaller than the

photoeffect cross-section [Storm and Israel, 1970]. Pair production does not play an

important role for the photon energy ranges of interest (Eph
<∼1 MeV) [Hubbell, 1969;

Price et al., 1957, p. 22].

The attenuation of a flux of photons with given energy can be expressed by the

following relation between the photon flux at the detector in the absence of scattering

and absorption Iγ0 and the flux in their presence Iγ:

Iγ = Iγ0 B e−δopt , (3.16)

where δopt is the optical depth, or shield thickness [Price et al., 1957, p. 45], and B is

the build-up factor (B≥1), which takes into account the photons scattered into the

detector.

The optical depth δopt is obtained by integrating the linear “narrow beam” at-

tenuation coefficient µ over the radiation ray path from the point of origin r to the

detector location rdet:

δopt =

∫ rdet

r

µ(Eph, r
′)dr′
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In our case, the linear attenuation coefficient µ has the value:

µ(Eph, r
′) = 2NN2(r

′)σtot
N (Eph) + 2NO2(r

′)σtot
O (Eph)

where σtot
N and σtot

O are the total photon cross-sections for nitrogen and oxygen, respec-

tively. The linear attenuation coefficient is a function of spatial coordinates [through

NN2(r
′) and NO2(r

′)] and the photon energy Eph. The total photon cross-section on

the basis of the above discussion can be written as:

σtot = σP + σtot
C ,

where the Compton cross-section has been integrated over final photon energies E ′ph:

σtot
C =

∫ Eph

[E ′ph]min

dσC
dE ′ph

dE ′ph.

In the runaway electron avalanche above a thunderstorm, which is the subject of

Chapter 4, most bremsstrahlung photons are produced at altitudes 60–70 km [Lehti-

nen et al., 1997; 1999]. The optical depth for photon energies 20–500 keV in the

vertically upward direction from these altitudes toward an orbiting satellite is less

than 10−2. Therefore, the attenuation is <∼1% and can be neglected. The build-up

factor can also be neglected because B � 1 for thin targets.

However, the Compton scattering of photons produced by precipitating electrons

(Chapter 6) or of γ photons of extraterrestrial origin incident on the upper atmo-

sphere [Inan et al., 1999] changes their direction significantly. Equation (3.16) for

this situation contains a complicated unknown build-up factor B and a numerical so-

lution of the photon transport equation is required. In this work, we solve the photon
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transport problem using a Monte Carlo model, as utilized by Inan et al. [1999]. The

details of this model are given in Section A.6 in the Appendix.



Chapter 4

Runaway Electron Acceleration in

the Middle Atmosphere

The relativistic runaway breakdown field Et [Gurevich et al., 1992] in air, described in

Chapter 2 is smaller than the conventional breakdown field [Papadopoulos et al., 1993]

by a factor of ∼10–20. This fact indicates that the post-discharge quasi-electrostatic

field in the middle atmosphere above a thunderstorm exceeds the runaway break-

down field over a larger altitude interval than the conventional breakdown field [Bell

et al., 1995]. Therefore avalanching runaway electrons may play a significant role

in mesospheric processes (Figure 1.1). Runaway electrons are thought to be ac-

celerated by quasi-electrostatic fields in the middle atmosphere following a positive

cloud-to-ground (+CG) discharge [Bell et al., 1995], the seed for the relativistic run-

away electron avalanche being provided by MeV electrons from a cosmic ray shower

[McCarthy and Parks, 1992]. In this Chapter, we study this process numerically

54
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Figure 4.1: Schematics of the runaway mechanism. At low altitudes, where the
collision rate is larger than the gyrofrequency, the electrons move along the electric
field direction, while at higher altitudes they move along B.

for translationally-symmetric and axially-symmetric field configurations, using cor-

respondingly models formulated in Cartesian and cylindrical coordinates. In Sec-

tion 4.3, we provide a simple stationary analysis, to further demonstrate the highly

nonlinear dependence of the runaway electron flux on the magnitude of the causative

lightning discharge.

4.1 Cartesian Model

In our previous work [Lehtinen et al., 1997], we studied the production of runaway

electrons above thunderstorms using a cylindrically symmetric model with a vertical

axis and a vertical geomagnetic field. Red sprites have been observed at magnetic

latitudes ranging from 10◦ to 50◦, and terrestrial gamma ray flashes have been ob-

served throughout the equatorial region covered by CGRO, namely ±28.5◦ geographic

latitude. These low-latitude regions are characterized by a large angle between the



CHAPTER 4. RUNAWAY ELECTRONS IN THE MIDDLE ATMOSPHERE 56

geomagnetic field and the vertical, which makes the cylindrically symmetric model in-

adequate to describe energetic electron discharges, since the magnetic field influences

the electron motion to a large extent at high altitudes [Lehtinen et al., 1997; Gurevich

et al., 1996].

In this Section we develop a two dimensional Cartesian model which allows an

arbitrary direction for the geomagnetic field. The model is translationally symmetric

in a horizontal direction and is applicable to the case of lightning draining positive

charge from remote regions of a laterally extensive (>100 km) storm front. The length

of the cloud must be at least the size of the region modeled. The discharge in our

model is characterized by the removal of charge which is distributed horizontally, and

the magnitude of which is described by a line charge density (in units of C/km).

We apply the Monte Carlo model results (Chapter 2) to calculate the energetic

runaway electron density and proceed to calculate optical and γ-ray emissions. We

present results for optical emissions in the N2 first positive band system, which is

dominant in red sprites. The flux of γ-ray emissions from energetic runaway electrons

from bremsstrahlung [Lehtinen et al., 1996] is also calculated and the γ-ray emission

properties are compared to BATSE observations [Nemiroff et al., 1997].

The two dimensional model presented here uses Cartesian coordinates and is

translationally symmetric (invariant) in the horizontal y direction. For the results

presented here we chose the geomagnetic field B = B sinλmx̂ + B cosλmẑ, with

B = 5 × 10−5 T, λm = 30◦, where z is a vertical axis. This field lies in (x, z) plane

perpendicular to the linear charges. The results for the field in the (y, z) plane are

similar to those presented here.
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The initial thundercloud charge consists of two infinitely long line charges of den-

sity ±ρl at altitudes of h+ = 10 km and h− = 5 km, respectively, which have a Gaus-

sian spatial distribution (along x and z coordinates) with a scale of ∼3 km each. The

separated dipole charges are assumed to be established over a relatively long time

(>100 s). We calculate the pre-discharge electrostatic field using the electrostatic

heating model [Pasko et al., 1998a]. Subsequently, the positive part of the dipole

charge is discharged to ground in τs = 1 ms, as shown in Figure 4.1, thereby creating

the quasi-electrostatic field due to uncompensated space charge [Pasko et al., 1997].

We use an exponential ambient ion conductivity profile with ∼6 km scale height [De-

jnakarintra and Park, 1974], as in previous work [Pasko et al., 1997; Lehtinen et al.,

1997]. This conductivity profile does not include the effect of cloud aerosols, but

otherwise provides a realistic representation of experimental data [Holzworth et al.,

1985].

The dynamics of the electric field and charge distribution is calculated by taking

advantage of the relatively slow variation of the electric field and describe it using

a time-varying potential as E = −∇Φ where Φ = Φ(r, t). The quasi-electrostatic

approximation is based on an assumption that the ratio of the spatial scale in the

model to the time scale is much less than the speed of light. The time scale is the

relaxation time τr = ε0/σ0, which below 90 km indeed satisfies this condition. Here

σ0 is the scalar conductivity while ε0 � 8.54× 10−12 F-m−1 is the permittivity of the

free space. On the boundaries of the simulation box (x = 0, 100 km, z = 0, 80 km)

we assume zero potential, i.e., Φ ≡ 0.

The quasi-electrostatic field equations, modified from previous work [Pasko et al.,
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1997] to account for the presence of runaway electrons, are:

∂ρ

∂t
+∇ · J +∇ · JR =

ρsσ0

ε0
(4.1)

∇ · E =
ρ + ρs
ε0

. (4.2)

Here ρs = ρs(t) is the source thundercloud charge density; ρ is the induced charge

density, J=σ↔E is the conductivity current JR=qevRNR is the current due to runaway

electrons with mean velocity vR and number density NR. The term on the right-

hand side of the continuity equation (4.1) describes the external current ∇ · Jext =

−ρsσ0/ε0, supported by meteorological processes, with σ0 being the conductivity at

the altitude of the charge, at which the conductivity does not appreciably depend on

the geomagnetic field and can be considered a scalar.

In general, the conductivity is a tensor σ↔ due to the anisotropy introduced by the

geomagnetic field. In a coordinate system in which the z′ axis is along the geomagnetic

field, the conductivity tensor is given by [Volland, 1984, p. 8]:

σ↔ =




σp σh 0

−σh σp 0

0 0 σ0




where σp, σh and σ0 are the so-called Pedersen, Hall and parallel conductivities,

respectively. In the case of non-vertical geomagnetic field we apply an orthogonal

transformation to σ↔ by rotating the z′ axis to z. The magnetic field starts to play a

significant role, in which case σp 	= σ0 and σh 	= 0, only above 70 km [Volland, 1984,



CHAPTER 4. RUNAWAY ELECTRONS IN THE MIDDLE ATMOSPHERE 59

p. 2]. The conductivity tensor elements consist of ion and electron parts

σ0 = σi + σe (4.3a)

σp = σi + σe
1

1 + ω2
H/ν

2
eff

(4.3b)

σh = σe
ωH/νeff

1 + ω2
H/ν

2
eff

(4.3c)

The ion conductivity is given by [Dejnakarintra and Park, 1974] σi = σi0e
z/H , where

σi0 =5× 10−14 S-m−2 and H=6 km. The electron conductivity is σe=qeNeµe, where

Ne is the electron number density, ωH = qeB/m is the electron gyrofrequency, and

νeff = qe/(mµe) is the effective electron collision rate. The electron mobility µe is a

nonlinear function of the electric field E due to heating of electrons by the quasi-

static electric field E. This dependence also leads to the nonlinear dependence of

the conductivity on E and is taken into account in the calculations. The energetic

runaway electrons do not contribute much to the conductivity, because their density

is much less then the density of ambient free electrons.

The runaway electron density NR is calculated using the fluid equation [Lehtinen

et al., 1997], with the source S0 of MeV electrons provided by cosmic rays:

∂NR

∂t
+∇ · (vRNR) = γRNR + S0(z) (4.4)

where γR is proportional to γ̄RNm as explained in Chapter 2. The local normalized

avalanche rate γ̄R and velocity vR are functions of dimensionless parameters δ0, η0,

µ0 as defined in (2.22), and are interpolated from values calculated as discussed in

Chapter 2 and stored in a lookup table. No avalanche occurs for δ0 less than a certain

value, which can be >1 in the presence of magnetic field. In such cases, values of
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γR ≤ 0 is obtained by extrapolation from the calculated γR > 0 at higher values of δ0.

The crudeness of this approximation can be justified by the fact that in the middle

atmosphere the regions where the avalanche is quenched do not have many energetic

electrons and therefore do not play any role in the development of the avalanche.

The source S0(z) is due to cosmic rays and is proportional to the air density, with

S0 � 10 m−3s−1 at 10 km [Bell et al., 1995].

The runaway electrons produce electron density enhancements through the ion-

ization process. The change in electron density due to runaway electrons is given

by

∂Ne

∂t
= 2vRNRNmσ

ion

where σion � 2.3× 10−22 m−2 is the typical total cross-section for ionization by ener-

getic runaway electrons for oxygen or nitrogen [Bell et al., 1995].

For computational simplicity, we do not account for the change of conductivity

associated with ionization by the quasistatic electric field. This effect leads to con-

ventional breakdown and development of streamer channels, requiring the grid size

in our model to be smaller than the streamer size, which is <∼ 10 m at 70 km altitude

[Pasko et al., 1998b]. The formation of the streamers do not influence the large scale

configuration of the quasi-electrostatic field, and can be neglected for the time periods

of interest here, which is ∼1–3 ms since the beginning of the discharge. This applox-

imation is valid because the streamers, moving with the speed of < 2 × 106 m-s−1,

propagate only by <∼6 km distance. Ionization effects were considered in detail in

[Lehtinen et al., 1997].

We solve (4.4) in two dimensions using the modified upwind differencing scheme

[Press et al., 1992, p. 832]. We calculate NR at the current time step using its value

at the point in space where the particle was located at time (t − ∆t). The values
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between the grid points are obtained by bilinear interpolation. The von Neumann

stability analysis [Press et al., 1992, p. 827] shows that this method is unconditionally

stable. Note that the error is unacceptably high for a mesh size >∼c/γR, if one solves

(4.4) directly for NR. This condition can be avoided and the error can be reduced by

solving (4.4) for log(NR), which is analogous to an analytical solution with constant

γR and S0.

Gurevich et al. [1994] showed that transverse diffusion of the runaway electron

beam occurs due to ionizing collisions. Using equations (26) and (31) and Figure 6

from Gurevich et al. [1994], we find that the beam broadening due to this kind

of diffusion is <∼1 km, small compared to the broadening due to the fact that the

avalanche is started not by a single electron, but by many electrons at different

horizontal distances from the axis. The latter effect gives ∼10–15 km horizontal size

of the beam at the 80 km altitude, defined at the level of e−1 of the value on the

axis. The fact that the transverse diffusion is negligible justifies our use of the fluid

equation (4.4) rather than a kinetic solution.

The optical emissions are produced as a result of the excitation of neutral species

through impacts by thermal electrons driven by the electric field [Pasko et al., 1997]

and suprathermal electrons (>∼ 10 eV), created in the runaway avalanche. The former

process is described in Chapter 3. A simplified form of the method (such as used by

Bell et al. [1995]) is applied in this Chapter to find the optical emissions by runaway

electrons. Calculation of optical emissions due to thermal electrons driven by the

electric field is described elsewhere [Pasko et al., 1997].

Gamma ray production is also calculated as in the paper by Lehtinen et al. [1997]

using the method described in Chapter 3, except that we use the new electron distri-

bution in momentum space, obtained by Monte Carlo simulation for parameters δ0,
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η0, and µ0 corresponding to the point at which the volume emission rate proportional

to NmNR has a maximum, which occurs at ∼65 km altitude. The emission patterns

of each particle in the set are summed, as in equation (3.14). Because the atmosphere

is optically thin (δopt
<∼ 0.01) at the altitude of maximum volume emission rate, we

do not take Compton scattering or the photoelectric attenuation effects into account

in our calculations of the gamma ray flux at the satellite altitudes.

The results of the Cartesian model of the middle atmosphere are presented in Fig-

ures 4.2 and 4.3 for a discharge which removes a linear charge density ρl = 12 C/km.

For calculations of values integrated over the total volume including the axis of sym-

metry we assume the size of the region over which charge is removed to be L = 100 km,

so that the total charge removed in the discharge is Q = ρlL = 1200 C. The cloud

length of 100 km is the minimum possible length for which the assumption of ap-

proximate translational symmetry (invariance) is still valid, because it is of the order

of other dimensions of the system (e.g. the distance between the Earth surface and

the ionosphere). The discharge can have a significant effect on the electric field at

altitudes where the typical time of field relaxation (τr = ε0/σ0) is greater than the

time of discharge. To get the maximum observed currents of ∼200 kA, the total

charge of 1200 C has to be removed in ∼6 ms, which in our model would have the

same effect as instantaneous removal at altitudes below 80 km. The geomagnetic

field dip angle for these results is 60◦, corresponding to midlatitudes, where sprites

are usually observed. We can use the fluid model of the runaway avalanche when the

spatial diffusion of runaway electrons due to the different effect of magnetic field on

electrons with different energy is not too large. Such is the case for a 60◦ dip angle,

when the geomagnetic field B is sufficiently close to the vertical. The spatial diffusion



CHAPTER 4. RUNAWAY ELECTRONS IN THE MIDDLE ATMOSPHERE 63

0 20 40 60 800
10
20
30
40
50
60
70

z,
 k

m

z,
 k

m

B
EvR

(a) (b)

(c)+ ++

0 20 40 60 80 20 40 60 80

runaway breakdown
Et < E < Ec 

conventional E > Ec

x, km

x, km x, km x, km

x, km x, km
20 40 60 80

10
20
30
40
50
60
70

−6

−4

−2

0

2

+(d)

20 40 60 80 2

3

4

5

6

20 40 60 80 0

1

2

3

4

+ +(e) (f)

− − −

− − −

E < Et

log10 NR, m−3;  NR,max=767 m−3 log10 Itot, for 1P N2 line, R log10 Irunaway, for 1P N2 line, R

Figure 4.2: Cartesian model results. The runaway electron avalanche in the
atmosphere for a charge moment of ρl = 12 C-km−1 at t = 3 ms after the start of the
discharge. B lies in the plane of the picture. (a) Velocity field lines, (b) electric field
lines, (c) electric field thresholds, (d) runaway electron density, (e) optical emissions
in N2 first positive band system (total), maximum is ∼6.4 MR. (f) Runaway electron
contribution to the total luminosity shown in (e), maximum is ∼8.8 kR.

of electrons becomes important when B is close to a horizontal, e.g, at the geomag-

netic equator. The orbit of the CGRO satellite on which the gamma ray flashes were

measured is confined to ±28.5◦ geographic latitudes, so that some terrestrial gamma

ray flashes may have originated at the geomagnetic equator, where the fluid model is

insufficient for their accurate description.

Figure 4.2a shows the trajectories of runaway electrons calculated on the basis of

our Monte Carlo model and the fluid model. We see that electrons move along electric

field lines at lower altitudes and along geomagnetic field lines at higher altitudes. The

altitude at which the regime of motion changes is around 35 km. At this altitude,
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the electron elastic collision rate is roughly equal to gyrofrequency, indicating that

elastic collisions play a more important role than inelastic ones [Roussel-Dupré and

Gurevich, 1996; Taranenko and Roussel-Dupré, 1997]. For comparison, the inelastic

collision rate is equal to the gyrofrequency at altitudes ∼20 km [Gurevich et al.,

1996]. There is also a drift velocity component perpendicular to the plane of the

picture at higher altitudes, where the influence of magnetic field on electron motion

is important.

The regions of runaway and conventional air breakdown, which occurs at δ0
>∼ 10

are shown in Figure 4.2c. Figure 4.2d shows the two dimensional structure of the

runaway beam. The basic difference with our previous work [Lehtinen et al., 1997]

is that the runaway density grows slower, since the avalanche rates are smaller by a

factor of ∼10 than those used in [Lehtinen et al., 1997].

Figure 4.2e shows total optical emissions in the 1st positive band system of N2.

The intensity in Rayleighs is obtained by integrating the emission rate along the line

of sight, which is taken parallel to the linearly extended charge distribution and is thus

∼100 km long. Figure 4.2f shows the relatively weak optical emissions produced by the

electrons in the runaway beam, indicating that the emission rate is dominated by the

conventional breakdown. Note that Figure 4.2e shows emissions before conventional

breakdown, because our model does not take into account the change of conductivity

associated with ionization. Therefore, averaged over the frame rate (∼17 ms) the total

emission intensities will be smaller. Nevertheless, comparison of Figures 4.2e and 4.2f

illustrates that the contribution of the runaway process to the total optical intensities

produced at high altitudes after positive lightning discharges is negligible, unlike our

previous result reported by Lehtinen et al. [1997] and unlike suggestions of other

workers [Taranenko and Roussel-Dupré, 1996; Roussel-Dupré et al., 1998; Yukhimuk
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et al., 1998].

Based on Figure 2.2 and the fact that NR has reached ∼767 m−3 in ∼1 ms, the

growth rate of NR is very high at∼80 km. However, this rapid increase in the runaway

current JR does not produce any significant electromagnetic radiation. Estimates

indicate Erad
<∼ 0.1 V-m−1 at ∼80 km, much smaller than the quasi-electrostatic

field, confirming the validity of the quasi-electrostatic approximation. Note that this

value is also substantially smaller than the peak intensity of the electromagnetic pulses

produced by the parent lightning discharges, which are of the order ∼10 V-m−1 at

∼80 km altitude and which produce brief optical flashes known as “elves” [Inan et al.,

1996a; Inan et al., 1997].

Figure 4.3 shows bremsstrahlung γ-ray emissions. A sample of observational data

is given for comparison in Figure 4.3a. Figure 4.3b shows the calculated emissions at

500 km altitude of an observing satellite. The angular distribution of the emission

is forward directed for relativistic electrons, which produces the “spot.” As seen in
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Figure 4.3b, the angular distribution of emitted gamma rays has a width of ∼15◦.

Figure 4.3c is a cartoon demonstrating the production of this spot, predicting that

at midlatitudes the γ-ray emissions are aligned with the geomagnetic field. Unfortu-

nately, the direction of origin of terrestrial γ-ray flashes requires a special analysis of

BATSE data and is not in the public domain, so we cannot draw a conclusion about

a correlation between it and the geomagnetic field. The calculated gamma ray flux is

of the same order of magnitude as the CGRO observation [Fishman et al., 1994].

A significant fraction (4 out of 12 presented by Fishman et al. [1994]) of TGF have

a duration of 3–5 ms, which agrees with the typical timescale of our calculations. Our

model predicts that the γ-ray spectrum decreases towards higher photon energies Eph.

The photon fluxes integrated over BATSE energy intervals (20–50, 50–100, 100–300

and >300 keV) were presented in [Lehtinen et al., 1996]. The spectral analysis of

BATSE data [Nemiroff et al., 1997] gives a photon flux dependence proportional to

(Eph)
α with α=−1.5 to −.6, which includes the typical bremsstrahlung value α=−1.

The prediction of the model described in this work is that the γ-ray spectrum should

be a bremsstrahlung spectrum since the upward moving γ rays are not significantly

modified by Compton scattering in the atmosphere.

4.2 Cylindrical Model

The axially symmetric model of runaway electrons was presented in [Lehtinen et al.,

1997]. However, the avalanche rates used in that paper were proven to be overesti-

mated, as discussed above and in Chapter 2. In this section we present recalculation

of some results using new and more accurate avalanche rates, obtained in Chapter 2
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[Lehtinen et al., 1999]. We solve equations (4.1–4.4), but now utilize cylindrical co-

ordinates (r, φ, z) with a vertical z-axis (axis of symmetry) and B ‖ ẑ. It should be

noted that if B is tilted with respect to the vertical, then the runaway electron beam

is also tilted, following the magnetic field lines at high altitude.

For the results presented in Figures 4.4 and 4.5, we used a positive cloud-to-ground

discharge of Q = 420 C from the altitude of h+ = 20 km in time of 1 ms. The equal in

magnitude stationary negative charge is located at h− = 15 km. The charge density

in the cloud is assumed to be proportional to exp {−(r/ar)
2 − ([z − h±]/az)

2}, with

ar=10 km and az=3 km. The field was calculated in the computation domain in the

form of cylinder of dimensions rmax =60 km and zmax =80 km, with ground potential,

Φ = 0, at the boundary.

Figure 4.4a shows the trajectories of runaway electrons calculated on the basis

of the fluid model using a lookup table generated via a Monte Carlo calculations

as described in Section 4.1. We see that again electrons move along E (shown in

Figure 4.4b) at lower altitudes and along vertical B at higher altitudes, and the

altitude at which the regime of motion changes is around 35 km. Figure 4.4c shows

the two dimensional structure of the runaway beam.

The regions of runaway and conventional air breakdown, which occurs at δ0
>∼

10 are shown in Figure 4.5a. Figure 4.5b shows total optical emissions in the 1st

positive band system of N2. The intensity in Rayleighs is obtained by integrating

the emission rate along the horizontal line of sight, in the cylindrically symmetric

system, perpendicular to the vertical axis. Figure 4.5c shows the relatively weak

optical emissions produced by the electrons in the runaway beam, indicating that the

emission rate is dominated by the conventional breakdown. Note once again that

Figure 4.5c shows emissions before conventional breakdown, because our model does
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not take into account the change of conductivity associated with ionization.

4.3 Runaway Electron Beam Density

In this Section, we estimate the runaway electron flux entering the ionosphere as a

function of the thundercloud charge configuration parameters. In particular, we show

that the runaway electron flux depends on the value of the cloud charge in a highly

nonlinear manner.

The initial positive charge Q is taken in this Section to be either concentrated at

a point or distributed on a horizontal disk located at altitude h+. It is accompanied

by an equal negative charge −Q at altitude h−. In this Section, we consider two cases

cases with h+ = 10 km and h+ = 20 km, while the negative charge −Q is assumed

to be at h− =5 km.

The quasi-electrostatic field after a positive cloud-to-ground discharge exists for

several milliseconds, substantially longer than the few hundred microseconds required

for relativistic electrons to traverse the distance from their origin to the ionosphere.

We therefore use a stationary continuity equation instead of the more general (4.4)

for calculation of the number density of the runaway electron beam:

vR
dNR

dz
= γRNR + S0(z) (4.5)

The growth rate γR > 0 only when the electric field E exceeds the runaway threshold

field Et, which is proportional to the neutral air molecule density Nm. We use the

velocity vR� 0.9c and avalanche rate γR calculated using the Monte Carlo model of

Chapter 2 [Lehtinen et al., 1999].
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In this Section, for calculation of the quasi-electrostatic field we assume an ex-

ponential air conductivity profile σ = σ0e
z/H , with scale height H = 10 km, as an

approximation of the experimental data [Holzworth et al., 1985]. For the sake of

simplicity, we neglect the changes in the conductivity described in Section 4.1 and

use a substantially simple conductivity model. Based on the results of Sections 4.1

and 4.2, the effect of the changes in conductivity due to heating are negligible. The

rather simple conductivity profile used here allows an analytical descrition of resul-

tant electric field (see below), for the stationary case considered here and is sufficient

for ballpark estimation of the number density of runaway electrons.

The removal of a positive charge is equivalent to instantaneous placement of a

negative charge of equal magnitude at the same location. Since the electric field

relaxation time (τr = ε0/σ0) at the altitudes of avalanche is relatively long, the elec-

trostatic field of the just-placed negative charge can be assumed to be the same as in

vacuum. The driving quasi-electrostatic field is therefore the sum of the initial sta-

tionary field of the thundercloud in the conducting atmosphere and the vacuum field

of the equivalent just-placed negative charge, and can be calculated analytically for

both the point and disk charge configurations. In this way, the post-discharge electric

field is determined predominantly by the negative screening space charge, which is

formed in the pre-discharge stage, and the altitude distribution of which depends in

form on the magnitude and altitude of Q and the atmospheric conductivity profile.

For point charges, we note that the Coulomb electrostatic potential of a unit

charge in cylindrical coordinates located at r0 = 0, z0 = 0 in the stratified atmo-

sphere with exponential conductivity profile is [Volland, 1984, p. 34] Φpoint
exp (r, z) =

Φpoint
vac (r, z)e−(R+z)/2H , where R =

√
r2 + z2 is the distance between the observation

point and the charge and Φpoint
vac (r, z) = (4πε0R)−1 is the potential of a point unit
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charge in vacuum.

For the case of two separated thundercloud point charges ±Q at altitudes h±, we

have to take into account the image charges at −h± of values Qimage± = ±Qeh±/H .

The electrostatic potential before the discharge is then given by

Φpoint
before(r, z) = Q

[
Φpoint

exp (r, z − h+)− Φpoint
exp (r, z − h−)

−eh+/HΦpoint
exp (r, z + h+) + eh−/HΦpoint

exp (r, z + h−)
]

(4.6)

The potential immediately after the discharge can be determined from (4.6) by adding

a negative point charge at the location of the removed positive charge and its image:

Φpoint
after (r, z) = Φpoint

before(r, z) + Q
[
−Φpoint

vac (r, z − h+) + Φpoint
vac (r, z + h+)

]
(4.7)

The electrostatic field E before and after discharge can then be directly found

from E = −∇Φ. In the solution of equation (4.5) we are interested primarily in the

vertical electric field Ez = −∂Φ/∂z along the cylindrical axis r = 0.

For solution of equation (4.5), we assume the initial condition of NR0 = 0 at some

initial altitude zini. For calculations with h+ = 10 km, we take zini = 18 km. At

this altitude the ratio E/Et after the discharge, derived from (4.7), is minimal. For

h+ = 20 km, this minimum is at the cloud altitude, but we take zini = h++2 = 22 km,

to allow for a finite cloud thickness. We take the upper limit to be the lower ionosphere

boundary at 80 km.

The point charge configuration has the disadvantage of having an arbitrarily large

electrostatic potential as r → 0. A somewhat more realistic thundercloud charge

configuration is a disk of charge. The electrostatic potential of a horizontal disk

charge system can be calculated by integrating the potential for the point charge.
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For a unit disk charge of radius a, having a uniform charge density (πa2)−1, the

electrostatic potential along the axis of the system in vacuum is given by

Φdisk
vac (z) =

1

πa2

∫ a

0

2πr dr

4πε0
√
r2 + z2

=
1

2πε0a2

(√
a2 + z2 − |z|

)

while the potential in the stratified atmosphere with exponential conductivity profile

is given as

Φdisk
exp (z) =

1

πa2

∫ a

0

e−(
√
a2+z2+z)/(2H)2πr dr

4πε0
√
r2 + z2

=
H

πε0a2
e−z/(2H)

[
e−|z|/(2H) − e−

√
a2+z2/(2H)

]

The pre-discharge potential for a system of two separated disk charges is a linear

combination analogous to equation (4.6), while the postdischarge potential is given

by an expression similar to (4.7). The vertical component of the qusistatic electric

field is once again found from Ez = −∂Φ/∂z.

For a given amount Q of total removed charge, the minimum radius of a disk

of charge is determined by the requirement that the field in its immediate vicinity

before the discharge is lower than the runaway breakdown field Et. The minimum

radii amin(Q) so determined for h+ = 10 and 20 km, are plotted in Figure 4.6.

Based on past work [Lehtinen et al., 1999], the runaway electron flux NR escaping

upward from the ionosphere is insignificantly changed by the geomagnetic field for

latitudes >∼45◦. The results of calculations of the density of the electron beam entering

the magnetosphere based on a numerical solution of equation (4.5) are shown in

Figure 4.7, for point and disk charges at two different altitudes. We see that the

density depends strongly on the discharge value Q. The first two curves (labeled 1

and 2) are for h+ = 10 km. The first curve represents the density calculated for the



CHAPTER 4. RUNAWAY ELECTRONS IN THE MIDDLE ATMOSPHERE 74

200 400 600 800 1000
5

10

15

20

25

30

35

Q, C

M
in

im
um

 c
lo

ud
 r

ad
iu

s 
a m

in
, k

m

h
+
=10 km

h
+
=20 km

Figure 4.6: The minimum radius of a disk charge. The solid curve is for h+ =
10 km and the dashed curve is for h+ = 20 km.

200 400 600 800 1000
10

−5

10
0

10
5

Q, C

N R
 a

t 8
0 

km
 a

lti
tu

de
, m

-3

1

2

3

4

Figure 4.7: Electron flux entering the ionosphere. Results are shown for point
and disk charges. (1) h+ = 10 km, point charge; (2) h+ = 10 km, disk charge;
(3) h+ = 20 km, point charge; (4) h+ = 20 km, disk charge.



CHAPTER 4. RUNAWAY ELECTRONS IN THE MIDDLE ATMOSPHERE 75

point discharge. The second curve represents results for a disk discharge, the disk

radius being limited by the condition that the field never exceeds Et either before or

after the discharge. The last two curves (labeled 3 and 4) represent analogous results

for h+ = 20 km. We see that the runaway electron production depends strongly not

only on the value of the charge lowered to the ground, but also on its altitude. For a

higher location of the initial positive charge, the runaway electron flux escaping from

the lower ionosphere is much higher.



Chapter 5

Interhemispheric Transport and

Trapped Electron Curtains

In this chapter, we consider the fate of the runaway electrons escaping the lower

ionosphere, as depicted in Figure 5.1. In particular, we consider the pitch angle and

energy scattering of the relativistic beam electrons due to beam-plasma interactions

in the radiation belts, leading to the formation of trapped electron “curtains”.

Relativistic runaway electron beams driven upward by intense lightning-generated

quasi-electrostatic fields undergo intense interactions with the background magneto-

spheric plasma, leading to rapid nonlinear growth of Langmuir waves. The beam

electrons are strongly scattered by the waves in both pitch angle and energy, lead-

ing to the formation of an isotropic thermal distribution with a typical energy of

∼1 MeV within one interhemispheric traverse along the Earth’s magnetic field lines.

While those electrons within the loss cone precipitate out, most of the electrons are

trapped and continue to execute bounce and drift motions, forming detectable trapped

curtains of energetic electrons.

76
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Figure 5.1: Schematics of interhemispheric transport. The electrons escaping
from the ionosphere above a thunderstorm are going from one hemisphere to another
and precipitate at the conjugate point.

The problem of a cold monoenergetic relativistic beam travelling between geo-

magnetically conjugate points was considered by Khazanov et al. [1999]. In our case,

the runaway electron beam exhibits a wide range of electron energies [Lehtinen et al.,

1999], so that we must consider the growth rate of beam-plasma instability for the

case of a beam with a significant energy spread.

We set out to determine whether the growth rate is high enough to lead to sig-

nificant growth of Langmuir waves during a single interhemispheric traverse. If such

growth does occur, the beam loses energy to waves and is also scattered in pitch

angle. If, on the other hand, the growth rate is small, then we can conclude that the

beam remains largely intact during its traverse, with most of the particles arriving

into the conjugate hemisphere with pitch angles well below the loss cone and thus

precipitating into the lower ionosphere.

To determine the growth rate of the beam-plasma instability, we adopt the usual

procedure of using the dispersion relation describing the complex permittivity ε(ω, k)

of the system to evaluate the imaginary part of frequency ω.



CHAPTER 5. INTERHEMISPHERIC TRANSPORT AND CURTAINS 78

5.1 Growth Rate of the Beam-Plasma Instability

The beam-plasma permittivity for a set of beams α (all having velocities parallel to

the same axis) is given by [e.g., Stix, 1962, p. 111]:

ε = 1−
∑
α

q2
αNα

ε0mα‖

1

(ω − kVα)2

where Nα are the densities of the beams, mα and qα are the masses and the charges

of the particles constituting the beams. For relativistic beams, we must use the mass

m‖ = m/(1 − β2)3/2, where β = v/c. An individual relativistic “hot” beam having

a range of parallel momenta p can be represented as a superposition of beams each

with density Nα = NRf(p)dp, with f(p) being the momentum distribution function

normalized to 1, so that the permittivity of a “hot beam - cold background plasma”

system is given by

ε(ω, k) = 1− ω2
0

ω2
− ω2

0

NR

N0

∫
(1− β2)3/2f(p)dp

(ω − kcβ)2
, (5.1)

where N0 is the magnetospheric ambient plasma density and ω0 =
√

e2N0/(ε0m) is

the corresponding plasma frequency.

The momentum distribution of runaway electrons escaping upward from the lower

ionosphere has been evaluated using a Monte Carlo method, described in Chapter 2

[also see Lehtinen et al., 1999] and can be approximated with a log-normal analytical

fit:

f(p) =
1

p

1√
2πσ

exp

{
− 1

2σ2

[
log

(
p

p0

)]2
}

, (5.2)

where p0 = 8.9mc and σ = 0.94mc give the best fit to electron distribution for a

discharge with Q = 500 C at altitude of 400 km, above which Coulomb collisions can
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Figure 5.2: Momentum distribution of the escaping runaway electrons. The
Monte Carlo calculation results and an analytical (log-normal) fit.

be neglected for our calculations. The distribution is shown in Figure 5.2. Monte

Carlo calculations further indicate that we can neglect the perpendicular momentum

component compared to the parallel momentum.

We now calculate the instability growth rate under the assumption that NR � N0.

To utilize published beam-plasma system growth rate formulas for non-relativistic

beams, we denote

F (β) ≡ (1− β2)3/2f(p)
dp

dβ
= mcf [p(β)] .

The instability growth rate Im ω, which is positive for time dependences e−iωt, is

found from the formula [e.g., Krall and Trivelpiece, 1986, p. 389]:

Im ω = − Im ε

∂Re ε/∂ω
(5.3)
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where the values are taken at the point (ω, k) where Re ε = 0. Substituting for ε

from equation (5.1) we find ∂Re ε/∂ω � 2/ω0 for small NR/N0 and

Im ω =
NR

N0

πω0

2

(ω0

ck

)2 dF

dβ

∣∣∣∣
β=ω0/(ck)

with a maximal value of

Im ω � 25
NR

N0

ω0 � 0.05NR sec−1, NR in m−3 (5.4)

for an assumed value N0 � 109 m−3 and the beam distribution (5.2).

Interaction of the beam with the background plasma becomes significant if the

bounce time tB � 0.2 sec for the electron beam to traverse the geomagnetic field line

is large compared to the characteristic growth time (Im ω)−1. For N0 � 109 m−3,

tB(Im ω) � 1 for NR � 100 m−3, so that significant pitch angle scattering and energy

degradation of the beam occurs for NR
>∼ 100 m−3. Note that Im ω is proportional

to N
−1/2
0 , so that the maximum interaction occurs near the equatorial plane, where

N0 is a minimum.

It is instructive to compare the growth rate Im ω calculated above for a hot

relativistic beam to that of a cold monoenergetic beam. The growth rate of the

beam-plasma instability for a cold monoenergetic relativistic beam in a comparatively

dense cold plasma can be determined in a manner completely analogous to that of a

non-relativistic beam, except for the fact that the mass of the particles in the beam

must now be the relativistic parallel mass m‖. If we use the crude monoenergetic

approximation for the runaway beam and take the beam momentum p0 to be the

mean momentum obtained from Monte Carlo calculations, for assumed value of N0 �
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109 m−3 we find a growth rate of [e.g., Tsytovich, 1995, p. 224]:

(Im ω)cold =

√
3

24/3

ω0

γ

(
NR

N0

)1/3

� 150N
1/3
R s−1, (5.5)

where NR is in m−3, and γ = (1− v2/c2)−1/2 � 10 is the typical relativistic coefficient

of particles in the beam. The last expression was obtained by a substitution m →

m‖ ≡ mγ3 for the beam in the nonrelativistic expression. Comparison of value of

(Im ω)cold with Im ω from (5.4) for typical parameters indicate that the assumption

of a cold monoenergetic beam results in a much higher growth rate.

5.2 Nonlinear Growth

The number density of the energetic electrons in the beam is estimated from com-

parison with experimental data on the terrestrial gamma ray flashes [Fishman et al.,

1994]. The gamma photon emission rate as a result of bremsstrahlung is proportional

to the product of the atmosphere molecule density Nm and energetic electron density

NR (Section 3.2). According to numerical solutions of equation (4.5) and computer

simulations described in Chapter 4 [Lehtinen et al. 1997; 1999], most γ-ray emissions

come from altitudes of 60–75 km. The observed levels of γ-ray flux in this case is ob-

tained for energetic electron densities of NR � 104 to 105 m−3. Other models predict

maximum γ-photon emissivity at heights ∼40 km [Milikh and Valdivia, 1999] and a

different maximum value of NR.

For such high values of NR, it is clear from (5.4) that the linear growth rate is

very high, so that the instability rapidly grows into the nonlinear regime even during

a single traverse of the beam between hemispheres. In such a case, the evolution

of the momentum space distribution of the beam electrons can only be determined
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via detailed computer simulations. While an extensive simulation of the nonlinear

relativistic beam-plasma interaction is beyond the scope of this work, we nevertheless

estimate the electron distribution subject to certain assumptions and with reference

to published simulation results.

Based on qualitative estimates confirmed by computer simulation work [Birdsall

and Langdon, 1991, p. 117], in the advanced non-linear stage of interaction of a one-

dimensional cold and nonrelativistic electron beam with longitudinal Langmuir waves,

the maximum time-average energy density of the wave field has the value:

WE =
1

4
ε0E

2 =

(
NR

2N0

)1/3

WR, (5.6)

where WR is the energy density in the beam. Assuming that the results do not change

qualitatively for the case of a relativistic beam, and that the initial beam density is

NR = 105 m−3, we obtain the relative energy loss of WE/WR� (NR/2N0)
1/3 <∼ 10%.

Note that based on the comparison of (5.4) and (5.5), the growth rate and thus the

energy degradation of the beam should be even smaller for a hot initial distribution,

so that the relative energy loss of ∼10% is an upper bound for our case.

Interaction of a monodirectional beam with oblique Langmuir waves leads to

isotropization of the distribution [Tsytovich, 1995, p. 70]. With the beam density

being so high as to lead to very large growth rate and indeed nonlinear growth, we

can expect very significant pitch angle and energy scattering. As a first approxi-

mation, we assume that the electrons acquire an isotropic thermal distribution (over

pitch angles and energies) during one traverse along the field line. The resultant phase

space distribution can thus be taken to be the Maxwellian distribution generalized

to relativistic temperatures. It is given by the canonical Gibbs distribution for an

ideal gas with f th(p) proportional to e−H(p)/(kBT ), where H(p) =
√

m2c4 + p2c2 is the
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Hamiltonian of a single electron. The distribution over kinetic energy is given by

f th
E (E) = NeCe−E/(kBT )γ

√
γ2 − 1, (5.7)

where

C =
e−mc

2/(kBT )

kBT

[
K2

(
mc2

kBT

)]−1

is the normalization factor, E is the kinetic energy, γ ≡ 1+E/(mc2) is the relativistic

factor, K denotes the modified Bessel function, and Ne is the electron number density

after the nonlinear interaction. The temperature for our parameters is found to be

kBT � 2 MeV, corresponding to C � 1.3× 10−5 keV−1.

On the other hand, the resonance interaction of beam electrons with plasma waves

with an increment given by (5.3) occurs only for electrons with energies E < 2.3 MeV,

with the maximum growth at E = 1.45 MeV. This, and the mechanism of nonlinear

stabilization [Tsytovich, 1995, p. 184] would tend to prevent the thermalization of the

distribution at higher energies. Thus, it is difficult to predict the resultant electron

distribution function without a nonlinear computer simulation analysis, a task well

beyond the scope of this work.

5.3 Formation of Trapped Electron Curtains

For the sake of discussion, and with the above caveats in mind, we proceed by as-

suming that the intense beam-plasma interaction transforms the relativistic runaway

beam consisting of electrons with pitch angles near zero and with an initial momentum

distribution as given in (5.2) to an isotropic thermal distribution with typical energy

>∼1 MeV. Assuming an initial beam density of up to 105 m−3, a beam radius of∼10 km,
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Figure 5.3: Runaway electron curtains. (a) Upward driven runaway electrons fill
a geomagnetic tube within ∼1 s; (b) at ∼300 s, a drifting curtain is formed, due to
the energy-dependent drift velocity.

and a process duration of ∼1 ms [Lehtinen et al., 1997], a total of N tot
e � 3 × 1018

electrons are initially injected into the radiation belts. After isotropization, only a

small fraction (∼2–10%) of these electrons are in the loss cone and precipitate in the

conjugate hemisphere. The remaining electrons are trapped, and bounce back and

forth between hemispheres, while at the same time drifting eastward in longitude.

After a few bounces, the electrons that are not precipitated fill up the geomagnetic

field tube. For ∼45◦ geomagnetic latitude, the length of the geomagnetic field line of

∼ 2 × 107 m, with the geomagnetic field at the equator being smaller by a factor of

∼10, resulting in an electron energy distribution given by (5.7) with electron density

Ne�150 m−3 at the equator, corresponding to a differential energy flux of electrons

at ∼1 MeV of ΦE � 3 × 102 el-cm−2-s−1-keV−1, with the energy dependence of the

flux ΦE for E � mc2 being proportional to E2e−E/(2 MeV).

The trapped electrons drift eastward due to curvature and gradient of the geo-

magnetic field, with a period of [Walt, 1994, p. 49]:

τd = 1.557× 104 1

Lγβ2
[1− 0.3333(sinαeq)

0.62],
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where L = 2 for 45◦ invariant magnetic latitude, β = v/c, γ = (1 − β2)−1/2, and αeq

is the equatorial pitch angle. For 1 MeV electrons at L = 2, and for αeq � 90◦, we

have τd�103 s. Due to the fact that electrons with higher energies drift in longitude

at a greater rate, the trapped electrons eventually form electron curtains as shown

in Figure 5.3. After several drift periods, when the curtain wraps around the Earth

and electrons of different energies mix together, the omnidirectional flux of electrons

can be estimated by comparing the 10 km longitudinal beam radius with the distance

around the globe at the equator at the L-value corresponding to 45◦ invariant latitude

(L � 2). Based on these considerations, we find the flux of electrons at energy∼1 MeV

at the geomagnetic equator to be ΦE�7× 10−2 el-cm−2-s−1-keV−1.

Preliminary calculations indicate that such fluxes should be detectable on satellites

with high time resolution and sensitive detectors. Noting that the latitudinal extent

of the original beam is ∼10–20 km, the curtains would be traversed by a polar orbiting

satellite within a few seconds. A detector with a geometric factor of ∼1 cm2-sr would

measure a total number of ∼100 electrons of >1 MeV energy while traversing the

curtain.



Chapter 6

Conjugate Hemisphere Effects

In the previous Chapter, we analyzed the transport of energetic electrons along the

goemagnetic field line and concluded that the initially monodirectional electron beam

thermalizes and isotropizes. The energetic electrons which after scattering have pitch

angles below the loss cone angle precipitate at the conjugate hemisphere. The thermal

relativistic electron distribution is given by equation (5.7) with a typical temperature

of kBT � 2 MeV.

In this Chapter, we consider the physical effects of the precipitating particles in

the conjugate ionosphere, in terms of production of light, secondary ionization and

gamma ray emission. We use a Monte Carlo method to quantify these effests. Our

results indicate that the effects of the beam in the conjugate mesosphere are significant

and detectable.

It is important to note that the physical effects in the conjugate hemisphere that

are studied in this Chapter are necessary consequences of the runaway electron accel-

eration process studied in Chapter 4, regardless of the manner with which the beam

86
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interacts with the background plasma during its interhemispheric traverse (Chap-

ter 5). If the beam is not significantly scattered during its traverse, all of the beam

electrons must necessarily precipitate because they entered the magnetosphere from

altitudes below the mirror altitude. If the beam is scattered in pitch angle and energy

as described in Chapter 5, then the fraction of the beam electrons that end up in the

loss cone is precipitated leading to the effects studied in this Chapter.

6.1 Energetic Electron Precipitation

With an isotropic distribution of downcoming particles impinging on the conjugate

hemisphere, the fraction of the particles which are precipitated can be determined

as the portion of the solid angle which lies within the loss cone. The remaining

electrons mirror in the conjugate hemisphere and contribute to the population of

the radiation belts, eventually forming trapped electron curtains as described in the

previous chapter and in [Lehtinen et al., 2000a].

The local pitch angle α at the precipitation point is related to the equatorial pitch

angle αeq as

sinα

sinαeq

=

√
B

Beq

(6.1)

where Beq and B are respectively the Earth’s magnetic field at the geomagnetic

equator, and at the precipitation point. For a simple dipole model of the Earth’s

geomagnetic field we have

B

Beq

=

√
1 + 3 sin2 λ

cos6 λ

where λ is the geomagnetic latitude.

The equatorial loss-cone angle is αlc
eq = sin−1

[√
Beq/B

]
, and assumping an isotropic
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distribution of electrons at the equator, the fraction of electrons that precipitate in

the conjugate region is thus given by

N tot
lc

N tot
=

1

4π

∫ αeq=αlc
eq

αeq=0

dΩeq =
1− cosαlc

eq

2
=

1

2

(
1−

√
1− Beq

B

)
, (6.2)

where N tot
lc and Ntot are correspondingly the number of electrons in the loss cone and

the total number of electrons. For a geomagnetic latitude of ∼30◦ we find from equa-

tion (6.2) that ∼10% of the total number of electrons in the beam are precipitated.

Let us assume that as observed at the geomagnetic equator, the total number of

electrons in the beam (integrated over volume) with velocity per unit solid angle is

Feq(αeq). When the beam travels along the field line to the precipitation point, its

angular distribution changes to another function F (α), which is determined from the

conservation of the number of particles:

F (α) = Feq(αeq)
sinαeq dαeq

sinα dα

and the pitch angles are related by (6.1). From this equation, we find

F (α) =
N tot

4π

Beq

B

cosα√
1− Beq

B
sin2 α

, (6.3)

where α lies in the range [0, π/2] because we only consider downgoing electrons.

With the energy spectrum of the downgoing electrons assumed to be a thermal

distribution with typical energy >∼1 MeV and the pitch angle distribution given by

(6.3), we now proceed to calculate the resultant effects (optical emissions, secondary
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ionization and γ-rays) in the conjugate hemisphere by assuming an initial beam den-

sity of 105 m−3, a beam radius of ∼10 km, and a process duration of ∼1 ms [Lehtinen

et al., 1997]. Note that the beam duration is of the same order as that in the source

hemisphere, since the velocity dispersion of the relativistic particles during a single

interhemispheric traverse is negligible. The beam density of 105 m−3 and duration of

∼1 ms represent the highest values consistent with observed terrestrial gamma ray

flux intensities [Fishman et al., 1994], with ∼1 ms also determined by the kinematics

of the beam formation process [Lehtinen et al., 1997; 1999]. The beam radius of

∼10 km is largely defined by the spatial configuration of the quasi-static field that

drives the beam and os consistent with two-dimensional simulations of this process

[Lehtinen et al., 1997; 1999]. In our calculations below and based on the above dis-

cussion, we assume that 10% of the beam electrons are precipitated, i.e. the density

of the precipitating beam is Nprecip = 104 m−3 and the total number of precipitating

electrons is N tot
precip = 3 × 1017. For reference purposes, the value Nprecip = 104 m−3

and the assumed thermal energy distribution correspond to a precipitation flux for

>1 MeV electrons of ∼3× 108 cm−2-s−1.

We now proceed to use the Monte Carlo method to simulate the interaction of

the precipitating energetic electrons with the neutral atmosphere and determine the

resultant optical emissions, secondary ionization and γ-rays. In addition to the pro-

cesses described in Chapter 2, we also include the magnetic mirroring effect (see

Appendix A).

We start our Monte Carlo calculations at an altitude of 200 km, with random ini-

tial electron momenta satisfying a thermal energy distribution and (6.3). We specify
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the initial energy E for a precipitating particle by the use of the cumulative distribu-

tion function XE(E) defined as

XE(E) ≡
∫ E

0
f th
E (E)dE∫∞

0
f th
E (E)dE

and the fact that the random variable XE is uniformly distributed in the interval

[0, 1]. The equation XE(E) = XE is solved numerically for a randomly chosen XE to

find the energy E .

The random pitch angle of a downcoming particle is specified by inverting the

cumulative distribution function Xα(α) defined as:

Xα(α) ≡
∫ α

0

F (α′)

N tot
lc

2π sinα′dα′ =
1− cosαeq

1− cosαlc
eq

The random variable Xα is uniformly distributed in the interval [0, 1]. The random

pitch angle is obtained in terms of Xα as

α = sin−1




√√√√√ B

Beq


1−

[
1−Xα

(
1−

√
1− Beq

B

)]2






The Monte Carlo method allows us to accurately estimate the evolution of the

electron distribution function which in turn is used to estimate the optical emissions,

ionization and γ-rays. Most of the downcoming electrons are deposited, although a

small fraction (∼12%) are found to be backscattered. The backscattered electrons are

in the loss cone and by the very fact that they are already near or below the mirror

altitude also precipitate after several bounces.
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Figure 6.1: Optical emissions in the conjugate region. The optical emissions due
to precipitation of runaway electrons in the conjugate hemisphere: (a) the emission
rate of First Positive N2 band, (b) time-integrated emissions in molecular bands. The
precipitating electron flux was taken to have a density of Nprecip � 104 m−3, lasting
for 1 ms, corresponding to the initial runaway electron density of NR = 105 m−3

6.2 Optical Emissions

The calculated altitude profiles for the five molecular bands enumerated in Section 3.1

are presented in Figure 6.1. Figure 6.1a shows the altitude and time dependence of

the photon production rate in the first positive band of N2. Figure 6.1b shows the

time-integrated optical emission intensitied in the five molecular bands, converted to

Rayleigh-seconds. The optical emission intensity in Rayleighs is given as

I = 10−10

∫
ε dl � εd,

where the integration is along the line of sight, ε is the volume emission rate in

m−3-s−1, and d � 2× 104 m is the transverse size of the beam.
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The optical emission intensities shown in Figure 6.1 are easily detectable by stan-

dard imaging and photometric instruments in terms of brightness levels. However,

the emissions last only for a few ms, so that high frame rate photometric imaging

would be needed. Also, the transverse extent of the beam is only ∼20 km, so that

accurate pointing or very wide aperture (e.g., all-sky cameras) instruments would

need to be used.

The optical emissions produced by the precipitating component of the relativis-

tic electron beam which is caused by a lightning flash in the conjugate hemisphere

may be loosely termed to be “conjugate sprites”, to be distinguished from sprites

produced in the hemisphere of the causative flash by quasi-electrostatic heating of

ambient electrons. It is interesting to note that the excitation intensities of the two

primary emissions in Figure 6.1b N2 1P (red) and N+
2 1N (blue) are similar, so that

these “conjugate sprites” are not predominantly red as their counterparts produced

overhead thunderstorms [Mende et al., 1995]. The combination of the red and blue

colors would lead to a sprite which exhibits purple color. For ground-based obser-

vations of the the optical emissions one should also take into account the relatively

greater attenuation of blue than red in the atmosphere due to Rayleigh scattering.

6.3 Secondary Ionization

The secondary electron production rate is calculated directly from the energy deposi-

tion rate by assuming that every deposited 35 eV energy creates an electron-ion pair

[Rees, 1963]. The time dependence of electron density Ne due to chemical reactions in

the atmosphere is calculated using the model of Glukhov et al. [1992]. This model ac-

counts for the dynamics of three other charged atmospheric constituents, namely the
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Figure 6.2: Conjugate ionization and conductivity enhancement. The precip-
itating runaway electrons in the conjugate hemisphere produce ionization and con-
ductivity shown here in the initial time moment as a function of altitude.

density of positive and negative ions and positive cluster ions. We make the following

corrections to the coefficients of equations (1) through (4) of Glukhov et al. [1992].

The effective coefficient of dissociative recombination (denoted αd by Glukhov et al.

[1992]) is taken to be equal to 6× 10−7 cm3 s−1, according to the value in [Rodriguez

and Inan, 1994], and the effective electron detachment rate (denoted γ by Glukhov et

al. [1992]) is 3 × 10−18Nm s−1, where Nm is the total density of neutrals, according

to Pasko and Inan [1994]. The value of the effective electron detachment rate is es-

timated by Glukhov et al. [1992] using the ratio N−0 /Ne0 of the ambient negative ion

and electron densities. The experimentally measured value, quoted by Glukhov et al.

[1992] is N−0 /Ne0 ∼ 1 at the altitude of ∼ 80 km, which gives the effective electron

detachment rate of 3×10−17Nm s−1. Neglecting this coefficient altogether would give

N−0 /Ne0 � 102 at altitude ∼80 km, which is greater by two orders of magnitude. The

value N−0 /Ne0 =1 in the case of no electron detachment is attained at ∼92 km.
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Figure 6.3: Time evolution of ionization. The ionization produced by precipitat-
ing electrons is shown as a function of time at altitudes 70 and 80 km.

Knowing the change of electron density level, we can estimate the change of

ionosphere conductivity at different altitudes. The total parallel conductivity [see

equation(4.3)] is σ0 = σi + σe, where σi is the ambient ion conductivity and σe is the

electron conductivity which is changed by the precipitation. The ion conductivity is

derived from total ambient conductivity in [Hale, 1994] by subtracting the electron

part. For electrons, we have σe = qeNeµ, where µ = 3.66 × 1025/Nm is the electron

mobility [Davies, 1983], with Nm in m−3 and µ in m2-V−1-s−1.

The initial ionization enhancement and conductivity are plotted in Figure 6.2, and

the calculated time dependence of the electron density at altitudes of 70 and 80 km

is plotted in Figure 6.3. The electron density and associated conductivity changes

shown in Figure 6.2 are detectable by means of subionopsheric VLF remote sensing,

in spite of the relatively small ∼20 km lateral extent of the ionospheric disturbance.

As a crude assessment of this detectability, we consider equation (1) of Inan et al.

[1985], according to which the phase change ∆φ of a 20 kHz subionospheric signal
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due to a reflection height change ∆h over a length D of a long (>2000 km) VLF

propagation path is given by

[∆φ]
deg
� −0.0034 [d]

km
[∆h]

km
, (6.4)

where we have assumed an ambient (unperturbed) VLF reflection height of ∼85 km.

To determine ∆h corresponding to the modified electron density profile given in

Figure 6.2a, we can consider the fact that VLF reflection typically occurs when

(ω2/ν) � 2.5 × 105 s−1, where ωp and ν are respectively the local plasma and ef-

fective electron collision frequency. Applying this criterion on the ambient and dis-

turbed profiles of Figure 6.2a, we find the ambient reflection height to be ∼85 km,

and ∆h � −2.5 km. Using this value and d � 20 km in (6.4) we find ∆φ � 0.17◦,

which is detectable [Wolf and Inan, 1990].

Equation (6.4) is in fact only valid for relatively small perturbations near the VLF

nighttime reflection height of ∼85 km [Inan et al., 1985]. It is clear from Figure 6.2

that the conductivity changes produced by the precipitating energetic electrons are

large (i.e., ∆N � Ne0) and occur over a very broad range of altitudes. The range

of VLF amplitude and phase changes that would be produced by such a disturbance

was estimated using the Long Wave Propagation Capability (LWPC) code which is

available at Stanford and which has in the past been used to quantify VLF signatures

of lightning-induced electron precipitation bursts [Lev-Tov et al., 1996, and references

therein]. Calculations indicate that the sudden appearance of a disturbance of lateral

extent ∼20 km and with a disturbed conductivity profile as given in Figure 6.2b on a

relatively long (a few thousand km) subionospheric path leads to amplitude changes

of several dB and phase changes of several degrees, depending on the location of the

receiver.
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6.4 γ-ray Emissions

Energetic precipitating electrons produce γ-rays through the process of bremsstrahl-

ung described in Chapter 3. The bremsstrahlung photons are emitted by the down-

ward going relativistic electrons predominantly in the forward direction, as given by

the angular distribution (3.12). The downward photons cannot penetrate the at-

mosphere, and are not detectable on the ground, but are strongly scattered by the

increasing dense atmosphere which constitutes an optically ‘thick’ target. The scat-

tered photons which move upward can be detected by a satellite. In Chapter 4, in

which we considered the case of γ-rays emitted at ∼60–70 km altitude and in the up-

ward direction toward an increasingly tenuous (i.e., ‘thin’ target) atmosphere so that

the photon transport to satellite altitudes was straightforward. For the case in hand,

we need to consider multiple scattering of the γ-ray photons and use a Monte Carlo

model [Seltzer and Berger, 1974] to quantify this process. The Monte Carlo model

uses processes described in Section 3.2 and the implementation details are given in

Appendix A.

The processes which determine the photon propagation are the Compton scatter-

ing and photoeffect. These processes and their cross-sections are given in Chapter 3.

The results of the Monte Carlo simulation are presented in Figure 6.4. The predicted

spectrum is hard for Eph < 100 keV and soft for Eph > 100 keV, as a result of low-

energy photons being attenuated due to photoeffect. The maximum photon flux (in

the range Eph > 5 keV) at the satellite altitude for our value of precipitating electron

flux (Nprecip = 104 m−3, which corresponds to energy flux of ∼103 erg-cm−2-s−1, pre-

cipitating over area of 100 km2) is ∼107 ph-m−2-s−1. For comparison, the minimum

flux detectable by the BATSE satellite on CGRO is ∼104 ph-m−2-s−1. As shown in

Figure 6.4c, the upgoing photon beam produced by the precipitating electrons in the
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conjugate hemisphere is also broader than the one produced by the upgoing runaway

beam in the hemisphere of the causative lightning (Figure 4.3). The more effective

emission of photons is due to the fact that downgoing electrons deposit all of their en-

ergy in the atmosphere which essentially constitutes a thick target while the upgoing

ones interact with atmosphere at high altitudes, where it is a thin target.
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Figure 6.4: Gamma rays emitted by precipitating electrons. (a) cartoon de-
picting the detection of photons by the satellite; (b) γ-photon energy spectrum; (c) the
radial distribution of gamma rays; (d) the temporal structure directly above the pre-
cipitation point, assuming the a square pulse of precipitating electrons with duration
of 1 ms.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

We have developed a Monte Carlo model of the highly nonlinear fundamental physi-

cal process of relativistic runaway avalanche breakdown in collisional air. This model

allowed the first quantitative determination of the avalanche rate and the time evo-

lution of the momentum space distribution for this process in the presence of an

arbitrarily directed magnetic field.

The Monte Carlo runaway avalanche model results were applied to simulate the

runaway breakdown caused by a positive lightning discharge in a mesoscale convective

thunderstorm system. We considered a fluid model of the avalanche in two different

cases. The first case described a laterally extensive thundercloud using a Carte-

sian (translationally symmetric) model. The second case dealt with a cylindrically

symmetric model with a vertical axis of symmetry, constrained to have a vertical geo-

magnetic field. In both cases, the transport equation for the electrons was integrated

using a lookup table of avalanche velocities and rates calculated with the Monte Carlo
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model. Based on our results, we concluded that the geomagnetic field must be ac-

counted for in describing the motion of runaway electrons at midlatitudes, where most

sprites have been observed. The geomagnetic field significantly deflects the runaway

beam from the vertical, so that the frequently observed vertical columnar structure of

sprite is an indication that the observed luminosity is not produced by the runaway

electrons as has been previously suggested [Taranenko and Roussel-Dupré, 1996]. At

latitudes close to the geomagnetic equatorial region, where terrestrial γ-ray flashes

have been detected, the γ-ray beam, which is emitted parallel to the electron beam,

is thus also emitted not along the vertical but along the geomagnetic field. At the

geomagnetic equator, the horizontal geomagnetic field is perpendicular to the vertical

thunderstorm electric field and can prevent the development of relativistic electron

avalanche at altitudes >∼ 40 km.

The optical emissions associated with relativistic electrons are found to be not of

significant intensity compared to emissions caused by conventional type of ionization

breakdown. For discharges involving the removal of sufficiently large values of total

charge, the γ-ray fluxes, which are produced by bremsstrahlung from the runaway

electron beam, are found to be consistent with experimental data [Fishman et al.,

1994; Nemiroff et al., 1997].

In general, the observable physical effects of runaway electrons in the upper at-

mosphere are found to be less intense than in [Lehtinen et al., 1997], due to lower

calculated avalanche rates than in [Roussel-Dupré et al., 1994], although the electric

field configuration is determined by the same conductivity profile. Yukhimuk et al.,

[1999] use new avalanche rates calculated by Symbalisty et al. [1998], which never-

theless are still larger than those obtained in our Monte Carlo model, as discussed

in Chapter 2, as well as use an electric field model which assumes no conductivity
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below 20 km. The electric field in these models has much higher values at altitudes

at which the runaway electron avalanche occurs. All of these factors combine to lead

to lower runaway electron effects in our model than those obtained by Yukhimuk et

al. [1999].

We considered the fate of energetic runaway beams driven upward by intense

thundercloud fields produced by large positive cloud-to-ground discharges. Based

on the velocity space distribution function of such beams as determined by Monte

Carlo methods [Lehtinen et al., 1999], we have determined that the runaway electron

beam intensely interacts with the background magnetospheric plasma, leading to

rapid nonlinear growth of Langmuir waves and pitch angle and energy scattering

of the beam electrons. The end result of this interaction is the isotropization and

thermalization of the electron distribution function, leading to the trapping of most

of the beam electrons in the radiation belts, and the formation of detectable trapped

electron curtains.

Although the beam may be largely thermalized and isotropized [Lehtinen et al.,

2000a] during its traverse between hemispheres, the particle flux which arrives in the

conjugate hemisphere below the loss cone precipitates into the atmosphere, producing

optical emissions and secondary ionization.

Monte Carlo modeling of the interaction of the downcoming beam with the at-

mosphere indicates that for typical beam current densities (calibrated by measured

intensities of bremsstrahlung gamma rays) emissions in different optical bands, incud-

ing the first and second positive bands of molecular nitrogen, and the first negative

band of N+
2 are excited at levels detectable with properly pointed instruments having

sufficient time resolution. In this context, it is important to note that the temporal

duration of the emissions is ∼1 ms, and that the lateral extent of the beam is ∼20 km.
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Monte Carlo modeling further indicates that the secondary ionization produced by

the precipitating energetic beam electrons is significant, leading to electron density

enhancements up to ∼100 cm−3 over the range of altitudes of 35 to 85 km. The

resultant conductivity changes are sufficiently large to produce detectable amplitude

and phase changes of subionospheric VLF signals propagating underneath, in spite

of the relatively small lateral extent of the secondary ionization disturbance. The

γ-ray emissions from the precipitating energetic electrons can also be detectable by

the BATSE detectors on the CGRO satellite [Fishman et al., 1994].

Future experiments aimed at detection of the effects of the runaway electron beams

in the conjugate region may provide definitive experimental evidence of the runaway

acceleration mechanism, but need to be carefully conducted in view of the short du-

ration of the optical emissions and small lateral extent of the ionization disturbances.

7.2 Suggestions for Future Work

The Monte Carlo modelling of atomic processes has several advantages over numerical

solution of a kinetic equation: (1) it is easily implemented in three dimensions with-

out the considerable increase in computer memory use which occurs when the kinetic

equation is generalized from two to three dimensions; (2) one does not have to worry

about numerical stability; (3) complicated collision processes are easier to implement.

Therefore, the Monte Carlo model can be generalized to include electrons with low

energies and low-energy processes of electron interaction with the background mate-

rial, such as excitation of particular rotational, vibrational and electronic levels of air

molecules. This can be applied to model non-relativistic discharges in gases. The pos-

sibility to generalize to many dimensions gives an opportunity to model a discharge
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not only in the momentum space, but also in the configuration space, thereby taking

into account nonhomogeneity of the electric field and of the background medium.

The modelling of the nonlinear interaction of the relativistic runaway electron

beam with the ambient plasma in the magnetosphere was beyond the scope of this

work. It is, however, an interesting problem by itself. The solution of it can include

complicated multidimensional plasma simulations [Birdsall and Langdon, 1991], which

properly include the nonhomogeneity of the beam.

The source of the seed runaway electrons is assumed to be a uniform constant

flux of cosmic rays. The variability of the cosmic ray flux due to solar cycles and

statistical variations was not taken into account. This variability should be studied

as it may indicate a variability of production of runaway beams and terrestrial γ

flashes by otherwise identical thundercloud discharges. The other possible source of

relativistic electrons could be the streamers, as indicated by the presence of x-rays

in experimental studies of spark discharges [Tarasova et al., 1974, Babich, 1982, and

references therein]. This source should also be studied, because there is an evidence

of the presence of streamers above thunderclouds [Pasko et al., 1998b].



Appendix A

Monte Carlo Model Details

The general principles of Monte Carlo modelling can be found in [Berger, 1963]. In

this Appendix we describe computational methods and procedures used in our Monte

Carlo model of electron avalanche and (in the last Section) the γ-photon propagation.

Other similar modern programs exist and are referenced in literature [Nelson et al.,

1985; Atwood et al., 1992].

A.1 Dimensionless Units

Instead of usual molecular air density Nm the program uses dimensionless Nm,d which

is normalized to conversion factor N conv
m defined so that 2πN conv

m Zmr
2
0c = 1 s−1. The

electric field is measured in inverse seconds. At N conv
m the runaway threshold field Et

is equal to 21.7321 s−1. To convert SI units to inverse seconds is to multiply the field

in V-m−1 by qe/(mc) = 586.679 V−1-m-s−1. The magnetic field is also measured in

inverse seconds. The physical meaning of B in inverse seconds is the gyrofrequency.

To convert from Teslas to inverse seconds we multiply by qe/m = 1.75882×1011 T−1-

s−1.
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A.2 Diffusion: Choice of Angle

The probability distribution function f(µ, t) of the angular deflection ∆Θ (where

cos ∆Θ = µ) after multiple collisions satisfies the diffusion equation which involves

the diffusion coefficient D(p):

∂f

∂t
= D

∂

∂µ

{
(1− µ2)

∂f

∂µ

}
.

The diffusion coefficient is connected with the time rate of change of the mean

square angle:

D(p) =
1

4

d〈Θ2〉
dt

The solution to the diffusion equation is given by equation (2.9):

f(µ, τ) =
∞∑
n=0

(
n +

1

2

)
Pn(µ)e−n(n+1)τ ,

where Pn are Legendre polynomials, and τ ≡ Dt is dimensionless time.

This series is convergent, and for given τ we can neglect the terms with n(n+1)τ �

1, which translates into n� 2/∆Θ. For τ � 1 we see that n has to be large, making

this solution ineffective. But if we assume small angles ∆Θ� 1, we have µ = 1− ξ,

where ξ � 1, and 1− µ2 � 2ξ. We can rewrite the diffusion equation in form:

∂f

∂τ
= 2

∂

∂ξ

{
ξ
∂f

∂ξ

}

Noting that the solution of this equation is f(ξ, τ) = eξ/(2τ)/(2τ), we use a solution
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which is properly normalized:

f1(µ, τ) � e−(1−µ)/(2τ)

2τ(1− e−1/τ )

The random number µ can be found from the cumulative distribution X =
∫ µ

−1
f(µ′) dµ′ ∈

[0, 1], which is a uniformly distributed random variable:

µ1(X) = 2τ ln[(e1/(2τ) − e−1/(2τ))X + e−1/(2τ)] (A.1)

For τ ∼ 1 or greater in the series solution (2.9) we take into account only the

terms n = 0, 1:

f2(µ, τ) =
1

2
+

3

2
µe−2τ .

which is normalized to unity in the same manner as f1(µ, τ). Once again, from the

cumulative distribution X ∈ [0, 1] we find

µ2(X) =
1

3

[
−e2τ +

√
9− 6e2τ + e4τ + 12Xe2τ

]

For large τ , subtracting two near-equal numbers in the last formula can lead to loss

of precision or even to an error. In this case, we expand the square root in series

√
1 + ε ≈ 1 +

1

2
ε− 1

8
ε2; ε� 1

and get approximately (neglecting terms ∼e−4τ )

µ2(X) = 2X − 1 + 6X(1−X)e−2τ
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To minimize the error, we use solution µ1 for τ < 0.5 and µ2 for τ > 0.5.

For extremely small scattering angle ∆Θ, solution µ1 is not well suited for com-

putation because in (A.1) we have 1/(2τ)� 1 and an exponential of a large number

is taken. In such cases we take a fixed ∆Θ [Risken, 1989, p. 60]:

∆Θ ≡
√
〈Θ2〉 =

√
d〈Θ2〉
dt

∆t.

A.3 Choice of ∆t

First, the time interval ∆t0 is chosen to be appropriate for the numerical solution of

the differential equation describing the electron motion. We then let

∆t = αmin(∆t0, τion)

where 0 < α < 1 and τion is average time until the next ionizing collision. Smaller α

leads to greater numerical accuracy, but increases the computer time. Trial calcula-

tions showed that α has to be ∼0.05 or less. The ionization probability at the end

of a given time step is then ∆t/τion (assured by the method of its computation to be

<1).

Another way to quantify the process of ionizing collisions was implemented to

insure a greater accuracy for larger ∆t, so that the factor α does not have to be too

small to be adequate, thus reducing computation time. In this method, we compare

α∆t with the ‘dynamic’ value of the time step

∆td = −τion logX
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where X ∈ [0, 1] is a uniformly distributed random number [Fano et al., 1959]. We

choose min(∆t,∆td) for the correct time step. If ∆t < ∆td, ionization does not occur.

If ∆t > ∆td, there is no ionization.

A.4 Magnetic Mirror Effect

The magnetic mirror effect must be taken into consideration in the Monte Carlo code,

since some of the electrons interacting with the atmpsphere are incident at grazing

angles, with local pitch angles near 90◦. The change in the electron momentum due

to a nonuniform magnetic field is described by the following equations:

dp‖
dt

= −v⊥
p⊥∇‖B

2B
(A.2a)

dp⊥
dt

= v‖
p⊥∇‖B

2B
(A.2b)

We therefore need to determine an expression for the quantity ∇‖B/(2B) in order to

advance the particle momentum components in time. For the dipole approximation

of the Earth’s magnetic field the components are given by

Br = −2B0 sinλ

(
R0

R

)3

Bθ = B0 cosλ

(
R0

R

)3

where λ is the geomagnetic latitude, B0 is the magnetic field at the geomagnetic

equator at the Earth’s surface, R0 is the Earth’s radius. We have the magnetic line

equation

R(λ) = LR0 cos2 λ
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where L is the L-shell number, related to the latitude λ0 at which the magnetic field

line intersects the Earth’s surface by L cos2 λ0 = 1. The magnetic field on the field

line is

B(λ) = B0

(
R0

R

)3 √
1 + 3 sin2 λ = Beq

√
1 + 3 sin2 λ

cos6 λ

where Beq = B0/L
3 is the field at the geomagnetic equator. Using the magnetic field

line element

dl =
√

(dR/dλ)2 + R2 dλ = LR0 cosλ
√

1 + 3 sin2 λ dλ

and

dB

dλ
=

B0

L3

3 sinλ(3 + 5 sin2 λ)

cos7 λ
√

1 + 3 sin2 λ

we find

∇‖B =
dB

dl
=

dB

dλ

dλ

dl
=

B0

R0

(
R0

R

)4
3 sinλ(3 + 5 sin2 λ)

1 + 3 sin2 λ

At the surface of the Earth, R = R0, λ = λ0, we have

∇‖B =
B0

R0

3 sinλ0(3 + 5 sin2 λ0)

1 + 3 sin2 λ0

∇‖B
2B

=
1

R0

3 sinλ0(3 + 5 sin2 λ0)

2(1 + 3 sin2 λ0)3/2

Substituting R0 � 6378 km, λ = 45◦, we find

∇‖B
2B

� 2.31× 10−4 km−1

With the normalized parallel gradient of B determined as above, the electron mo-

mentum changes at each step are determined from (A.2).
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A.5 Implementation of the Particle Set

The changing set of particles in the Monte Carlo simulation is implemented in three

different ways:

A.5.1 Null-Collision Method

This method was used in the previous studies of the runaway process [Lehtinen et al.,

1999]. In this method, all particles in the set under consideration have the same time

step ∆t, which is chosen to be much smaller than minimum time between collisions

of the particles [Lin and Bardsley, 1977; Tzeng and Kunhardt, 1986]. The advantage

of this method is that it can be generalized to include the self-consistent field of

the particles themselves (‘particle-in-cell’ methods, see [Birdsall and Langdon, 1991]).

The disadvantage is that due to smallness of ∆t it can be computationally inefficient.

During most of the steps the particle do not experience ionizing collisions (null-

collision steps). This method is implemented by the way of an abstract storage data

type, which allows for easy addition of particles to it, iterate over stored particles, and

remove a particle to which the iterator is pointing at the given moment. All newly

added particles are not iterated over in the same cycle in which they were created.

In this way, each iteration is associated with a time step. Thus, the iteration is done

in a time cycle, with ‘global’ time increased by ∆t at the end of each iteration. The

addition of particles is associated with ionization, while the removal is associated with

thermalization.
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A.5.2 Stacked-Particle Method

This method is widely used in high-energy physics, for example in EGS4 model and

its successors [Nelson et al., 1985; Atwood et al., 1992]. In this method, the particles

are stored in a stack, and only the particle at the top of the stack is considered at a

given time. If a particle is created, it is pushed onto the stack and becomes a new

current particle. If the particle is removed from consideration, it gets popped off the

stack, and the particle beneath it becomes the new current particle. Each particle in

the stack has its own ‘proper’ time. In this method, the null-collision steps can be

eliminated, and the method can become more computationally effective. Since each

particle is considered separately, it is difficult to incorporate the self-consistent fields.

However, according to previous modelling [Lehtinen et al., 1999] the space charge of

runaway electrons is small and does not influence their motion, so that this problem

does not arise in the context of physical processes considered in this dissertation.

Another problem is that if the particle avalanche rate is not known, and an incorrect

(too large) estimate of the final time is made, the computation might overflow the

computer memory allocated to store the particle information at the final time, due

to the huge number of particles (which was underestimated). With the null-collision

method, such problems can be caught when the particle number is greater than some

initially given value. In the stacked-particle method, it is not easy to notice such a

build-up of the number of particles, because the ‘proper’ times of the particles in the

stack are widely different.
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A.5.3 Optimized Null-Collision Method

In this algorithm, the particles are still iterated over the storage in a cycle, but unlike

the null-collision method, this is not a time cycle. Each particle has its individ-

ual ‘proper’ time, and the cycle continues until the time for all particles is expired

(the particles whose ‘proper’ time is greater than the final time of computation are

removed from the storage). This method requires the same computer time as the

stacked-particle method, and has almost no additional advantages compared to it.

The quasi-simultaneity of particles in the storage might be more advantageous in

tackling problems such as unexpected build-up of the number of particles.

A.6 Photon Monte Carlo Calculations

The photon Monte Carlo modelling is simpler that the electron modelling because

there are no frequent small-angle or small-energy-loss photon collisions. The model

utilizes expressions for the Compton scattering and photoeffect cross sections given

in Chapter 3.

A.6.1 Calculation of the Time of the Next Collision

Initial and final locations of the particle are denoted as r0, and r1. The time of the

next collision is calculated as follows. We first calculate the thickness d =
∫ ∆r

0
Nmdr

along the photon path between collisions, using the cumulative probability method

[Fano et al., 1959], where

d = − 1

σtot
C + σP

logX

and where X ∈ [0, 1] is a uniformly distributed random variable.
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We then define the atmospheric content above altitude z:

D(z) =

∫ ∞

z

Nm(z)dz

For the final particle location, we find D(z1) = D(z0) − d cos θ, from where we can

find z1. Other coordinates are found from the fact that ∆r is along photon velocity

and are calculated using known ∆z = z1 − z0. The time step is then found from

∆t = ∆r/c.

The type of the next collision (Compton scattering or photoelectric absorption)

is determined by considering another uniformly distributed random variable X ′ ∈

[0, 1]. If X ′ < σP/(σ
tot
C + σP ), then the next collision is the photoelectric absorption,

otherwise, it is Compton scattering.

A.6.2 Compton Scattering

The Compton scattering is described by the Klein-Nishina cross section (3.15), from

which the resultant energy of the scattered photon can be found to be given approx-

imately by

γ′ =
γ

1 + sX + (2γ − s)X3
; s =

γ

1 + 0.5625γ

where X ∈ [0, 1] is a uniformly distributed random variable, with γ = E/mc2 = p/mc

normalized to the electron rest energy. This is a corrected formula from [Pilkington

and Anger, 1971], so that the new energy γ′ lies in the correct interval [γ/(1+2γ), γ].

The error compared to Klein-Nishina formula is < 17% in all cases.

The direction of scattering is uniformly random in azimuthal angle. The scattering

angle is determined from the energy-momentum conservation condition [Heitler, 1954,
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p. 211]:

θ = arccos

(
1 +

1

γ
− 1

γ′

)

A.6.3 Photon Energy Deposition

The energy deposition for γ-rays is important when they are the only source of ioniza-

tion, such as the case when they originate from an astrophysical source [Inan et al.,

1999]. In the calculations for this work, the photons are a result of bremsstrahlung

by electrons, which produce much more ionization so that the small additional ion-

ization produced by the bremsstrahlung photons can be neglected. However, for the

sake of completeness, we present here the algorithm used for the calculation of the

energy deposition by photons, which was employed by Inan et al. [1999]. Accord-

ing to [Brown, 1973], all energy lost by a photon to a Compton or photo-electron is

deposited within 1 km from the point of its collision, and we assume that all of this

energy goes to ionization. According to [Rees, 1963], the average energy portion that

goes into creation of an ion-electron pair in atmosphere is 35 eV. When the photon is

Compton-scattered, part of its energy which is taken by the electron is assumed to be

deposited at the point of collision. In the photoeffect, all photon energy is deposited.

Also, when the photon energy becomes smaller than the minimum photon energy

considered, then all its energy is assumed to be deposited at the end point of the last

step.



Appendix B

Kinetic Equation

Most previous models of runaway avalanche [Roussel-Dupré et al., 1994; Bulanov

et al., 1997; Symbalisty et al., 1998] are based on the equation for the electron momen-

tum distribution function f(p), i.e., the kinetic (Boltzmann) equation for a uniform

avalanche (∇r ≡ 0). Since most collisions change the runaway electron momenta

stochastically by a small value, the Boltzmann collision integral is in fact of the

Fokker-Planck type.

The Fokker-Planck equation [e.g., Risken, 1989] of a species that are subject to an

external force Fext, which experience random change of momentum, and which have

a source creating (or destroying) particles S(p), is written as

∂f(p)

∂t
= −∇p[(Fext + FD)f(p)] +∇p[D

↔
∇pf(p)] + S(p) (B.1)

where FD is the dynamic friction coefficient, or stopping power, whose components

are defined as:

(FD)i ≡ lim
∆t→‘0’

(
−〈∆pi〉

∆t

)
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where i = x,y, or z.

The limit ∆t → ‘0’ means that we let ∆t become small compared to any macro-

scopic time scale, while it still remains large compared with time intervals between

collisions. The angular brackets 〈·〉 denote the statistical (or ensemble) average.

The components of the tensor of angular diffusion are defined by

(D
↔

)ij ≡ lim
∆t→‘0’

1

2

〈∆pi∆pj〉
∆t

Both FD and D
↔

describe elastic and inelastic collisions such that the change of total

momentum is small.

The dynamic friction function for runaway electrons quantifies the average energy

loss and is given by FD = −p̂FD(E), where FD(E) is found from the Bethe expression

(2.2).

The diffusion tensor is easily found for the case p ‖ ẑ, in which case we have

〈∆p2
z〉

∆t
= 0

〈∆p2
x〉

∆t
=
〈∆p2

y〉
∆t

=
1

2

〈∆p2
⊥〉

∆t
=

1

2

〈Θ2〉
∆t

p2

where Θ is the angle by which the particle is deflected from its initial direction.

Introducing a derivative d〈Θ2〉/dt ≡ 〈Θ2〉/∆t [Jackson, 1975, p. 649], for p ‖ ẑ we

have

D
↔

=
1

4

d〈Θ2〉
dt

p2




1 0 0

0 1 0

0 0 0



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After we introduce the diffusion coefficient

D(p) =
1

4

d〈Θ2〉
dt

we can write D
↔

in a more compact form which also does not depend on the direction

of p:

D
↔

= D(p)
(
p2 I
↔
− ppT

)

where I
↔

is a unit tensor and ppT is a dyadic product of vector p with itself.

For runaway electrons, the angular diffusion is due to elastic scattering from nuclei

and d〈Θ2〉/dt is given in (2.13).

In cylindrical coordinates (p, θ, φ) and in the axially symmetric case (∂/∂φ ≡ 0)

we have

∇pf(p) = p̂
∂f

∂p
+
θ̂

p

∂f

∂θ

Using

D
↔

p̂ = 0; D
↔
θ̂ = D(p)p2θ̂

we find

∇p[D
↔
∇pf(p)] = D(p)

1

sin θ

∂

∂θ

[
∂f

∂θ
sin θ

]
= D(p)

∂

∂µ

[
(1− µ2)

∂f

∂µ

]

where µ = cos θ.
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Roussel-Dupré, R., E. Symbalisty, Y. Taranenko, and V. Yukhimuk, Simulations

of high-altitude discharges initiated by runaway breakdown, J. Atmos. Sol.

Terr. Phys., 60, 917, 1998.

Seltzer, S. M. and M. J. Berger, Bremsstrahlung in the atmosphere at satellite

altitudes, J. Atmos. Terr. Phys., 36, 1283, 1974.



BIBLIOGRAPHY 127

Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner,

Preliminary results from the Sprites94 campaign: Red sprites, Geophys. Res.

Lett., 22, 1205, 1995.

Shveigert, V. A., Development of electron avalanche in strong electric fields, Sov.

J. Plasma Phys., 14, 373, 1988.

Sizykh, S. V., Runaway electron production rate in gaseous discharges, High Tem-

perature, 31, 1, 1993.

Stix, T. H., The Theory of Plasma Waves. McGraw-Hill, New York, 1962.

Storm, E. and H. I. Israel, Photon Cross Sections From 1 keV to 100 MeV for

Elements Z = 1 to Z = 100, Nuclear Data Tables, A7, 565, 1970.
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Taranenko, Y. and R. Roussel-Dupré, Reply, Geophys. Res. Lett., 24, 2645, 1997.



BIBLIOGRAPHY 128

Tarasova, L. V., L. N. Khudyakova, T. V. Loiko, and V. A. Tsukerman, Fast electrons

and x rays from nanosecond gas discharges at 0.1–760 torr, Sov. Phys. Tech.

Phys., 19, 351, 1974.

Tsytovich, V. N., Lectures on Non-linear Plasma Kinetics. Springer-Verlag, New

York, 1995.

Tzeng, Y. and E. E. Kunhardt, Effect of energy partition in ionizing collisions on

the electron-velocity distribution, Phys. Rev. A, 34, 2148, 1986.

Vampola, A. L., Comment on ‘Are fast atmospheric pulsations optical signatures of

lightning-induced electron precipitation?’ by J. LaBelle, Geophys. Res. Lett.,

15, 633, 1988.

Volland, H., Atmospheric Electrodynamics. Springer-Verlag, New York, 1984.

Walt, M., Introduction to Geomagnetically Trapped Radiation. Cambridge Univ.

Press, New York, 1994.

Wescott, E. M., D. D. Sentman, M. J. Heavner, D. L. Hampton, and O. H. Vaughan

Jr, Blue jets: their relationship to lightning and very large hailfall, and their

physical mechanisms for their production, J. Atmos. Solar-Terr. Phys., 60,

713, 1998a.

Wescott, E. M., D. D. Sentman, M. J. Heavner, D. L. Hampton, W. A. Lyons,

and T. Nelson, Observations of ‘columniform’ sprites, J. Atmos. Solar-Terr.

Phys., 60, 733, 1998b.

Wilson, C. T. R., The electric field of a thundercloud and some of its effects, Phys.

Soc. London Proc., 37, 32D, 1925.



BIBLIOGRAPHY 129

Winckler, J. R., R. C. Franz, and R. J. Nemzek, Fast low-level light pulses from

the night sky observed with the SKYFLASH program, J. Geophys. Res., 98,

8775, 1993.

Wolf, T. G. and U. S. Inan, Path-dependent properties of subionospheric VLF am-

plitude and phase perturbations associated with lightning, J. Geophys. Res.,

95, 20997, 1990.
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