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Abstract

Electric dipole antennas are commonly used in space plasmas with applications that

range from radio frequency probing of the magnetosphere to plasma diagnostics. With

the recent interest in the in-situ injection of ELF/VLF waves for the study of mag-

netospheric wave-particle interactions, the characterization of the antenna-plasma

coupling behavior in this regime is of primary importance. The coupling considered

in this dissertation occurs in an operating environment that corresponds to magneto-

spheric conditions found between L=2 and L=3 in the geomagnetic equatorial plane.

The magnetized plasma at this location is fully ionized and collisionless, consisting

largely of electrons and protons.

The near field of the antenna consists of a plasma sheath which envelops the

antenna, directly affecting the terminal impedance properties (and hence tuning pa-

rameters) of the antenna. Inside the sheath region, the plasma dynamics are highly

nonlinear and must be solved numerically. In order to optimally inject VLF waves

and thereby maximize the antenna-plasma coupling response, it is necessary to de-

termine the near-field characteristics of electric dipole antennas operating within this

region of space. This dissertation addresses the efficacy of using VLF electric dipole

antennas as in-situ wave injection instruments and focuses on the near-field coupling

of these antennas to the environment in which they are immersed.

A two-tiered hydrodynamic approach has been developed to solve for the plasma

dynamics in the region surrounding the antenna. First, a three-dimensional par-

allelized full wave solution of Maxwell’s equations is implemented to simulate the

current distribution and input impedance of an electric dipole antenna operating in

a cold magnetoplasma at VLF. It is shown that the current distribution for antennas
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with length <100 m is approximately triangular for magnetospheric conditions found

at L=2 and L=3 in the geomagnetic equatorial plane. Calculated variations of input

impedance as a function of drive frequency are presented for two case studies and

compared with predictions of existing analytical work.

This model is then extended to include finite temperature effects allowing for the

determination of the sheath characteristics as a function of drive frequency and volt-

age. The primary assumptions underlying the closure mechanisms for the infinite set

of fluid moments are examined through theoretical observations and simulated com-

parisons of the various truncation schemes. Results from these two models allow for

the complete characterization of the near-field properties of electric dipole antennas

operating in this highly anisotropic environment.
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Chapter 1

Introduction

The purpose of this dissertation is to determine the near-field behavior of electric

dipole antennas operating in a magnetized plasma environment. To perform this task,

we have developed a comprehensive simulation tool to explore various aspects of the

coupling response. This simulation tool is referred to as the Antenna-In-Plasma (AIP)

code. The work presented herein is motivated by the interest in using electric dipole

antennas as in-situ wave injection instruments to study wave-particle interactions

within the magnetosphere. Since one of the possible applications of this research is

the pitch-angle scattering of highly energetic electrons from the inner radiation belts,

we consider frequencies that lie within the Very Low Frequency (VLF) band from

3-30 kHz.

A magnetized plasma is a highly nonlinear, conducting, and anisotropic medium.

The determination of the antenna-plasma coupling is thus a very challenging task.

This introductory chapter focuses on both early and recent attempts at character-

izing the performance of electric dipole antennas operating in this region of space.

Throughout this dissertation we emphasize the shortcomings of these previous works

and highlight our contributions in the context of the numerical simulation tool (i.e.,

AIP code) developed as a product of this research. After a discussion in this chap-

ter of the relevant background material presented, we proceed with the theoretical

development and application of our AIP code to address several aspects of antenna-

plasma coupling. Initially, the plasma is treated as a linear medium and we compare

1



CHAPTER 1. INTRODUCTION 2

the current distribution and terminal input impedance as predicted by our model with

available analytical results in order to validate the AIP code. Finally, we increase the

complexity of our validated tool in order to study the inherent nonlinear characteris-

tics of the plasma sheath in a regime for which theoretical results are not available.

The contributions from this dissertation emphasize the importance of detailed nu-

merical simulation work in the accurate analysis of dipole antennas operating in this

complex magnetoplasma environment.

1.1 Van Allen Radiation Belts

The Van Allen radiation belts are two toroidal regions surrounding the Earth, popu-

lated primarily with energetic protons and electrons [Walt , 1994, pages 1-9]. These

two regions cover the range in L-shell from L'1.2−2.5 and L'2.8−10 constituting

the so-called inner and outer belts respectively. The parameter L is defined as the

distance in Earth radii (assuming a tilted, off-center dipolar magnetic field) from the

center of the Earth to a point on the corresponding magnetic field line located in the

geomagnetic equatorial plane [Walt , 1994, page 54]. A diagram depicting the inner

and outer belts is shown in Figure 1.1.

For many years, the study of electromagnetic wave propagation and wave-particle

interactions in this region of space has received a great deal of interest [Carpenter

and Anderson, 1992; Carpenter et al., 2003; Bell et al., 2004; Platino et al., 2005].

Along with electromagnetic waves launched from ground based VLF transmitters,

naturally occurring VLF radiation such as whistlers injected by lightning discharges

and hiss and chorus emissions generated by the energetic magnetospheric plasma have

been shown to influence the populations of these highly energetic electrons that re-

side within the Earth’s radiation belts [Abel and Thorne, 1998]. It has been recently

proposed [Inan et al., 2003], that space-based transmitters may be used as in-situ

wave-injection instruments for the purpose of mitigating unwanted and harmful en-

hancements of energetic electron fluxes in the inner radiation belt. As suggested by

Albert [2001], the dominant mechanism behind the precipitation of these energetic
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Figure 1.1: Conceptual drawing of inner and outer radiation belts. Taken from
http://www.nasa.gov/centers/goddard/images/content/ Credit: NASA/Tom Bridgman

particles is pitch angle diffusion in the course of cyclotron resonant wave-particle in-

teractions by whistler mode waves. Motivated by the work of Inan et al. [2003], the

focus of this dissertation is on the determination of the antenna-plasma coupling for

electric dipole antennas operating in the Earth’s inner radiation belts. In particular,

we explore the efficacy of using these antennas as wave-injection instruments with

emphasis on the near field coupling.

1.2 Antenna-plasma Coupling

The coupling of an antenna embedded in a magnetized plasma to its environment

induces qualitatively different behavior in a number of distinct regions as shown in

Figure 1.2. Close to the antenna there exists a plasma sheath within which elec-

trostatic effects are dominant and particle energization is significant, especially for

large applied antenna voltages. The electromagnetic field energy in this region is

primarily reactive. Beyond the sheath region, large amplitude electromagnetic waves
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Sheath Region

Warm Plasma Region

Cold Plasma Region

Figure 1.2: Conceptual diagram of antenna-plasma coupling regions.

produce strong currents with nonlinear effects still prevalent. This warm plasma re-

gion represents the transition region between the sheath region and the surrounding

cold plasma region as shown in Figure 1.2. Beyond the warm plasma region, the

electromagnetic waves are of a low enough intensity such that the electrodynamics

of this region can be well described by a linear cold plasma treatment. The work

presented in this dissertation focuses on the sheath region, which exhibits the most

complex plasma behavior. As we show later, the adjacent regions can eventually be

modeled by simplified versions of the numerical code developed to treat the sheath

region.

Most related past work on the subject of near-field coupling of antennas in plasma

falls into two distinct categories. The first category involves the characterization of

dipole antennas operating in a linearized plasma regime for which the presence of the

plasma sheath is neglected. These results are applicable to the cases in which the

antenna is used either for receiving only or when the transmit drive voltages applied

on the antenna are relatively small compared to the background plasma potential
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given by the relation |qeΦ| � 3
2
kBT where qe is the charge of an electron, Φ is the

potential, kB is Boltzmann’s constant and T is the plasma temperature. The relation

|qeΦ| � 3
2
kBT simply states that the potential energy of the particle is less than

the thermal energy. The second category involves the more general topic of sheath

formation near conductive surfaces in a plasma which is not specific to antennas but is

relevant to the work presented in this thesis. This category of work involves the more

general area of the interaction of conducting bodies with their plasma environment. A

brief synopsis of some of this past work in the context of the aforementioned categories

is now discussed.

1.3 Antennas in Linearized Plasma Regimes

1.3.1 Theoretical Work

The coupling of antennas to a magnetized plasma has been an area of active research

for decades. Balmain [1964] performed some of the first analytical studies concern-

ing the behavior of electric dipole antennas in a cold magnetoplasma. Formulas for

the input impedance of short cylindrical dipoles of arbitrary orientation with re-

spect to the background magnetic field were derived using quasi-electrostatic theory

assuming a lossy (i.e., collisional) plasma. The analysis was limited to electrically

short antennas (relative to a free-space wavelength) so that the current distribution

along the length of the antenna was assumed to be triangular. In addition, Balmain

[1964] compares his theoretical results with experimental data for combinations of

neon and argon plasmas, obtaining good agreement. A good review of the relevant

literature during this period of time involving the status of antenna research for a

variety of plasma environments and antenna types including dipole and loop anten-

nas is provided by Balmain [1972] and Balmain [1979]. These review papers cover

such topics as impedance, radiation, resonances and nonlinearities for both isotropic

and anisotropic plasmas. However, up until the times of these reviews, only a few

works were published on the treatment of antennas operating in a collisionless mag-

netoplasma at VLF frequencies. A series of papers were produced at Stanford on
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this subject, including Wang and Bell [1969, 1970]; Wang [1970]; Wang and Bell

[1972a,b,c]. All of these papers considered electrically small antennas, assuming that

the current distribution on the antenna was triangular, and ignored any effects of the

plasma sheath. Salient aspects of these works are described below.

Wang and Bell [1969] derived closed-form analytical expressions for the radia-

tion resistance of electric dipole antennas operating in a cold magnetoplasma using a

full-wave solution. The frequency range considered included whistler-mode frequen-

cies (i.e., below the electron gyrofrequency) well above the Lower Hybrid Resonance

(LHR) frequency denoted as fLHR. Antenna orientations both parallel and perpen-

dicular to the background magnetic field were considered in this work, assuming

an electron-proton plasma. Wang and Bell [1970] extended their previous analy-

sis to include the frequency range below fLHR and calculate the radiation resistance

for electric-dipole antennas of arbitrary orientation with respect to the background

magnetic field. In addition to highlighting the fact that Balmain’s electrostatic ap-

proximation [Balmain, 1964] is valid for frequencies well above fLHR, Wang and Bell

[1970] point out that this same electrostatic theory predicts an erroneous value of zero

for the radiation resistance below fLHR. Furthermore, they conclude that more power

is radiated from a dipole antenna oriented perpendicular to the background mag-

netic field than for parallel orientations since the propagating modes launched from

this orientation provide a much higher radiation resistance. The frequency range for

which their full wave solution is valid for a 100 m antenna was determined to be

f <1.4fLHR and f <1.16fLHR for magnetospheric locations corresponding to L=2 and

L=3 respectively. In the same year, Wang [1970] provided closed-form formulas for

the input impedance of VLF antennas operating in a magnetoplasma.

In following work, formulas for the radiation patterns of arbitrarily oriented elec-

tric and magnetic dipoles in a cold collisionless magnetoplasma were derived [Wang

and Bell , 1972a]. Expressions for the power patterns were given as a function of

driving frequency and magnetospheric location, which determines the local refractive

index surface that governs wavelength and propagation direction. Wang and Bell

[1972a] conclude in this work that the focusing of the radiation changes from the res-

onance cone direction (wave normal angle in a cold magnetized plasma for which the
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refractive index approaches infinity) for frequencies that are a factor of 0.75 times the

electron gyrofrequency fce to a pencil beam pattern focused along the static magnetic

field for whistler mode frequencies in the range f� fce/2. Following their extensive

cold plasma analysis, Wang and Bell [1972b] examine the radiation characteristics of

an electric dipole at VLF frequencies in a linearized warm magnetoplasma by adding

a finite electron temperature effect incorporated through the addition of a scalar

pressure term in the cold plasma equations, a commonly used practice at the time

[Balmain, 1979]. Wang and Bell [1972b] ignore the nonlinear sheath [Bittencourt ,

2003, pages 279-288] in their formulation by assuming low voltage antenna operation

and use a Fourier decomposition of the wave and plasma equations of motion to solve

the resulting linear system. They assert that for frequencies above fLHR, propaga-

tion characteristics may be significantly altered since the thermally modified whistler

mode wave can propagate at angles beyond the resonance cone. For frequencies be-

low fLHR however, the refractive index surface is basically unmodified while noting

radiation efficiencies for the perpendicular antenna greater than at least 10% over the

parallel antenna for most cases.

During the same period, studies of whistler mode radiation patterns of electric

dipole antennas in a laboratory setting were performed by Stenzel [1976] and more

recently by Amatucci et al. [2005], providing some reassurance for the theoretical pre-

dictions of Wang and Bell [1972a]. Even with all of these advancements, the primary

underlying assumption made in Wang and Bell [1969, 1970]; Wang [1970]; Wang

and Bell [1972a,b,c] which remained to be verified, was that the current distribution

along the length of the antenna was triangular. Some of the more recent analytical

work performed on the subject is that of Nikitin and Swenson [2001] who studied the

impedance characteristics of High Frequency (HF) electric dipole antennas operating

in the collisional ionospheric conditions found at 100 km altitude. Though this work is

not directly related to the collisionless magnetospheric environment considered herein,

the conclusions drawn in this work are noteworthy. In this paper, a comparison of the

input impedance of short dipole antennas was made between assumed triangular and

exponential current distributions along the length of the antenna. As in the work

of Balmain [1964], Nikitin and Swenson [2001] used a quasi-electrostatic approach
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to determine the terminal properties for an antenna with orientation parallel to the

static magnetic field. The impedance values in Nikitin and Swenson [2001] demon-

strate good agreement with the results of Balmain [1964] for frequencies between the

electron gyrofrequency and upper-hybrid frequency inclusive and demonstrate the

relative insensitivity of the impedance results to the particular form of the current

distribution. In a more recent paper by Bell et al. [2006], closed form solutions for

the current distribution along an electric dipole antenna operating within the plas-

masphere were derived, however, these formulas are constrained to a limited range of

plasma parameters and antenna lengths.

1.3.2 Simulation Work

Simulation work involving antennas operating in a magnetized plasma is scarce, with

Ward et al. [2005] constituting some of the first modeling attempts on the subject. In

this paper, the authors use a warm plasma model to determine the terminal impedance

of very short dipole antennas in a collisional ionospheric plasma using the Finite Dif-

ference Time Domain (FDTD) method but without an effective absorbing boundary

condition. Their model assumes an incompressible Maxwellian fluid for the electrons

using the first two moments of the Boltzmann equation for electrons only while the

ions and neutrals are assumed to remain stationary. As in the case of Wang and

Bell [1972b], a scalar pressure is assumed for the electrons. Current distributions and

impedance values are determined for a 1 m linear antenna and results are compared

once again to the electrostatic model of Balmain [1964] with good agreement. The

authors circumvent undetermined boundary condition instabilities by stopping the

simulations before reflections from the numerical space boundary could contaminate

the solution results.

1.4 The Plasma Sheath Region

Whether operating as transmitting or receiving elements, electric dipole antennas

in a magnetoplasma are surrounded by an electrostatic sheath. This sheath can
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significantly alter the antenna properties (both near and far field) relative to those

which would be in effect if the plasma remained uniform near the antenna surface.

For receiving purposes, the sheath is on the order of a few Debye lengths and is

well approximated by existing analytical theory. However, when used for transmit

applications requiring the driving of the transmitting element at large voltages far

in excess of the surrounding plasma potential, the sheath is highly nonlinear and its

structure is generally not well known.

The analysis of plasma sheath formation and behavior is important in a number of

disciplines where a conducting surface is in contact with a plasma. Such applications

include plasma chambers, fusion reactors, semi-conductor processing, and the Earth’s

near-space environment. In the absence of an applied potential, a conductor rapidly

absorbs electrons, the most mobile plasma species, forming a net negative charge on

the conductor [Bittencourt , 2003, pages 280-281]. The induced negative potential

bias prevents additional electrons from being absorbed, resulting in the formation of

a region of positive space charge between the conducting surface and ambient plasma

called the ‘sheath’. Though there is still some debate on the actual definition of the

sheath region [Franklin, 2004], this layer of non-neutrality exists in all plasma envi-

ronments with boundaries, and its characteristics are governed in part by the species

present, collisionality of the medium, and the presence (or not) of a static magnetic

field. In addition, the structure of the sheath is further augmented through an applied

potential on the conducting surface, as in the case of a transmitting antenna.

Since the pioneering work of Langmuir [1929] and later by Bohm [1949] which

formed the basis of the sheath models found in most literature on the subject, there

has been considerable work performed in the areas of theory, simulation and experi-

ment, some of which is now discussed.

1.4.1 Sheaths Surrounding Electric Dipole Antennas

Early attempts at modeling the sheath effects on the terminal properties of dipole an-

tennas include Mlodnosky and Garriott [1963] who used small signal analysis coupled

with a fixed-capacitor analogy to derive closed-form expressions for the sheath radius,



CHAPTER 1. INTRODUCTION 10

capacitance and resistance of a VLF dipole antenna moving through an ionospheric

plasma. Shkarofsky [1972] extended the analysis of Mlodnosky and Garriott [1963] to

include large signal excitation and the effects of an induced electromotive force (emf)

resulting from the drift motion of the antenna at orbit speed (i.e., due to v×B0). The

following year Baker et al. [1973], using the same linear theory, incorporated a DC

bias into their model resulting from spacecraft charging between the antenna and the

satellite body on which the antenna was mounted. Mlodnosky and Garriott [1963];

Shkarofsky [1972]; Baker et al. [1973] all used very crude first order approximations of

the current and voltage on the antenna and greatly simplified the description of the

sheath region through approximations such as uniform charge density and a simple

exponential voltage dependence through the sheath. More recently, Song et al. [2007]

used linearized fluid theory based upon that of Shkarofsky [1972] to analytically de-

termine the terminal properties and sheath characteristics surrounding electrically

short dipole antennas in the inner magnetosphere at large drive voltages relative to

the ambient plasma potential. However, Song et al. [2007] ignored the ion current to

the antenna, which is crucially important as we show in Chapter 6.

1.4.2 Sheath Waves

The study of High Frequency (HF) sheath waves has also received some attention in

recent years. Both Laurin et al. [1989] and Luttgen and Balmain [1996] examined the

dispersion relations for sheath waves propagating in a magnetized plasma between a

planar conducting surface and the ambient plasma. The sheath in these cases was

approximated as a vacuum gap with an abrupt sheath edge, while Morin and Balmain

[1993] examined sheath waves between a wire and an ambient isotropic plasma by

approximating the sheath region as a series of constant density steps.

1.4.3 Planar Sheaths and RF Discharges

More comprehensive theoretical modeling work has been performed in the areas of

DC applied potentials and radio-frequency (RF) discharges in the context of planar
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sheaths. Recent progress in this area utilizes some variant of the linearized hydrody-

namic plasma description for each species based on the original work of Bohm [1949].

It has been pointed out by many authors that Bohm’s original sheath model suffers

from some major deficiencies such as singular field values in the plasma sheath transi-

tion region resulting from the zero-field condition in the plasma-sheath boundary layer

[Self , 1963; Godyak and Sternberg , 1990b; Riemann, 1991; Vandenberg et al., 1991;

Godyak and Sternberg , 2002]. Each of these authors propose various modifications to

the transition layer such as a non-zero electric field or enhancement of the ion injection

rate into the sheath. Indeed most analytical models are essentially a matching scheme

to link two distinct regions i.e., the sheath and presheath regions. The presheath is a

region of quasi-neutrality in which ions are accelerated into the sheath region at the

Bohm velocity [Bittencourt , 2003, page 288], providing the necessary condition for

a stable sheath. The transition region which joins the sheath and presheath regions

represents a theoretical layer which is the source of the mathematical discontinuities

found in the original work of Bohm [1949].

Additional work has been performed in the area of RF sheaths. Godyak and

Sternberg [1990a] developed a linearized hydrodynamic model of the plasma sheath

valid for arbitrary collisionality in the frequency range ωpi <ω<ωpe where ωpi is the

ion plasma frequency and ωpe is the electron plasma frequency. Morin and Balmain

[1991] developed a small signal RF sheath model for a spherical probe in the fre-

quency domain, comparing both single step and continuous sheath profiles with good

agreement relative to warm-plasma fluid and kinetic theory. In addition, Lieberman

[1988, 1989] derive time average values for capacitance and voltage for RF sheaths us-

ing an extremely simplified fluid approximation. In general, analytical sheath models

are only valid under the assumption that qΦ/kBT � 1 where q is the charge of the

particle, Φ is the potential, T is the temperature and kB is Boltzmann’s constant. This

assumption allows for an implicit linearization of the set of fluid equations providing

the steady-state equilibrium distribution of the electrons within the sheath modified

by the Boltzmann factor: ne = n0 exp(−qeΦ/kBT ), where ne is the density variation

of the electrons, n0 is the ambient density of the quasi-neutral bulk plasma, and the

quantity exp(−qeΦ/kBT ) is the Boltzmann factor for electrons.
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A recent paper by Franklin [2003], which covers both early and recent modeling

work, provides a review of relevant literature on the plasma sheath boundary re-

gion. This work considers collisional and collisionless plasmas and discusses the use

of various boundary conditions on the conducting surface and plasma-sheath transi-

tion region, including generalizations of the Bohm criteria for the steady state and

time-dependent RF sheaths. Unfortunately, in many applications, theoretical models

are usually insufficient for applied potentials that far exceed the plasma potential

since the nonlinear terms cannot be neglected when using fluid theory. In addition,

analytical modeling work is not completely self-consistent, commonly neglecting the

time-dependence of the system of equations by assuming linear plasma behavior.

[Franklin, 2003].

1.4.4 Numerical Simulation and Laboratory Work

When nonlinear behavior is prevalent and the simplifying assumptions underlying

an analytical treatment are no longer justified, numerical simulation provides an

invaluable tool for determination of antenna behavior in a plasma. Numerical methods

generally fall into the categories of kinetic and fluid approaches.

Cook and Katz [1988], comparing both analytical results and those obtained from

a multi-moment fluid model in a collisional plasma, examined the instability created in

the sheath region from impact ionization with neutral atoms. The secondary plasma

resulting from the ionization was created as a result of the large DC electric field with

positively biased probes pulling electrons through the collisional sheath region.

More recent work in the area of fluid simulation includes Wang and Wendt [1999]

who, using a two moment multi-fluid one-dimensional simulation, point out the weak-

ness of the Child-Langmuir law for collisionless and weakly collisional plasmas. Wang

and Wendt [1999] highlight the sensitivity and dependence of sheath thickness on the

electric field and space charge density located at the sheath edge in the context of

low pressure, high density plasmas. In addition, Wang and Wendt [1999] truncate

their system of moment equations with an assumption of isotropic pressure and utilize

Poisson’s equations to solve for the quasi-electrostatic fields. The system is iterated in
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time until a steady-state convergence is reached. Recommendations for an adaptation

to the original work of Bohm [1949] are cited in this work.

Baboolal [2002] used a finite-difference method following a similar one-dimensional

two-moment fluid approach and truncated their system using the well known adiabatic

relation pαn−γα
α to solve for the time-dependent steady-state sheath for both finite

and semi-infinite spaces. Particle injection, which is essential for a ‘stable’ sheath, is

provided by a non-zero electric field boundary condition in the case of the semi-infinite

space.

Roy et al. [2003] and Kumar and Roy [2005] use a Finite-Element Method (FEM)

based drift diffusion model to solve for sheath formation governed by DC and RF

driven discharges from electrodes in a non-magnetized plasma. As is discussed later,

the collisional closure relations used in drift diffusion models are more easily justi-

fied for highly collisional plasmas than for collisionless environments. Highly colli-

sional fluid moment methods such as the drift-diffusion models can be derived from

a Chapman-Enskog type procedure [Chapman and Cowling , 1970] which performs a

series expansion in Knudson number assuming quick relaxation to thermodynamic

equilibrium. This procedure is discussed in more detail in the following section. Roy

et al. [2003] includes the conservation of energy equation and compare their results

with the work of Godyak and Sternberg [1990a], showing good agreement.

In recent years, the need to understand the behavior of semi-conductor devices at a

microscopic level has led to various simulation works using hydrodynamic approaches.

Though the emphasis is not necessarily focused on sheath dynamics, sheaths are cer-

tainly present in these calculations. Semi-conductor simulations typically employ a

fluid treatment using moments of the Boltzmann equation with closure mechanisms

based upon the principle of maximum entropy [Trovato and Falsaperla, 1998; Anile

et al., 2000b,a]. Trovato and Falsaperla [1998],Anile et al. [2000b] and Anile et al.

[2000a] all use a three-moment approach incorporating some form of the energy equa-

tion and heat flux component with results that compare favorably with a Monte-Carlo

analysis.

Particle In Cell (PIC) codes are used when wave-particle interactions are of interest

since a fluid code by its nature cannot, in general, properly describe the influence of
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single particles. In a fluid approach, this individual particle motion is averaged out

into collective behavior. A number of authors have examined the sheath dynamics

and related phenomena using a PIC approach. Procassini et al. [1990] examined

the formation of an electrostatic sheath in the presence of a floating conducting wall

using a PIC approach and compared it with early analytical work using the Boltzmann

relation for electrons. Good agreement was obtained between the PIC simulation and

analytical results for large ion-electron mass ratios.

Time-dependent sheath dynamics resulting from both positive and negative step

function voltage changes on an electrode in a collisionless non-magnetized plasma

were also studied for both cylindrically and spherically symmetric geometries [Calder

and Laframboise, 1990; Calder et al., 1993]. The magnitude of the drive potentials

used in Calder and Laframboise [1990] and Calder et al. [1993] were on the order of

103 times the background plasma potential. Langmuir oscillations amplified by the

electron-ion two-stream instability were evident in these simulations, which as noted

in Calder and Laframboise [1990] can also be treated with a fluid description. However

it was also suggested by Calder and Laframboise [1990] that plasma ringing exists due

to the abrupt voltage changes which can affect the transient current collection on the

electrodes for many plasma periods that cannot be accounted for in a fluid treatment.

A similar analysis was made by Borovsky [1988] using a PIC approach in which he

varied the potential on the electrode and noted the plasma ringing effects which were

also amplified by the electron-ion two-stream instability.

Fluid models have successfully been applied to the sheath problem with good com-

parisons with PIC techniques. Some of the most pertinent works was in relation to

the recent Space Power Experiments Aboard Rockets (SPEAR) program. This work

includes Ma and Schunk [1989, 1992a,b] and Thiemann et al. [1992], who used a

two-moment fluid analysis to study the temporal evolution of particle fluxes on high-

voltage spheres in a collisionless non-magnetized plasma noting abrupt changes to the

current collection as a result of the initial sheath formation. For large negative volt-

ages, Ma and Schunk [1992a] and Thiemann et al. [1992] were able to reproduce the

transient plasma ringing found in earlier PIC codes such as Borovsky [1988]; Calder
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and Laframboise [1990] and Thiemann et al. [1992] (who performed a PIC-fluid com-

parison). Labrunie et al. [2004] performed a comparison between a one-dimensional

Vlasov-Poisson kinetic simulation and a three-moment fluid code by studying ion-

acoustic waves in a collisionless plasma. These authors highlight that fluid codes,

even in the collisionless limit, can be very accurate, provided that certain conditions

are met. The most relevant of these conditions is that the characteristic speeds of the

phenomena of interest are not on the same order as the particle thermal velocities in

which Landau damping is of concern. However, even in this velocity range, Landau

damping has been treated using a fluid model by Goswami et al. [2005] in the context

of magnetohydrodynamics (MHD) equations in the collisionless limit.

In addition to the earlier work of Stenzel [1976] involving whistler-mode antenna

patterns, there have been recent laboratory experiments performed in the area of

sheath formation and impedance calculations. For instance, Stenzel [1988] examined

the plasma sheath resonance in a collisionless laboratory plasma and noted that this

resonance became unstable for large applied potentials resulting from the negative dif-

ferential resistance across the sheath region. Blackwell et al. [2005] and Walker et al.

[2006] determined the sheath thickness and terminal impedance of small spherical

probes immersed in a laboratory plasma.

1.4.5 Hydrodynamic Closure Relations

In general, closure relations in the collisionless limit based upon moments of the

Vlasov equation are more difficult to justify than those derived from moments of the

Boltzmann equation for which collisions are dominant. The problems arise due to

the fact that the collisional operator in the Boltzmann equation, which is assumed

to dominate particle dynamics, allows for the relaxation of the distribution function

back to a state of thermal equilibrium faster than the time scales of interest. With

the exception of the heat flux moment and beyond, each moment up to and including

the pressure/energy moment assume some sort of symmetry in the distribution func-

tion. As such, most antenna work to date, whether analytical in nature or involving
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simulation techniques, has focused primarily on highly collisional plasmas where var-

ious simplifying assumptions such as linearity of the medium or an isotropic pressure

tensor are often times valid and used in conjunction with small signal analysis.

In a collisionless plasma on the other hand, a strong magnetic field can often times

play a similar role as collisions, as noted by Chew et al. [1956], in one of the first works

to examine the validity of the fluid approximation in the collisionless limit. In the

collisional case, truncation of the fluid moments is determined through an expansion

in mean free path or Knudsen number of the collisional operator in the Boltzmann

equation since it is this term which is assumed to dominate the particle dynamics

[Chapman and Cowling , 1970]. This procedure, also called the Chapman-Enskog

closure, treats any deviation from the Maxwell-Boltzmann distribution as a small

scale perturbation. Convergence of the Chapman-Enskog approach in weakly ionized

plasmas was further studied by Furkal and Smolyakov [2000] and Bruno et al. [2006]

who considered both magnetized and non-magnetized plasmas.

Other expansions have also been used, including those for distributions consisting

of a non-Maxwellian high-energy tail. This high-energy tail is due to a large percent-

age of particles in the distribution function having velocities greater than the thermal

velocity. For instance, Salat [1975] performed an expansion of the Fokker-Planck

equation in powers of the ratio of flow and thermal velocities to provide the colli-

sional/viscous components of the pressure and heat flux tensors. For a collisionless

plasma however, it is the Lorentz force that is dominant. Using this fact, Chew et al.

[1956] expanded the Boltzmann equation in powers of the Larmor radius, noting that

the Larmor frequency provides the dominant frequency of the system in the case of

a strong magnetic field. This expansion is essentially a statement of adiabaticity of

the system, providing the well known Chew-Goldberger-Low (CGL) laws that are

put forth in that work. Many authors have provided extensions to the work of Chew

et al. [1956], including Barakat and Schunk [1982a,b] for anisotropic velocity distri-

butions resulting from different temperatures parallel and perpendicular to the static

background magnetic field.

Closure relations for the pressure and heat flux moments, developed by Barakat

and Schunk [1982a,b], were based upon the magnitude of the temperature anisotropy
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and by utilizing a bi-Maxwellian distribution, exploiting perpendicular and parallel

symmetries of the problem that were loosely justified Chust and Belmont [2006].

Chust and Belmont [2006], which include the works of Ramos [2003, 2005], provide

some of the most comprehensive justifications for closure relations in a collisionless

plasma for the pressure and heat-flux tensors. The paper treats closure mechanisms

based on the roles of adiabaticity both parallel and perpendicular to the magnetic

field, gyrotropy, non-adiabatic closures, and the relative importance of temporal and

spatial variations on the phenomena of interest. In addition, Chust and Belmont

[2006] and references therein provide regions of validity and state that the CGL

laws only apply in the case where the phase velocity of the waves is much greater

than the thermal velocity of the particles, i.e., the condition of zero heat flux. As

stated previously, it is the region where the phase velocity is on the order of the

particle thermal velocity which is of concern, since this is the area where wave particle

interactions (including mechanisms such as Landau damping) occur that may or may

not be treatable with a fluid approach as discussed in Chust and Belmont [2006].

With the recent work of Chust and Belmont [2006] providing additional validation

for the collisionless fluid approach with respect to our antenna-sheath problem, we

have developed both electrostatic and electromagnetic simulation tools to examine

the dynamics of the collisionless sheath and antenna terminal characteristics therein

using a two-species plasma fluid formulation. The antennas of interest here are lo-

cated at magnetospheric points corresponding to L=2 and L=3 where the plasma

consists of a fully-ionized electron-proton plasma. Our simulation tool (i.e., the AIP

code) utilizes both Finite-Difference (FD) and Finite-Volume (FV) methods with

the electrostatic and electromagnetic fields provided through solution of Poisson’s

and Maxwell’s equations respectively. Whereas past work has primarily involved

the study of antennas using linear analysis, or in the case of the sheath formation

has considered only DC potentials applied to two-dimensional symmetric geometries,

we extend this past analysis to include AC applied potentials and three-dimensional

geometries using fully nonlinear formulations. This dissertation thus presents signif-

icant contributions to the advancement of knowledge in the area of antenna-plasma

coupling, most notably in the area of sheath dynamics surrounding electric dipole



CHAPTER 1. INTRODUCTION 18

antennas.

1.5 Thesis Organization

The work presented in this thesis is organized as follows.

Chapter 1, the present chapter, introduces the motivation for this work and pro-

vides a discussion of relevant background material and past work related to antennas

operating in a plasma.

In Chapter 2, the theoretical background is provided for the fluid approach based

on taking successive moments of the Vlasov equation. We address the concept of

closure as it relates to our N -moment fluid system concerning sheath dynamics and

discuss potential problems with the use of a fluid approach versus a fully kinetic

model in the context of instabilities, wave-particle interactions and particle trapping,

along with resolutions of these issues.

We begin Chapter 3 with a discussion of our initial simulation development which

includes a linearized cold plasma electromagnetic model. In this chapter, numeri-

cal absorbing boundary condition instabilities are discussed as well as methods to

circumvent such issues.

In Chapter 4, we apply the cold plasma model developed in Chapter 3 to determine

the current distribution and terminal impedance of a 100 m long dipole antenna in

the absence of a plasma sheath.

In Chapter 5, we extend the capability of our cold plasma model by including non-

linear and finite temperature effects. In this warm plasma formulation, we substitute

Maxwell’s equations with Poisson’s equation to ease the computational burden and

to avoid problems associated with the electromagnetic boundary conditions discussed

in Chapter 3. This Chapter also provides the theoretical background for the model

used to simulate the quasi-electrostatic sheath formation surrounding electric dipole

antennas discussed in Chapter 6.

In Chapter 6, we compare our fluid model with existing analytical results for the

one-dimensional steady-state sheath formation adjacent to a floating electrode. We

then proceed to compare the role of various truncation schemes on the current-voltage
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relationship on an infinite cylindrical antenna placed in a two-dimensional space.

Two whistler-mode frequencies are considered in this case with simulations that in-

clude both magnetized and non-magnetized plasma environments in the presence of

time-varying potential functions far exceeding the background plasma potential. A

comparison of truncation schemes based on the two-moment isothermal approxima-

tion (isotropic pressure tensor) and three-moment adiabatic approximation (negligible

heat flux) is provided. We conclude Chapter 6 with three-dimensional simulations of

sheath formation surrounding a 20 m dipole antenna using our validated fluid model.

The terminal properties of the antenna for the aforementioned cases are given for the

electric dipole and a discussion of the relative importance or various fluid quantities

is given in relation to the time-varying sheath formation.

Chapter 7 summarizes the results presented in Chapters 4 and 6 and concludes

with a discussion of future extensions of the work presented in this dissertation.

1.6 Scientific Contributions

The contributions to knowledge presented in this dissertation are as follows:

• Developed fully parallel 3-D finite-difference time-domain (FDTD) and finite-

difference frequency-domain (FDFD) codes for the simulation of electromagnetic

waves in cold magnetized plasmas with arbitrary material boundaries.

• Applied the FDFD code to determine the current distribution and terminal

impedance of an electric dipole antenna in the inner magnetosphere.

• Developed a fully parallel 3-D nonlinear multi-moment hydrodynamic code for

the simulation of electrostatic sheath formation in warm unbounded collisionless

magnetized plasmas.

• Applied the nonlinear fluid code to determine the effects of the plasma sheath

on the near field characteristics of electric dipole antennas.



Chapter 2

Derivation of Hydrodynamic

Moment Method

2.1 Theoretical Formulation

Our fluid formulation uses a macroscopic multi-fluid approach to solve for the non-

linear sheath dynamics. The fluid model is comprised of moments of the Vlasov

equation Fv for each particle species, representing the time-evolution of the distribu-

tion function f=f (r,v, t) in a collisionless plasma where r, v and t are coordinates

in configuration space, velocity space and time respectively. The Vlasov equation is

given by Equation 2.1.

Fv(v, r, t) =
∂f

∂t
+ (v · ∇r)f +

[
F

m
· ∇v

]
f = 0 (2.1)

where m is the mass, and F=q (E+v×B) is the Lorentz force with charge q, velocity

vector v, electric field E and magnetic field B. Since the bulk of the plasma between

L=2 and L=3 is virtually cold (∼ 2000◦ K) consisting of very low energy particles

[Bezrukikh et al., 2003], we assume that our initial distribution for each species is

a Maxwellian distribution as in Calder and Laframboise [1990] and Calder et al.

[1993]. In a three-dimensional Cartesian coordinate system, this distribution is given

by Equation 2.2.

20
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fm (v) = n0

(
m

2πkBT

) 3
2

e−mv2/(2kBT) (2.2)

v = |v| =
√

(vx − vx0)
2 + (vy − vy0)

2 + (vz − vz0)
2

where n0 is the bulk density, v is the magnitude of the velocity vector represented

by coordinates vx, vy and vz in velocity space, vx0, vy0 and vz0 are the drift velocities

in their respective directions, kB is Boltzmann’s constant, and T is temperature. In

our simulations, we assume that the drift velocities vx0, vy0 and vz0 are initially zero;

however as discussed in Section 5.3, these drifts are important in deriving the fluid

boundary conditions at the surface of the antenna.

2.1.1 Moments of the Vlasov Equation

The series of moments that comprise our fluid model are derived by multiplying

each term in the Vlasov equation by powers of v and then integrating the resultant

equation over all velocity space. In many cases including ours, it is convenient to

define the second and third order moments which specify the stress tensor Π and

energy flux density E in the rest frame of the species using the relation c=v−u,

where c is the random velocity due to the thermal motions of the particles, u is the

bulk flow velocity, and v is the velocity distribution of the particles in phase space

as defined earlier. In the rest frame, Π and E become the pressure P and heat flux

density Q, which are integrated with respect to the Vlasov equation in powers of

[v − u]N . The N th moment M of the Vlasov equation is defined as follows:

MNth

=

∫∫∫
v



mFv(v)dv

mvFv(v)dv

m [v − u] [v − u]Fv(v − u)d(v − u)

m [v − u] [v − u] [v − u]Fv(v − u)d(v − u)

(2.3)

The fluid transport model comprising the first four moments given by Equations
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2.4a-2.4d (which are found in Chust and Belmont [2006]) correspond to density, mo-

mentum, pressure, and heat-flux respectively:

∂t(nm) +∇ · (nmu) = 0 (2.4a)

∂t(nmu) +∇ · (nmuu + P)− nq (E + u×B) = 0 (2.4b)

∂t(P) +∇ · (uP + Q) + {P · ∇(u) + Ωc ×P}sym = 0 (2.4c)

∂t(Q) +∇ · (vQ + R) +

{
Q · ∇(u) + Ωc ×Q−P∇ · (P)

1

nm

}sym

= 0 (2.4d)

In Equations 2.4c and 2.4d, Ωc and R represent the gyrofrequency vector along

the magnetic field and the 4th order moment respectively, while the superscript ‘sym’

denotes a symmetric tensor. It is useful to note that with each moment, the rank

of each tensor increases by xN where x is the number of dimensions and N is the

order of the moment, Therefore, the density equation for each species comprises only

a single element, while the heat-flux tensor, which is of rank three, consists of 27

individual elements. The rapid increase in the number of equations can render the

fluid moment method intractable unless simplifying assumptions are made for higher

moments. The form of the tensors representing velocity, pressure, heat-flux and the

4th order moment R in a Cartesian coordinate system are given by Equations A.1-A.4

found in Appendix A.

As stated previously, each additional moment included in the fluid description

allows for the corresponding property of the distribution function to vary in both

space and time during the evolution of the simulation, allowing for a more complete

description of the plasma. Although the hydrodynamic description of the plasma

is not specific to a particular distribution function, each moment has a particular

meaning, based on the form of the distribution function. Figure 2.1 describes the

first few transport properties for a plasma that is initially in the thermodynamic

equilibrium state described by the Maxwellian distribution of Equation 2.2.

The 0th moment as shown in Figure 2.1a allows for the number density within each

cell to vary, while the 1st moment allows for the Maxwellian distribution to possess a

non-zero average drift velocity u. The next three moments correspond to the width,
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Figure 2.1: Transport properties for Maxwellian distribution function. (a) 0th moment n
≡ total number density. (b) 1st moment v ≡ average fluid velocity. (c) 2nd moment P ≡
width of distribution. (d) 3rd moment Q ≡ skew of distribution. (e) 4th moment R ≡ slope
or inflection of distribution.

skew, and slope of the distribution respectively as shown in Figures 2.1c - 2.1e. As can

be seen from Figure 2.1, the even moments correspond to an even symmetry about

the local mean of the distribution while the odd moments possess an odd symmetry

about this point; this behavior is simply a result of the assumed Maxwellian being

an even distribution.

There are four different closure relations that are used in this dissertation. The

first closure relation is the cold plasma approximation given by Equations 2.4a and

2.4b which assumes that the pressure tensor P is identically zero. Furthermore, if we

assume small signal analysis, Equations 2.4a and 2.4b can be linearized and combined
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into a single auxiliary current equation. This process and the corresponding model

are discussed in Chapter 3. The cold plasma approximation does not allow for the

formation of the sheath since the linearization of the equations assumes that the

density is only a small perturbation from the ambient value; however, it is useful in

the determination of the antenna current distribution and subsequent code validation,

as discussed in Chapter 4.

The last three closure relations include all temperature and nonlinear terms in

the system of moments, allowing for the sheath to develop. These closure relations

are collectively denoted as the warm plasma approximation. The second closure

relation (or the first warm plasma relation) is based upon the ideal gas law which

provides a relationship between temperature and pressure given by P=nkBT where

T is a diagonal tensor describing the temperatures parallel and perpendicular to the

background magnetic field. This relation is the equation of state based on the ideal

gas law for thermodynamics and provides a mechanism for truncating the infinite set

of moments at the momentum equation assuming a diagonal pressure tensor. For the

case in which the temperatures parallel and perpendicular to the background magnetic

field are the same (isothermal), P simplifies to a scalar representing isotropic pressure.

The third closure relation (or the second warm plasma relation) utilizes the as-

sumption of adiabaticity ∇ · Q = 0, which essentially means that the contribution

due to the heat-flux is negligible (i.e., no heat transfer); however, all components

of the pressure tensor are kept in the fluid description. In a collisional plasma, the

off-diagonal elements of the pressure tensor are associated with viscous and shearing

forces resulting from collisions, whereas in a collisionless plasma, these same viscous

forces are due to velocity gradients and the presence of a magnetic field, as seen from

Equation 2.4c.

The final closure relation considered is that which is involved with truncating at

the heat-flux moment. In this case, our closure relation is based on an assumption

concerning the next highest moment R in Equation 2.4d. We follow the example of

Chust and Belmont [2006] in this case, and assume that each element of the tensor R

is given by rαβγκ and satisfies the relation rαβγκ = pαβpγκ/ (nm), where p are elements

of the pressure tensor, n is the local number density, m is mass and α, β, γ and κ
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are indicies which span the dimensions x̂, ŷ, and ẑ. This assumption, as with all

other closure relations given, is equivalent to assuming that the distribution function

remains sufficiently compact and symmetric about the mean (thermal velocity) so

that the first few moments provide an adequate description of the distribution. In

fact, up until the addition of the heat-flux moment, which allows for skew about the

mean velocity in the distribution, all other moments assume a symmetry about the

mean velocity, which in the case of a warm plasma, would be the thermal velocity.

In Chapters 5 and 6 of this dissertation, we develop the warm plasma models

and compare results of the various truncation relations through simulation for both

magnetized and unmagnetized plasmas in the context of sheath formation. This com-

parison allows us to verify the applicability of our simulation tool since the regions

of validity of the fluid approach as applied to sheath formation are not readily ap-

parent, as outlined in Chust and Belmont [2006]. Chust and Belmont [2006] provide

an analytical justification of the fluid approach based on various time and spatial

scales for the various truncation mechanisms for velocities either above or below the

thermal velocity, for which wave-particle interactions such as Landau damping may

be of concern, as discussed in Chapter 1. However, since there is the potential for

waves to exist for which the phase velocity spans the thermal velocity range during

the sheath formation process, such a concise analytical solution as presented in Chust

and Belmont [2006] is not easily justifiable.

2.2 Instabilities and Resonances

Though the fluid model can provide a very accurate description of plasma behavior

over a wide range of conditions, there are some phenomena for which a fluid de-

scription is inadequate. These phenomena are usually associated with wave-particle

interactions, since the behavior of individual particles is not taken into account as

they would be, for example, in PIC method. We now address the potential importance

of such effects in our sheath simulations.
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2.2.1 Two-Stream Instability and Landau Damping

In the simulations of Borovsky [1988], Calder and Laframboise [1990], Ma and Schunk

[1992a], Thiemann et al. [1992] and Calder et al. [1993], it was seen that transient

electron plasma oscillations formed during the initial step response of the system to

the high voltage excitation on spherical electrodes, when using both PIC and fluid

approaches. Calder and Laframboise [1990] additionally noted that these same large

plasma ringing effects were driven to large amplitude by the ion-electron two-stream

instability, which they stated that a fluid code can capture. Calder et al. [1993]

observed that this instability was present only in simulations of positively stepped

electrodes, since for negatively stepped potentials, the electrons were completely evac-

uated from the sheath region due to their much higher mobility. The ions left inside

the sheath had no electrons with which to interact and thus the instability could not

develop. For the case of a positive applied potential, the ions are not fully depleted

from the sheath region since they are much heavier.

The same PIC simulations suggested that Landau damping was also negligible

since the phase velocity of Langmuir modes is much larger than particle thermal

velocity [Calder and Laframboise, 1990]. Later, Thiemann et al. [1992] determined

that not only could a two-moment fluid code reproduce the oscillation in general

character, but that some of the oscillations present in the PIC code were due in

large part to numerical noise resulting from under-sampling the particle distribution

function, an inherent problem in large-scale PIC codes. The same fluid code was also

able to capture the formation of a double layer during the initial phase of the sheath

formation, resulting from the mass exodus of ions from the sheath region for large

positive DC applied potentials.

The remaining question is whether or not the electron-electron two stream in-

stability is present during sheath formation since a fluid code cannot capture this

instability. Counter-streaming electrons in a macroscopic fluid element would aver-

age each other out and simply enhance the local electron density. On the other hand,

an electron-electron two-stream instability has not been observed in any PIC plasma

sheath simulations that we are aware of, including those referenced herein. This result

is perhaps due to the symmetry of the cases considered. Directly counter-streaming
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electrons would only interact from opposing sides of the sheath, in which case they

would hit the conductor and be absorbed. Any electrons that do not collide with

the antenna surface would have their trajectories randomized, most notably in the

case of an ambient magnetic field, and would therefore not satisfy the condition for

a two-stream electron-electron instability.

2.2.2 Particle Trapping and Secondary Emission

The effect of particle trapping in the sheath region surrounding high voltage con-

ductors has been previously studied [Parker and Murphy , 1967; Palmadesso, 1989].

Parker and Murphy [1967] used theoretical arguments involving conservation of en-

ergy and angular momentum to derive a closed form solution for the radius in which

electron trapping would occur for DC applied potentials surrounding spherical elec-

trodes in a magnetic field. The radius for which this effect is important is called the

Parker-Murphy radius Rpm taken from Palmadesso [1989] and is equal to:

Rpm = R0

[
1 +

√
8qeΦ0

mαΩ2
αR2

0

] 1
2

(2.5)

where R0 is the radius of the spherical electrode, qe is the charge of an electron, Φ0

is the potential on the electrode, and mα and Ωα are the mass and magnitude of

the cyclotron frequency for the trapped particle of species α respectively. Using the

theoretical work of Parker and Murphy [1967], Palmadesso [1989] suggested on these

grounds that trapping would potentially be important to the overall structure of the

sheath if a substantial volume of the sheath lay outside of the Parker-Murphy radius.

Thus, trapping would be significant for kilovolt DC applied voltages such as those

found in the SPEAR experiments. However, in the PIC simulations of Calder et al.

[1993] involving large DC applied potentials applied to electrodes, it was shown that

it is really only the positive ions that are trapped as a result of biasing the electrode

rapidly. The electrons would not be trapped since they would have comparable orbits

with the ions in the steady state fields when their energies are equivalent, despite

the large ion-electron mass ratio. Therefore, since we consider cases in which the
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potential on the antenna is slowly varying at VLF frequencies, we would not expect

particle trapping to be of concern.

Secondary emission of electrons occurs when a conductor is biased to a high neg-

ative voltage for which ions accelerated to high energies impact the surface of the

conductor, and kick off secondary electrons. Cluggish and Munson [1998] studied sec-

ondary emission in the context of plasma source ion implantation, a commonly used

technique in the semiconductor industry for doping semiconductors. These studies

were performed using collisional plasmas with comparisons between fluid simulation

and experiment in which secondary emissions could potentially ionize the background

plasma. Directly related to our studies is the work of Franklin and Han [1988] who

analyzed the beam-plasma instability formed within the collisionless plasma-sheath

due to secondary emission from a conducting wall using a PIC technique. The PIC

simulations of Franklin and Han [1988] revealed that for the high temperature colli-

sionless plasmas considered, the plasma oscillations that were produced, limited the

growth of the instability. Only under strong current carrying conditions would the

beam-plasma instability greatly modify the plasma within the sheath and potentially

trap additional particles.

For the case of a thin wire antenna in three-dimensions, the secondary emission

effect would be much less pronounced since the actual surface area over which sec-

ondary electrons sputter from the antenna elements is very small compared to the

conductor surface area in the one-dimensional PIC simulations of Franklin and Han

[1988]. In addition, the radial symmetry of the antenna geometry provides further

evidence against the formation of a beam which would excite the instability. We do

not include secondary emission effects in our current model, but discuss this topic in

Chapter 7 as a future extension of the current work.



Chapter 3

Cold Plasma Electromagnetic

Model

In this chapter, we cover the initial development of our Antenna-In-Plasma (AIP)

simulation tool beginning with the linear cold plasma approximation. Our simulation

tool involves a full wave solution of Maxwell’s equations in a linearized magnetized

plasma environment using finite-difference time-domain (FDTD) and finite-difference

frequency-domain (FDFD) techniques, the details of which are discussed herein.

3.1 Cold Plasma Simulation Development

The radiation pattern and efficiency of an antenna is directly related to the distri-

bution of currents flowing along its surface. For electrically short dipole antennas

operating in a free-space environment, the current distribution is known to be tri-

angular [Kraus , 1988, pages 40-42]. For an antenna operating in a magnetoplasma

however, the situation is more complex with possible wavelengths for a single exci-

tation frequency that can cover a range of several orders of magnitude as a result of

the high anisotropy of the medium.

In this dissertation, we make no assumptions about the form of the current dis-

tribution as in the work of Wang and Bell [1969, 1970] and Wang [1970]. Instead,

the current distribution and the terminal properties of the antenna are determined

29
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through simulation in a fully self-consistent manner. Since past analytical formu-

lations are only valid for simple dipole geometries in a linear environment, we use

numerical methods which are not subject to these constraints. Our numerical ap-

proach allows for a relatively straightforward extension into regimes for which there

are no analytical solutions, such as inhomogeneous plasmas or more complex antenna

designs.

FDFD is the frequency-domain counterpart of the well established FDTD tech-

nique [Taflove and Hagness , 2000]. Although literature on the application of FDFD to

wave propagation in a magnetoplasma is scarce, there have been several applications

of the FDTD method to the subject of wave propagation through a plasma, which

are directly applicable to simulation using the FDFD method. The flexibility and

generality of the FDTD method accounts for its acceptance as the method of choice

for electromagnetic wave interaction within complex media [Taflove and Hagness ,

2000]. As it pertains to the study of plasmas, Cummer [1997] provides a detailed

comparison of the methods used to date; however, the works mentioned therein deal

strictly with isotropic plasmas. Lee and Kalluri [1999] address the problem of elec-

tromagnetic wave propagation inside a cold magnetoplasma using FDTD but do not

address the application of Absorbing Boundary Conditions (ABCs) for the reflection-

free absorption of outgoing waves. In this chapter, we show that ABCs are one of the

most difficult and pervasive issues underlying the simulation of electromagnetic wave

propagation in a magnetoplasma.

Since the introduction of the Perfectly Matched Layer (PML) [Berenger , 1994],

it has been used extensively in the field of computational electromagnetics due to its

superiority over other types of ABCs. The PML, however, suffers from instabilities

in the presence of some anisotropic media, such as orthotropic materials as discussed

in Becache et al. [2003]. As demonstrated in Becache et al. [2003], this instability

is not unique to a particular system of equations; rather, it is inherent in all PML

derivations since they share the same underlying structure. In this chapter, we show

that this numerical instability is present within the context of magnetized plasma

simulations that need to be used to solve Maxwell’s equations with a PML boundary

condition. In addition, this instability is independent of the method used for the
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plasma dynamics or the type of time integration scheme used. Thus, PIC, fluid,

time and frequency domain methods are all affected by the presence of this numerical

instability.

The purpose of this chapter is to demonstrate the complexity involved in numer-

ically modeling the near field properties of electric dipole antennas operating in a

cold, collisionless magnetized plasma, specifically emphasizing some of the numerical

challenges in connection with PML boundary conditions and wave propagation in

such media. In Chapter 4, we present comparisons of the results of our simulations

with available analytical results for both current distribution and input impedance,

in order to assess the validity of the assumptions made in past analytical work.

3.2 Theoretical Formulation

We mentioned in the beginning of the chapter that both time and frequency domain

methods (FDTD and FDFD) are incorporated into our AIP simulation tool. For

time-domain simulations, once a particular discretization technique is chosen to solve

for the spatial derivatives in Maxwell’s equations, the resulting set of equations can

be represented by a system of ordinary differential equations (ODE)s represented by

Equation 3.1:

dŪ

dt
= F

(
Ū
)

(3.1)

where Ū represents a vector containing the electric and magnetic fields and F rep-

resents the vector of spatial derivatives and source terms with all differential opera-

tors evaluated using a technique such as finite-differences or finite-volumes. With F
known, Equation 3.1 can be evaluated using one of many numerical time-integration

methods including the staggered leapfrog method, backward differencing, or a class of

Runge-Kutta methods. In addition to the original staggered leapfrog method used by

Yee [1966] for the solution of Equation 3.1, we have also implemented both explicit

and implicit Runge-Kutta methods into our simulation tool, the details of which are
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discussed in Appendix B. However, for reasons that become clear later in this chap-

ter, the cold plasma results presented in this dissertation use the frequency domain

method FDFD.

The cold plasma description we use for our FDFD modeling combines the first

two linearized moments of Vlasov’s equation coupled with Maxwell’s equations. The

final system of equations representing our cold plasma model is given by Equations

3.2a-3.2c:

∇×H =
∑
N

Jα + ε0
dE

dt
(3.2a)

∇× E = −µ0
dH

dt
(3.2b)

dJα

dt
+ ναJα =

qα

mα

(qαnαE + Jα ×B0) (3.2c)

where E and H are the wave electric and magnetic fields, J, ν, n, q, and m are the

current density, collision frequency, number density, charge, and mass of species α.

Equation 3.2c represents a simplified version of the generalized Ohm’s Law [Bitten-

court , 2003, pages 229-233].

For the purpose of the present work, the dipole antennas considered are taken

to be located near the magnetic equatorial plane at L=2 and L=3. The plasma

in this region is fully ionized and is largely composed of protons and electrons. At

L=2, the number density and magnetic field strength are taken to be n = 2×109

m−3 and B0 = 3.931×10−6 T, with corresponding plasma and gyrofrequencies equal

to fpe = 401 kHz and fce = 110 kHz [Carpenter and Anderson, 1992]. At L=3, the

plasma parameters are n = 1×109 m−3 and B0 = 1.165×10−6 T providing fpe = 284

kHz and fce=32.6 kHz respectively. Since the number density of each species at these

locations is relatively low, the plasma is entirely collisionless.
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3.3 Simulation Properties

3.3.1 Computational Mesh Setup

The numerical mesh used for the cold electromagnetic plasma simulation is based

on the traditional staggered/interleaved FDTD mesh for locations of electric and

magnetic fields [Yee, 1966]. The currents described by Equation 3.2c are spatially

colocated with their electric field counterparts. Care must be taken in the placement

of the components of the current J. Recent papers on the subject such as Lee and

Kalluri [1999] propose colocating all components of the currents at the corner of the

electric field Yee cell. However, such positioning of the currents produces spurious

electrostatic waves, which possess a spatial wavelength on the order of the mesh cell

size. Such numerical waves are a result of the spatial averaging of the currents and

are explained as follows.

Referring to Figure 3.1, which represents the computational grid of Lee and Kalluri

[1999], the locations of the electric fields are 1/2 cell width away from the correspond-

ing components of the current density J described by Equation 3.2c.
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Figure 3.1: Two-dimensional mesh of Lee and Kalluri

Spatial averaging of a field value is necessary when the field quantity at a given

location on the computational mesh is desired but not available. For instance, the

update equation for the electric field described by Equation 3.2a requires values of
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the current density J. Because the components of J are not colocated with the

corresponding components of electric field on the mesh, a suitable average must be

made, i.e., averaging Jx at the location of Ex. The same type of process holds true

for the current density update equations presented by Equation 3.2c. Removing all

references to time, the grid of Lee and Kalluri [1999] requires the averaging given by

Equations 3.3a-3.3c in order to spatially colocate the electric field components of E

with the corresponding component of the current density J given by Equation 3.2c.

Ex

∣∣
Jx

=
1

2

(
Ex

∣∣
i+ 1

2
,j,k

+Ex

∣∣
i− 1

2
,j,k

)
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For frequencies f such that fLHR <f <fce, where fLHR represents the Lower Hybrid

Resonance frequency, propagation in directions orthogonal to the static magnetic field

is not supported in a cold plasma. This fact is verified with reference to Figures

3.6a and 3.6b, and further discussed in Section 3.3.6. Using a Cartesian coordinate

system and assuming a +ẑ-directed static magnetic field, any electric field components

excited in the +x̂ or +ŷ-direction subsequently produce currents in that respective

direction through the spatial averaging of Equation 3.3a. The recursive process of

spatial averaging leads to nonphysical electrostatic waves (of numerical origin) which

propagate in a direction orthogonal to the static magnetic field, as shown in Figure

3.2.

The formation of these nonphysical wave modes is most easily demonstrated in

the time domain. As such, Figure 3.2 represents a one-dimensional time domain

simulation showing the formation of nonphysical electrostatic waves resulting from

the spatial averaging of Equation 3.3a. A 20 kHz sinusoidal Ex source is placed in

the center of the space in Figure 3.2. The medium is a cold plasma with properties

consistent with those found at L=2. The horizontal axis represents the x̂-dimension,

with a static magnetic field present in the +ẑ-direction. Since there are neither

propagating nor evanescent wave modes supported in this scenario, we would expect
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Figure 3.2: One-dimensional time domain simulation in cold plasma depicting nonphysical
electrostatic wave formation on spatially averaged mesh vs. colocated mesh taken at times
t= τ

4 and t=3τ
4 where τ represents the period of a 20 kHz sine wave source. (a) Colocated

E-field at time t=.25τ . (b) Colocated E-field at time t=.75τ . (c) Spatially averaged E-field
at time t=.25τ . (d) Spatially averaged E-field at time t=.75τ .

to see only the source point oscillating in a sinusoidal fashion. Figure 3.2a and Figure

3.2b represent simulation snapshots at t = τ/4 and t = 3τ/4 (where τ is the period

of a 20 kHz wave) respectively for a mesh in which Ex is colocated with Jx. Figure

3.2c and Figure 3.2d represent a mesh in which Ex and Jx are staggered in space

per Equation 3.3a. It is seen that the colocation of Ex and Jx found in Figures

3.2a and 3.2b correctly captures the physics (with only the source point oscillating

in time) while the staggered mesh of Figures 3.2c and 3.2d produces an electrostatic

wave (possessing no associated magnetic field) that propagates along the x̂-direction.

In fact, the only frequency range that supports electrostatic wave propagation in a

cold plasma environment is that associated with the extraordinary mode. This mode

is discussed in Section 3.3.6 in conjunction with the so-called Z-mode propagation

branch. The Z-mode resides above the plasma frequency; a frequency well above the

20 kHz source, being 401 kHz at L=2 in the equatorial plane. Thus, the oscillations

seen in Figures 3.2c and 3.2d must be nonphysical in nature.

To prevent the formation of these non-physical waves, the components of current

density J for each species are colocated with their electric field counterpart as shown
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in Figure 3.3 and applied to our FDFD formulation. Although our model utilizes

spatial averaging, the averaging does not appear to create nonphysical modes.
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Figure 3.3: Two dimensional grid used in present model.

3.3.2 Frequency Domain Technique

The use of frequency domain techniques rather than those based on time integration

(FDTD for instance) allows for the accurate modeling of spatial structures which are

orders of magnitude smaller than a wavelength without an appreciable increase in

computation time. This feature is a major advantage in our case, since the wave-

lengths for VLF waves below the electron gyrofrequency considered in this paper

range from meters to megameters in the same simulation due to the high anisotropy

of the refractive index. Refractive index surfaces are discussed later in Sections 3.3.5

and 3.3.6.

In order to speed up the software development cycle, we take advantage of pre-

existing software libraries for some of the tasks involving numerical computation.

Our model uses the PETSc (Portable Expression Template for Scientific Computing)

framework Balay et al. [2001, 2004] for both its embedded parallelism and integrated

linear and nonlinear solvers, which are integral parts of the frequency domain meth-

ods used. The code is parallelized using the Message Passing Interface (MPI). The

FDFD technique solves for the sinusoidal steady state response of a single frequency
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excitation. In order to solve our system of Equations 3.2a-3.2c, we must transform

them into the frequency domain by substituting jω for the time derivative operator

(i.e., d/dt↔jω) and by using complex phasor field quantities instead of time domain

ones. This transformation results in the following set of equations:

∇× ~H =
∑
N

←→σα
~E + ε0jω ~E (3.4a)

∇× ~E = −µ0jω ~H (3.4b)

←→σα = ε0ω
2
p (jωI− Ω)−1

Ω =


−ν −ωbz ωby

ωbz −ν −ωbx

−ωby ωbx −ν



where ←→σα represents the conductivity tensor in the relation ~J = σ ~E resulting from

the transformation of Equation 3.2c into the frequency domain. I represents the

identity matrix, and ωb = |qeB0|
me

is the electron gyrofrequency with corresponding x̂, ŷ

and ẑ-components ωbx, ωby and ωbz, where B0 represents the magnitude of the static

magnetic field.

Frequency domain methods require a large complex matrix inversion. Normaliza-

tion of the equations is especially important in avoiding an ill-conditioned system.

Therefore, all dependent simulation variables such as length scales and field values

are normalized into dimensionless quantities. Due to the size of the problem, the

matrix is inverted using an iterative Krylov Subspace method in parallel [Demmel ,

1997, pages 299-321]. The type of Krylov method used in this simulation is the

Generalized Minimum Residual (GMRES) along with an Additive Schwarz (ASM)

preconditioning matrix Balay et al. [2001, 2004].
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3.3.3 Boundary Condition Instabilities

A variation of the PML originally proposed by Berenger [1994] is implemented in order

to absorb electromagnetic radiation outgoing from the numerical space. The PML

used in this paper is a frequency domain adaptation of the CPML (Convolutional

PML) based on Chevalier and Inan [2004]. Since virtually all PML derivations begin

with a frequency domain representation, the implementation of one in our FDFD

model is straightforward.

Regardless of the PML type used, all PML derivations follow the same basic

principle. This principle is to match the tangential component of the wave numbers

at the computational/PML interface. This matching is then continued throughout

the absorbing layers of the PML. Attenuation is realized with the addition of an

artificial imaginary component of the wave normal vector ~k. In most applications of

computational electromagnetics, the PML accomplishes this task by absorbing the

wave function in the direction orthogonal to the PML interface Berenger [1994].

Two recent papers that discuss issues with the PML related to our study are

Becache et al. [2003] and Cummer [2004]. The work of Becache et al. [2003] highlights

the fact that for a wave in which the group and phase velocities are antiparallel at the

PML interface, the wave experiences exponential growth inside of the PML when the

standard PML expressions are used. Becache et al. [2003] demonstrates this problem

in orthotropic media, but do not present any recommendations as to the resolution

of this dilemma.

The paper by Cummer [2004] examines the properties of a traditional PML in the

presence of negative index of refraction materials. Within a material that possesses

a negative index of refraction, antiparallel group and phase velocities are ubiquitous

at a particular frequency within the computational space. This condition exists at

all PML interfaces. In the case of Cummer [2004], a relatively simple fix (involving

a simple switch in the sign of the exponent at different boundaries) is incorporated

in the model to allow for proper absorption of outgoing waves. Unfortunately this

method does not work in a magnetized plasma, since the switch of Cummer [2004]

is only frequency dependent, while, as shown below, in a cold magnetized plasma,

anti-parallel group and phase velocity behavior is both direction (i.e., k-vector) and
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frequency dependent.

Using the stretched coordinate version of the PML first derived in Chew and

Weedon [1994], we now show the manifestation of the PML region instability for

a cold magnetized plasma. This instability is not just a cold plasma phenomena,

but exists in any electromagnetic magnetoplasma model that utilizes a PML as an

absorbing boundary condition.

3.3.4 PML Derivation

The derivation of the PML is well documented and can be found in numerous pa-

pers and books, including Berenger [1994] and Taflove and Hagness [2000]. A brief

description of the PML suffices in order to illustrate the problem at hand. In a con-

ventional stretched coordinate PML, the nabla operator used in Maxwell’s equations

is replaced by the nabla operator given by:

∇̃ = x̂
1

sx

∂

∂x
+ ŷ

1

sy

∂

∂y
+ ẑ

1

sz

∂

∂z
(3.5)

where sx, sy, and sz denote stretching variables in their respective coordinate direc-

tions [Chew and Weedon, 1994]. The form of the stretching variable is given by:

s =

(
1 +

α

jω

)
(3.6)

where ω represents radian frequency and α describes an attenuation constant that

exists only within the PML. Denoting the region inside the computational domain as

Region 1 and the interior of the PML as Region 2, and assuming plane wave solutions,

the relationship between the wave numbers inside and outside the PML denoted by

k2 and k1 respectively are given by:

k2 =

(
1 +

α

jω

)
k1 (3.7)
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For simplicity, we assume a uniform plane wave in 1-D propagating in the +x̂-

direction. The wave number k2 admits plane wave solutions inside of the PML given

by:

e−jkx1(1+α/(jω))x or (3.8a)

e−jkx1xe−(αkx1/ω)x (3.8b)

Becache et al. [2003] states that an instability develops if, for a given mode, the

perpendicular components of the k-vector and group velocity vector ~vg are antiparallel

at the entrance of the PML. This result can be ascertained by examination of the

exponential attenuation term in Equation 3.8b. If a wave possesses a component of

group velocity ~vg in the +x̂-direction and component of ~k in the −x̂-direction, the

fields exponentially grow inside the PML as opposed to the exponential decay as

desired.

To illustrate this concept, we make use of the refractive index surfaces for propa-

gation in both free-space and a cold magnetized plasma and discuss the differences in

the context of the PML. The refractive index surface determines the relative directions

of the group velocity ~vg and ~k vectors.

3.3.5 PML in Free-space

In free-space, the refractive index surface is a sphere of unit radius and its cross

section is shown as the circle surrounding the dipole antenna in Figure 3.4.

The k-vector represents the initial wave launched from the antenna and the group

velocity direction is normal to the refractive index surface. It is readily seen from

the free-space refractive index surface of Figure 3.4 that all components of the group

velocity and k-vector are parallel within the medium and at the PML interface. Ac-

cording to Becache et al. [2003] and Equation 3.8b, this constitutes a stable system,

with the wave attenuating inside the PML. However, in a magnetized plasma, the

refractive index surface is highly anisotropic and thus dependent on the k-vector

direction.
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Figure 3.4: Free-space isotropic refractive index surface.

3.3.6 PML in the Whistler Mode

For the purpose of the present development, we are interested in waves with frequen-

cies below the electron gyrofrequency, also known as whistler-mode waves. Character-

istics of this propagation mode are illustrated by the dispersion diagrams of Figures

3.5a and 3.5b adapted from [Kivelson and Russell , 1995, pages 356-392] where Figure

3.5b represents an expanded region around fLHR.

The LHR frequency in Figure 3.5b appears when ions are included in the cold

plasma formulation. For the case when the ratio of electron plasma frequency to

electron gyrofrequency is high, its value is approximately equal to [Stix , 1962, pages

30-32]:

fLHR '
√

fcefci (3.9)

where fce and fci are the electron and ion gyrofrequencies respectively. It is important

to note that all wave numbers less than zero in Figure 3.5a represent imaginary wave
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Figure 3.5: Cold plasma dispersion diagrams for fpe>fce where θ represents the propaga-
tion direction with respect to the background magnetic field. k>0 corresponds to the real
part of the wave number. k<0 corresponds to the imaginary part of the wave number. R
≡ Right-handed mode. L ≡ Left-handed mode. O ≡ Ordinary mode. X ≡ Extraordinary
mode. fR ≡ Right-hand cutoff frequency. fL ≡ Left-hand cutoff frequency. fuh ≡ Upper
hybrid frequency. fpe ≡ Plasma frequency. fce ≡ Electron gyrofrequency. (a) Frequency
range including evanescent modes. (b) Whistler-mode including Lower Hybrid Resonance
(LHR) frequency.

numbers corresponding to evanescent modes, while those greater than zero represent

propagating modes. Although we are mainly interested in whistler-mode propagation,

the dispersion diagram of Figure 3.5a contains frequencies in the HF range including

the Z-mode branch [Carpenter et al., 2003] for completeness. Waves propagating

in the Z-mode exhibit simultaneous electrostatic and electromagnetic behavior and,

shown in Section 3.3.8, PML instabilities exist in this frequency range as well.

For frequencies between fLHR and fce, wave propagation in directions orthogonal

to the static magnetic field is not possible, and such wave energy is thus strictly

evanescent. For fLHR<f<fce, the resonance cone angle is defined as the angle between

the direction orthogonal to the background magnetic field and the cone along which
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the refractive index tends to infinity as shown in Figure 3.6a. Example refractive

index surfaces for frequencies above and below the local LHR frequency are shown in

Figures 3.6a and 3.6b where ~k represents the wave number, ~vg is the group velocity or

velocity of energy flow given by the normal to the refractive index surface, and θ∗res is

the complement of the resonance cone angle discussed earlier.

(a) (b)

vg

k

vg

Bo

θg

θresk * k

Bo

vg

Figure 3.6: Whistler mode refractive index surfaces. (a) fLHR < f < fce/2. (b) fci � f <
fLHR.

The refractive index surfaces depicted in Figures 3.6a and 3.6b are functions of

the wave normal angle, defined as the angle between the k-vector direction and the

ambient magnetic field. The Gendrin angle is the non-zero wave normal angle at

which the group velocity is parallel with the static magnetic field [Gendrin, 1961].

The Gendrin angle θg is illustrated in Figure 3.6a and for high ratios of (fpe/fce) is

given approximately by the relation [Gendrin, 1961]:

cos θg '
2ω

ωce

(3.10)

where ω and ωce are the angular wave frequency and electron gyrofrequencies respec-

tively. For angles θ < θg in an orthogonal coordinate system, all components of ~vg

and ~k are in the same relative direction. However, for wave normal angles beyond the

Gendrin angle, i.e., θ > θg, the components of ~vg and ~k which are orthogonal to the

static magnetic field are antiparallel when entering the PML as shown in Figure 3.7.

Whistler-mode waves with a wave normal angle greater than the Gendrin angle,
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Figure 3.7: Unstable PML for whistler mode propagation.

such as the wave denoted by ‘1’ in Figure 3.7, exhibit exponential growth in the PML

per Equation 3.8b. This growth occurs because the PML shown to be unstable in

Figure 3.7 is designed to absorb waves with wave normals in the +x̂-direction or waves

of the form e−jk1x. Since the x̂-component of ~k is negative at the PML interface (and

thus immediately inside it), the wave fields experience non-physical growth inside the

PML. Wave ‘2’ is attenuated in the PML since the ŷ-components of ~k and ~vg are

parallel at the PML interface.

3.3.7 Solution to PML Instability in Whistler Mode

The negative index of refraction materials discussed by Cummer [2004] present a

similar problem with antiparallel group and phase velocities, except in that case, the

antiparallel group and phase velocity condition occurs at a particular frequency and

is independent of the k-vector direction. Furthermore, in the case of the negative

index of refraction materials, the group and phase velocity vectors are exactly anti-

parallel, i.e., are at 180-degrees with respect to one another. A simple frequency

dependent adjustment to the stretching parameter of Equation 3.6 is all that is needed
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to compensate for the PML instability. In a magnetized plasma, the situation is more

complex with the group velocity and k-vectors being both frequency and direction

dependent, and being at a finite angle (that is neither zero or 180-degrees) with

respect to one another. Thus, the stretching parameter, in addition, must incorporate

information about the k-vector direction. We have chosen to incorporate a specially

adapted form of the PML which has been tailored to isolate and absorb evanescent

modes in the directions orthogonal to the static magnetic field for frequencies f in

the range fLHR<f<fce. For f , fci�f<fLHR however, the aforementioned instability is

not present. Though the refractive index surface of Figure 3.6b is highly anisotropic

at these frequencies, for the PML surface alignment shown in Figure 3.7, there is

no k-vector for which the directional components of ~k and ~vg are antiparallel and

thus a PML can be made to absorb both propagating and evanescent modes in this

frequency range.

Numerical errors due to the reflection of propagating modes from the evanescent

boundary conditions do not pose an issue for antennas oriented perpendicular to the

static magnetic field at whistler-mode frequencies. For frequencies well below the

electron gyrofrequency, the refractive index surface is virtually flat with the reso-

nance cone angle being within a few degrees of the direction orthogonal to the static

magnetic field. In this case, most of the wave energy is focused into the PML parallel

to the static magnetic field and the evanescent modes are absorbed by the PML in

the direction orthogonal to the static magnetic field.

A strictly evanescent PML can be realized by utilizing the formulation given in

Chevalier and Inan [2004]. For simplicity, we only show the x̂-component. From

Equation 7 of Chevalier and Inan [2004], we have:

∇xPML
=

[
1− bx0 −

(
N∑

n=1

bxnαxn

jω + αxn

)]
∂

∂x
âx (3.11)

where ∇xPML
is the modified ∇ operator inside the PML, bx0 is a factor which con-

trols evanescent attenuation for non-propagating modes, and (bxnαxn) / (jω + αxn)

are terms which control the attenuation of simultaneous propagating and evanescent
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modes. Since the inclusion of any terms in the (bxnαxn) / (jω + αxn) sequence pro-

duces amplification inside of the PML orthogonal to the static magnetic field, these

terms are removed. Thus, a strictly evanescent PML for the x̂-direction is given by

Equation 3.12:

∇xPML
= [1− bx0]

∂

∂x
âx (3.12)

where bx0 represents a conductivity profile which varies from 0 at the PML interface

to 1 at the last PML layer in a low order polynomial fashion.

3.3.8 The Z-mode Instability

Analogous to the PML which amplifies waves in the whistler-mode, Z-mode wave

propagation [Budden, 1985, page 84] for frequencies between the plasma frequency

and upper hybrid frequency, as shown in Figure 3.5a, exhibits these same instabilities

within the PML. Figure 3.8 illustrates this instability in conjunction with the Z-mode

refractive index surface.
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PML
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kBo

Figure 3.8: Unstable PML for Z-mode propagation.

It is seen from Figure 3.8 that the PML oriented perpendicular to the magnetic
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field which attenuates waves at frequencies in the whistler-mode is now unstable for

Z-mode propagation. An important benefit of the FDFD method is that it allows us

to isolate a particular frequency of interest without exciting transients at other fre-

quencies due to broadband numerical noise. These transients, which are fundamental

characteristics of time domain simulations methods such as FDTD, result from the

introduction of a source into a computational space with zero-field initial conditions.

Regardless of the steady-state waveform function used, this initial transient is equiva-

lent to a delta function (albeit small) which produces noise across the entire frequency

spectrum. Since we are not concerned with propagation at these higher frequencies

for our applications, this HF branch can be ignored. For time-domain simulation

techniques such as FDTD, however, this issue would need to be specifically addressed

and resolved as discussed in Appendix C.



Chapter 4

Current Distribution and Terminal

Impedance

4.1 Simulation Setup

We now present results for the current distributions and input impedance of electric

dipole antennas operating in a cold magnetized plasma obtained using the AIP code

by neglecting the plasma sheath. The effects of the nonlinear sheath are addressed

in Chapters 5 and 6. FDFD simulations are carried out for dipole antennas oriented

perpendicular to the ambient static magnetic field. This orientation is chosen since

the antenna pattern and power delivery are optimal for launching waves parallel to

the static magnetic field [Wang and Bell , 1972a,b] which would in turn, optimally

interact with energetic radiation belt particles. Antennas considered for the purpose

of our application are on the order of 100 m in length and up to 20 cm in diameter.

The placement of the antenna in the numerical space is shown in Figure 4.1.

The FDFD method is well suited to model geometries small compared to the

free space wavelength. The antenna itself is assumed to be a PEC (Perfect Electric

Conductor) and the current distribution along the length of the antenna is calculated

by taking a line integral of the frequency domain magnetic field components encircling

each wire element along the length of the antenna. The input impedance is calculated

using Equation 4.1:

48
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Figure 4.1: Computational domain for cold plasma simulations. The PML boundary
conditions orthogonal to the magnetic field and denoted by PML∗ are evanescent for fLHR<
f<fce

Zin =
V(f)

I(f)
=

(
∫

~E · dl)
feed

(
∮

~H · dl)
feed

(4.1)

where the field quantities are already in the frequency domain per use of the FDFD

method. Equation 4.1 represents the ratio of the complex phasor quantities for the

current and voltage at the terminals of the antenna.

The computational grid used in our model is a non-uniform Cartesian mesh. For

propagation at wave normal angles close to the resonance cone, the theoretical wave-

length drops to zero in the cold plasma limit, and is thus not properly resolved on

a mesh with finite cell size. As a consequence, waves propagating with wave normal

angles close to the resonance cone realize wavelengths on the order of the mesh cell

size regardless of the cell resolution.

With the inclusion of an antenna, however, it has been verified in our simulations

that if the antenna is well resolved by the largest cell size used in the computational

space (i.e., 30 cells over the length of the antenna), it is not necessary to realize

zero-wavelengths using finite size cells. Thus, increasing the cell resolution beyond

30 cells does not adversely affect the impedance values since the waves dominating

the energy flow are well resolved. This observation is supported by Wang and Bell
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[1972a,b] who found that dipole antennas operating in a magnetized plasma environ-

ment preferentially radiate waves whose wavelength is of the order of the antenna

length.

For the purposes of our simulation, we first examine the properties of a 100 m

long electric dipole antenna in a cold magnetized plasma operating near L=2 in the

magnetic equatorial plane. We consider an electron-proton plasma with fpe = 401

kHz and fce =110 kHz in a collisionless environment. The computational meshes for

a 100 m antenna are shown in Figure 4.2 representing the geometries for frequencies

above and below fLHR. The ẑ-directed antenna is located in the center of the space

and is 20 cm in diameter which corresponds to the smallest cell size in the space. The

magnetic field is oriented in the +ŷ-direction and a PML is used to truncate the space

in all directions. The dipole antenna is excited with an Ez hard source [Taflove and

Hagness , 2000, page 176] in the gap between the conducting elements with a value of

1 V/m and the system is allowed to converge with a relative residual norm of 10−6.

One of the primary benefits of using a frequency-domain method over time-domain

analysis is the ability to use a different mesh and PML configuration for each simula-

tion run. Though we do not use this advantage to the full extent available (a different

configuration for each frequency), we do use a different mesh and PML configuration

for frequencies below and above fLHR for which the propagation characteristics are

quite different, as previously shown in Figures 3.6a and 3.6b. For frequencies f>fLHR,

there exists a range of k-vectors for which the refractive index is very large and tends

to infinity at the resonance cone angle θres as shown in Figure 3.6a. It is therefore

imperative to utilize much smaller cells in order to capture these tiny wavelengths

resulting from the high refractive index relative to those used for frequencies f<fLHR

as shown in Figure 4.2. For frequencies below fLHR, the resonance cone disappears as

shown in Figure 3.6b with the refractive index surface being closed and possessing a

maximum of µr'600 at directions orthogonal to the background magnetic field. The

refractive index surface for f<fLHR becomes more isotropic with decreasing frequency

and thus larger cells sizes may be used as shown in Figure 4.2a. It is this difference

in refractive index between the two frequency regimes that explains why the cell size

along the ẑ-direction corresponding to the length of the antenna stays at a constant
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Figure 4.2: Variation in cell size along each of the principal directions for non-uniform
mesh used in simulation at L=2. The dark gray cells correspond to those that are within
the computational domain and the light gray cells correspond to the PML layers. (a)
Frequencies below fLHR with (x̂, ŷ, ẑ) dimensions 32x32x51. (b) Frequencies above fLHR

with (x̂, ŷ, ẑ) dimensions 32x38x61.

value of 3 m for f>fLHR while the cell size is variable for f<fLHR.

As with the computational mesh, the PML configuration used is also different for

frequencies above and below fLHR. For frequencies f>fLHR, the PML consists of 10

cells in the x̂-direction, 15 cells in the ŷ-direction, and 10 cells in the ẑ-direction. The

PML layers in both the x̂ and ẑ-directions are made to absorb only evanescent waves,

while the PML layers in the ŷ-direction absorb both propagating and evanescent

waves in this frequency range. These layers, along with the computational mesh, are

illustrated in Figure 4.2. For frequencies below fLHR, there are 10 cells per PML layer

in all directions and each PML is made to absorb both propagating and evanescent

waves. The PML parameters are different for frequencies above and below fLHR since

the cell sizes and refractive index surfaces are quite different in the two cases. The
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PML performance up to 10 kHz including frequencies above and below fLHR for the

simulations in the L=2 environment are shown in Figure 4.3 corresponding to PML

orientations parallel and perpendicular to the static magnetic field.
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Figure 4.3: Reflection coefficient calculations for PML oriented both parallel and per-
pendicular to the static magnetic field, for angles of 5◦ and 45◦ with respect to normal
incidence. RHEP and LHEP incident wave polarizations are shown including the perfor-
mance for frequencies above and below fLHR. (a) Parallel at 5◦ incidence. (b) Parallel at
45◦ incidence. (c) Perpendicular at 5◦ incidence. (d) Perpendicular at 45◦ incidence.

There are several things to notice about the plots in Figure 4.3. First of all, the

only propagating modes in the frequency range fci�f <fce (where fci�fLHR) are

right-hand elliptically-polarized (RHEP). All waves launched from the antenna that

are left-hand elliptically-polarized (LHEP) are therefore evanescent in the plasma at

these frequencies. The discontinuity in the reflection coefficient calculations at fLHR

is a direct result of the differences in mesh and PML geometries across this transition

region as stated earlier. Though the PML performance for LHEP waves representing

the directions orthogonal to the static magnetic field shown in Figures 4.3(c-d) is
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relatively poor, being >−37 dB across the frequency range shown, the reflected

energy from these LHEP waves incident upon the PML parallel to the magnetic field

is absorbed with greater attenuation as shown in Figures 4.3(a-b). As mentioned in

Section 3.3.7, the PML in the direction orthogonal to the static magnetic field as

represented in Figures 4.3(c-d) for frequencies f>fLHR has been tailored to absorb

evanescent waves only, so as to avoid the PML instabilities mentioned earlier. As

a result, the incident RHEP propagating modes experience no attenuation and are

perfectly reflected. Finally, there is a small section in Figure 4.3c in the range 9.2<f<

10 kHz for which the incident RHEP wave is evanescent. The resonance cone angle

of Figure 3.6a is 5◦ at ∼ 9.2 kHz and marks the point at which the incident RHEP

waves become evanescent and are absorbed by this PML.

4.2 Antenna Current Distribution in Free-space

The derivation of the formula for the current distribution I(z) of a thin linear antenna

in free-space is documented in many texts including that of [Kraus , 1988, page 219]:

I(z) = I0 sin

[
2π

λ

(
`

2
+ z

)]
ejωt (4.2)

−`

2
≤ z ≤ `

2

where I0 is the peak magnitude of the current, λ is the wavelength, ` is the length of

the antenna, t is time, ω is the driving frequency and z is the distance along the length

of the antenna. It can be seen from Equation 4.2 that an antenna that is exactly λ/2

in length exhibits a half wave current distribution over the length of the element.

However, as the length of the antenna decreases to some fraction of a wavelength, the

current distribution becomes more and more triangular in shape, as shown in Figure

4.4

At VLF wavelengths, antennas of ` = 100 m in length would be considered elec-

trically short in free-space per Equation 4.2. Such has been the primary assumption

in the works of Balmain [1964], Wang and Bell [1969], Wang and Bell [1970] and
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  = l ¿λ
2

λl

Figure 4.4: Current distributions for thin linear antenna.

Wang [1970] as well as other early theoretical formulations mentioned in Chapter

1. Although we show that this free-space approximation as applied to a magnetized

plasma is valid for most cases considered in this dissertation, we present a few cases

where this assumption breaks down, namely those of very long antennas and large

electron number densities.

4.3 Current Distributions and Input Impedance

Calculations for a 100 m Antenna at L=2

The first case study is a 100 m antenna located in the equatorial plane at L=2.

Figure 4.5 represents the current distributions for frequencies above and below the

local LHR frequency with fLHR=2.55 kHz.

It can be seen from Figures 4.5a-4.5d that the current distributions are virtually

identical to the assumed triangular distribution of Wang and Bell [1969, 1970] and

Wang [1970] for the frequency range considered. One important point is that for a

simulated antenna of finite thickness, the current is non-zero at the ends, contrary to

the ideal case, since the finite area allows for a build up of charge at the tips. The

simulation results thus reflect this realistic condition much better than the idealized

case shown in dashed lines.

The results from our AIP code represent the first self-consistent calculations of

the current distribution along a short dipole antenna at VLF frequencies in a cold

magnetoplasma, while making no assumptions as to the form of the current. These
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Figure 4.5: Current distribution for a 100 m antenna at L=2 for driving frequencies
above and below fLHR. (a) f=400 Hz (f<fLHR). (b) f=2.0 kHz (f<fLHR). (c) f=2.6 kHz
(f>fLHR). (d) f=10.0 kHz (f>fLHR).

simulations affirm the accuracy of the triangular current assumption made by Wang

and Bell [1969, 1970] and Wang [1970] in the absence of the sheath providing assur-

ance in the validity of the impedance calculations that are now discussed.

Figures 4.6a and 4.6b compare the simulated input impedance of the 100 m dipole

antenna at L = 2 with results obtained from Wang and Bell [1969, 1970]; Wang

[1970]. Figure 4.6b represents an expanded portion of Figure 4.6a showing the zero

impedance point in finer detail. The plots for both the resistance and reactance

calculated with our numerical simulation are in good agreement with those evaluated

analytically by Wang and Bell [1969, 1970] and Wang [1970]. Below fLHR, Wang and
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Figure 4.6: Input impedance for a 100 m antenna at L=2. (a) Full range response (b)
Expanded region around zero impedance

Bell [1969, 1970] and Wang [1970] predict the reactance to vary from approximately

100 Ω at zero frequency to infinite at the LHR frequency. Unlike the case of the

quasi-electrostatic assumption of Balmain [1964], the work of Wang and Bell [1969,

1970] and Wang [1970] predict the resistance to have a non-zero value below the LHR

frequency ranging from zero at DC to infinite at the LHR frequency. These trends

are reflected in the simulated results as shown in Figures 4.6a and 4.6b. Above fLHR,

the analytical reactance varies from zero to about −8 Ω at 10 kHz. The simulated

impedance results in this regime are within about 15 Ω.

The disparity between the analytical and simulated results in Figure 4.6b is at-

tributed to a combination of theory and numerical accuracy of the FDFD technique.

Wang and Bell [1969, 1970] and Wang [1970] assume a triangular current distribution

with zero current at the tips of the antenna. In reality, an antenna possessing finite

width supports current at the tips of the antenna as shown in the simulation plots of

Figures 4.5a-4.5d. Additionally, the use of cells which are at least 104 times smaller

than the corresponding free-space wavelength results in convergence issues for the as-

sociated FDFD matrix. The large ratio of wavelength to cell size produces a matrix

with vastly different eigenvalues and thus a large condition number; a limitation of

the frequency domain method in this regime. This limitation is readily seen in Figure
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4.6b for which there exist impedance values that possess a negative resistance below

the LHR frequency.

Since our impedance results agree quite well with the work of Wang and Bell [1969,

1970] and Wang [1970] except for the likely unphysical negative resistance below fLHR,

we expect that the results of Wang and Bell [1969, 1970] and Wang [1970] are more

accurate for this resistance calculation than our AIP code. However, since Wang and

Bell [1969, 1970] and Wang [1970] are restricted to dipole antennas, an accurate and

general simulation tool is desired. Therefore, future work will need to explore possible

ways to circumvent this difficulty such as a different type of normalization procedure

or reformulating the FDFD equations in order to achieve better convergence in this

frequency range.

4.4 Current Distributions and Input Impedance

Calculations for a 100 m Antenna at L=3

The second case study examines the properties of a 100 m antenna located at L=3

in the equatorial plane. Typical values of the plasma and gyrofrequencies at L=3

are fpe = 284 kHz and fce = 32.6 kHz respectively. Since the computational mesh

geometry of Figure 4.2 and the PML performance characteristics of Figure 4.3 are

very similar to the simulation setup at L=2, these characteristics are not shown.

Only two different examples of the current distribution are given since they are not

markedly different than those for the cases of an antenna at L=2. Figures 4.7a and

4.7b represent the current distributions for frequencies above and below fLHR=761

Hz respectively.

It can be seen from Figures 4.7a and 4.7b that there is no significant deviation

from a triangular current distribution for an antenna subject to a decrease in plasma

and gyrofrequencies. Figures 4.8a and 4.8b compare the simulated input impedance

of the 100 m dipole antenna at L=3 with results obtained from Wang and Bell [1969,

1970] and Wang [1970].

As with the results from the previous case study, the impedance characteristics
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Figure 4.7: Current distribution for a 100 m antenna at L=3 for driving frequencies above
and below fLHR. (a) f=460 Hz (f<fLHR). (b) f=4.0 kHz (f>fLHR).
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Figure 4.8: Input impedance for a 100 m antenna at L=3. (a) Full range response (b)
Expanded region around zero impedance

in Figure 4.8 exhibit good agreement with the work of Wang and Bell [1969, 1970]

and Wang [1970] except for the difference in resistance values for frequencies below

fLHR. Relative to the case at L=2 however, the resistance values below fLHR as

shown in Figure 4.8b exhibit better agreement with the theoretical results. This can

be attributed to the fact that since the number density and magnetic field strength

are less at L=3, so is the degree of anisotropy, thereby resulting in an FDFD matrix
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that possesses better convergence characteristics.

4.5 Non-triangular Current Distributions

For the 100 m antennas we have considered thus far operating at both L=2 and L=3 in

the equatorial plane, the current distributions have remained virtually triangular. We

now show that there exist cases for which these electrically short antennas operating

at VLF frequencies exhibit current distributions that decay exponentially along the

length of the antenna as a result of their orientation lying within the evanescent

region of the refractive index surface for frequencies above fLHR. For this purpose,

we consider antennas operating at L=2 only and consider variations in length and

plasma frequency while keeping the gyrofrequencies constant. For these comparisons,

fLHR is unchanged and has a value of 2.55 kHz.

4.5.1 Long Antennas

First we consider the effects of an increase in antenna length, keeping all plasma

parameters constant, corresponding to conditions found at L=2 as in Section 4.3.

Figures 4.9a and 4.9b show the current distribution for linear antennas that are 2000

m and 4000 m corresponding to lengths which are factors of 30 and 15 smaller than

the equivalent free-space wavelength respectively.

It is seen from Figure 4.9a that for a 2000 m antenna, the current distribution

only slightly deviates from the triangular assumption whereas for the 4000 m antenna

shown in Figure 4.9b the current experiences substantial decay which would result in

a significant decrease in the dipole moment, thereby reducing the radiation resistance.

Thus, dipole antennas that exhibit this type of exponential decay along the length

of the elements would not be as efficient at delivering power to the medium and

therefore, are not as useful as wave-injection instruments.
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Figure 4.9: Current distributions for long antennas at L=2 operating at 5 kHz. (a) Length
= 2000 m (b) Length = 4000 m

4.5.2 High Plasma Frequency

An increase in the local plasma frequency, keeping all other factors unchanged, results

in a similar exponential decrease in the antenna current distribution. In this case we

examine a 100 m long antenna operating at an augmented L=2 plasma environment

by adjusting only the local plasma frequency fpe to values of 10 MHz and 20 MHz.

These results are shown in Figure 4.10.
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Figure 4.10a and 4.10b correspond to plasma frequencies that are roughly 20 and

40 times the normal value at L=2. It is not until the plasma frequency reaches 20

MHz as shown in Figure 4.10b that we see a detrimental effect on the current moment

as in Figure 4.9b. Since plasma frequencies that are this high are not typically seen in

space environments which are considered in this dissertation, the example of Figure

4.10 is of little concern for a 100 m antenna. However, for future space missions

that propose long antenna designs, this adverse effect on the current distribution

due to long antenna lengths is an issue that would need to be addressed since there

apparently is nothing to be gained by using longer dipole antennas, at least in terms

of radiation efficiency.

With respect to the case of high plasma frequency, our simulations have only

explored 100 m antennas. However, it is entirely possible that slightly longer antennas

orbiting at low altitudes such as in the polar regions of the Earth, where the electron

densities can be much larger, would exhibit the same exponential decay as in the

previous case study concerning the 4000 m antenna operating in the equatorial region

of L=2. Future simulation work using our AIP code could determine this minimum

length requirement for a given plasma environment.



Chapter 5

Warm Plasma Electrostatic Model

In this chapter, we extend the capability of the AIP simulation tool to include warm

plasma effects in order to study the formation of the plasma sheath surrounding a

dipole antenna. The warm plasma formulation incorporates all nonlinear effects for

each fluid moment utilized, coupled with Poisson’s equation for the quasi-electrostatic

fields. The details of this approach along with the closure approximations and simu-

lation techniques used are now discussed.

5.1 Closure Approximations

In the warm plasma fluid approximation, no assumptions of linearity are made and

thus all convective terms in the system of moments defined by Equations 2.4a-2.4d

are preserved. Three warm plasma closure mechanisms are considered in this dis-

sertation. The first closure relation is the isothermal approximation which assumes

that the pressure tensor P is diagonal with each element p given by the ideal gas

law relation p=nkBT , where T is the plasma temperature in all directions. In this

isothermal approximation, the system of equations representing the plasma is given

by the first two fluid moments shown in Equations 2.4a-2.4b which are repeated here

for convenience:

62
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∂t(nm) +∇ · (nmu) = 0 (2.4a)

∂t(nmu) +∇ · (nmuu + P)− nq (E + u×B) = 0 (2.4b)

It should be noted that a very simplified adiabatic energy equation for each species

α such as pαn−γα
α = constant can be used instead of the isothermal approximation

without explicitly solving a full moment equation for the pressure tensor P. This

modifies the isothermal approximation p=nkBT by the factor γ where γ =1 + 2/N

and N is the number of degrees of freedom [Bittencourt , 2003, page 454]. Thus the

pressure gradient, which is derived from the diagonal elements of the pressure tensor

for each species in our two-moment model, now becomes:

∇pα = γkBTα∇nα (5.2)

where n is the number density and p is one of the diagonal elements of the tensor. Ma

and Schunk [1989] compared both this simplified adiabatic relation and the isother-

mal formulation and found that there was virtually no difference between the two

approximations at high applied potentials relative to the background plasma poten-

tial. The reason the two approximations are equivalent is that the pressure gradient

is most significant where the density changes rapidly and the electric field is weak

[Ma and Schunk , 1989]; however, the only way to produce a large density gradient in

our case is with a strong electric field.

The second closure relation assumes that the system is adiabatic (i.e., ∇ ·Q = 0)

and thus all terms involving the heat flux tensor are zero. In this adiabatic formula-

tion, the plasma is represented by the first three moments of Equation 2.1 repeated

below as Equations 2.4a-2.4c:

∂t(nm) +∇ · (nmu) = 0 (2.4a)

∂t(nmu) +∇ · (nmuu + P)− nq (E + u×B) = 0 (2.4b)

∂t(P) +∇ · (uP + Q) + {P · ∇(u) + Ωc ×P}sym = 0 (2.4c)
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The third closure relation makes no assumptions on adiabaticity and includes the

heat-flux tensor as well as an approximation on the 4th order moment R. The system

of equations using this non-adiabatic closure approximation is given by:

∂t(nm) +∇ · (nmu) = 0 (2.4a)

∂t(nmu) +∇ · (nmuu + P)− nq (E + u×B) = 0 (2.4b)

∂t(P) +∇ · (uP + Q) + {P · ∇(u) + Ωc ×P}sym = 0 (2.4c)

∂t(Q) +∇ · (vQ + R) +

{
Q · ∇(u) + Ωc ×Q−P∇ · (P)

1

nm

}sym

= 0 (2.4d)

5.2 Quasi-Electrostatic Approximation

Though early antenna work involving sheath formation makes unjustified simplifying

assumptions [Mlodnosky and Garriott , 1963], some insight into the relative size of

the sheath can be gained so as to gauge whether or not a quasi-electrostatic solution

is justified at high voltages. The work of Laframboise [1997] provides modifications

to the Boltzmann factor based on various criteria for spacecraft charging. Using

Laframboise [1997] as a reference coupled with the sheath radius approximations in

Mlodnosky and Garriott [1963], we can deduce that even at 1000 V applied potential

on the antenna, the sheath radius would only be a couple of meters at VLF frequen-

cies, still much smaller than the smallest electromagnetic wavelength. In addition,

some insight can be obtained from the examination of Equations 3.4a and 3.4b in

terms of the relative magnitudes of various quantities. A first order approximation

of the wave electric field using Equations 3.4a and 3.4b at 1000 V does not produce

a wave magnetic field that has a magnitude on the same scale as the background

magnetic field. Likewise, a comparison of the displacement and conduction current

terms at VLF frequencies yields the relation σ� ωε0 when ωp� ω, providing fur-

ther justification for the electrostatic approximation since it is the conduction current

term that is dominant. Therefore, a quasi-static approach is justified and Poisson’s

equation can be used to close the system of fluid equations given by:
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∇ · E =

∑
α

ρα

ε0

(5.5)

where ε0 is the permittivity of free space, and the charge density ρ is summed across all

species α, with α=2 representing only electrons and protons in our model. The use of

Poisson’s equation removes the electromagnetic time-stepping constraint and avoids

the PML instabilities discussed in Chapter 3. Since the use of Poisson’s equation in

our model supports only electrostatic waves, a PML is not required. In addition, the

use of Poisson’s equation assumes a constant potential distribution on each antenna

element as shown in Figure 5.1

-V

+V

Figure 5.1: Electrostatic potential variation on electrically short dipole antenna.

The constant potential variation in Figure 5.1 forces a triangular current distribu-

tion on the antenna as previously shown in Figure 4.4 for the case of an electrically

short antenna. This current distribution is in agreement with our findings using the

cold plasma electromagnetic model and is therefore quite accurate for our purposes.

5.3 Simulation Development

Instead of using finite-differences for the spatial derivatives as in our cold plasma

model of Chapter 3, the warm plasma model uses a finite-volume method to solve

for the fluid dynamics and an iterative matrix solver for the solution of Poisson’s

equation which provides the electrostatic fields. Once again, the simulation tool uses

the same PETSc framework [Balay et al., 2001, 2004] as was used for development of

the cold plasma model.
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5.3.1 Fluid Formulation

Equations 2.4a-2.4d can be written as a system of conservation laws of the form:

∂Ū

∂t
+∇ · F

(
Ū
)

= S̄ (5.6)

where Ū is the column vector of conserved quantities, F is the nonlinear flux func-

tion taking into account all convective derivatives in Equations 2.4a-2.4d and S̄ cor-

responds to the source terms for each moment. In a Cartesian coordinate system,

Ū= Ū (x, y, z, t) and S̄= S̄ (x, y, z, t) are functions of both space and time. Strictly

speaking, pressure and heat flux are not conserved quantities; however, rewriting

the update equations for these variables in the form of Equation 5.6 allows for a

straightforward application of a conservative FV technique for which these equations

are aptly suited. In this context, ‘conservative’ means that the amount of a given

quantity (such as mass density or momentum) leaving one cell and entering an adja-

cent cell through a single flux face is the same. This condition essentially means that

field quantities are neither created nor removed as a result of the spatial difference

operator.

Finite-Volume methods solve the integral form of a system of partial differential

equations by recasting the homogeneous form of the general moment equation given

by Equation 5.6 into conservative form using the divergence theorem:

∂

∂t

∫∫∫
V

ŪdV +©
∫∫

S

(∇ · F) dS = 0 (5.7)

The FV method we have chosen utilizes the central differencing formulation of

Kurganov and Tadmor [2000]. This method is second order accurate in space and is

coupled with the strong stability preserving (SSP) Explicit Runge-Kutta (ERK) time-

integration schemes of Spiteri and Ruuth [2002] which are up to fourth order accurate

in time. A variable time-step algorithm is employed in our simulation tool since the

fluid velocities are constantly changing in time due to the dynamic structure of the

sheath. This adaptive time-step is most critical during the early stages involving

transient sheath formation.
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The central differencing technique allows for all fluid variables to be colocated in

space, being at the center of a computational cell, eliminating the need for the spatial

averaging of various quantities as in the FDTD method. The method of Kurganov

and Tadmor [2000] is a shock capturing scheme and utilizes nonlinear functions called

‘limiters’ to suppress spurious oscillations due to large spatial gradients and mesh

decoupling due to the central differencing strategy. High resolution central schemes

such as Kurganov and Tadmor [2000] have successfully been applied to the study

of solar wind dynamics [Keller et al., 2002] and semi-conductor processing [Anile

et al., 2000b,a]. The method of Kurganov and Tadmor [2000] was chosen so as to

capture the steep density gradients that might form during initial sheath formation

at large applied potentials due to the presence of nonlinear terms in the moment

equations. Nonlinear terms have the effect of steepening propagating wavefronts,

producing gradients on the order of a mesh cell size and creating spurious oscillations

due to spatial aliasing. A detailed description of the method outlined in Kurganov

and Tadmor [2000] and the concept of nonlinear limiters which suppress oscillatory

behavior is provided in Appendix D. A brief outline of the key points of the method

presented in Kurganov and Tadmor [2000] is now discussed.

The non-oscillatory nature of Kurganov and Tadmor [2000] is achieved through

the addition of an artificial diffusion term which utilizes information on the local

characteristic speeds of wave propagation in the medium which are related to the

Courant-Friedrichs-Lewy (CFL) condition [Courant et al., 1967]. The local charac-

teristic speeds at time step n and at spatial step j + 1
2

are calculated using Equation

3.1 from Kurganov and Tadmor [2000]:

an
j+ 1

2
= max

Ū∈C
(
U−

j+1/2
,U+

j+1/2

) ρ

[
∂F
∂Ū

(
Ū
)]

(5.8)

Equation 5.8 states that the characteristics speeds are equal to the maximum value

of the spectral radius of the Jacobian J of the flux function F evaluated at each cell

interface, where J =∂F/∂Ū. The spectral radius corresponds to the magnitude of

the largest eigenvalue found from the characteristic equation derived from taking the
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determinant of J . To illustrate the calculation of the spectral radius A for a two-

moment plasma fluid system, we examine only the x̂-directed fluxes of the system of

equations described by Equation 5.6 and neglect the source terms since the spectral

radius only depends on the vector of fluxes F . The resulting system of equations is

given by Equation 5.9. 
ρ

mx

my

mz


t

+


mx

m2
x/ρ + pxx

mxmy/ρ + pxy

mxmz/ρ + pxz


x

= 0 (5.9)

where ρ is the mass density, mx=ρvx, my=ρvy and mz=ρvz are the momenta in each

coordinate direction, and pxx, pxy and pxz are the corresponding components of the

pressure tensor. For simplicity in the example calculation, we use the ideal gas law

for pressure P=nkBT, providing pxx=nkBT with all off diagonal elements being zero.

The subscripts t and x correspond to derivatives with respect to time and space in

the x̂-direction. The Jacobian J of Equation 5.9 is given by Equation 5.10:

J =
∂F
∂Ū

=



0 1 0 0

kBT

m
− m2

x

ρ2

2mx

ρ
0 0

−mxmy

ρ2

my

ρ

mx

ρ
0

−mxmz

ρ2

mz

ρ
0

mx

ρ


(5.10)

The characteristic polynomial is 4th order due to the rank of J and thus provides 4

eigenvalues which are equal to λ=
[
vx+

√
kBT/m, vx−

√
kBT/m, vx, vx

]
respectively.

The spectral radius A which is equal to the magnitude of the largest eigenvalue λ of

the corresponding characteristic equation is one of A=|λ|=
∣∣∣vx±

√
kBT/m

∣∣∣ depending

on the sign of the velocity vx. This relation essentially states that the characteristic

speeds are simply the sum of the bulk velocity and thermal velocity. The charac-

teristic speeds are virtually the same in each of the other dimensions, with a simple

substitution of coordinate direction, and the speeds for the higher order moments
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are found in the same way. When the equations are normalized however, the expres-

sions for the characteristic speeds become more complicated since it is assumed in

the derivation that all normalization factors are different. This concept is discussed

in the following section.

5.3.2 Normalization of Fluid Equations

Each equation in the set of fluid moments is normalized based on the ambient condi-

tions and characteristic scales in the plasma. The normalization of the length scales

in each coordinate direction (x̃, ỹ, z̃) are based upon the smallest cell size in the com-

putational domain. Since each moment is derived by taking successive moments of

the Vlasov equation with respect to powers of the total velocity v and/or random

thermal motions c, the variables such as density, momentum, pressure and heat-flux

are normalized with respect to the corresponding powers of the ambient thermal ve-

locity for that species. The variable time is normalized with respect to the ratio of

the smallest cell size in the computational domain to the speed of light. For instance,

in a single dimension, this normalization would be t̃=∆xmin/c where ∆xmin is the

smallest cell size in the x̂-direction, c is the speed of light, and t̃ is the normalization

constant for time.

5.3.3 Multi-scale Simulations

Multi-scale plasma simulation regions which have been used by previous authors

[Parker et al., 1993a,b; Wang and Wendt , 1999] are very useful in minimizing the

computational requirements by utilizing spatial scales that are appropriate to the

region of interest. In the context of sheath dynamics, one typically uses cell sizes

on the order of a Debye length λD within the sheath region, in order to capture

the shielding effects without spatial aliasing. Outside of the sheath region however,

the scale lengths are generally larger in order to capture physics such as Langmuir

oscillations and electromagnetic waves. For instance, Parker et al. [1993a] successfully

modeled the sheath region and ion acoustic waves using a PIC code, while Wang and

Wendt [1999] likewise modeled the sheath using a fluid approach. In both cases, the
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cell size within the sheath region was on the order of a Debye length λD while outside

of the sheath the cell size ∆x gradually increased to lengths ∆x�λD. Additionally,

Parker et al. [1993b] applied a multi-scale approach to approximate the sheath with

a ‘logical sheath’ boundary condition without actually resolving the sheath region,

obtaining results comparable with analytical descriptions of the sheath.

An adjusted mass ratio is often used in simulations [Calder and Laframboise, 1990;

Calder et al., 1993] to reduce the computational requirements as long as the underlying

principal physics is not significantly modified i.e., mi � me. In our simulations,

we assume a proton-electron temperature ratio of (Tp/Te)=1.0 and in some of the

simulation results presented in Chapter 6, a mass ratio of (mp/me)=200. These

assumptions are clearly marked in the corresponding results section.

5.3.4 Boundary Conditions

Boundary conditions are implemented for both Poisson’s equation and the plasma

fluid equations. In either case, these relations must be specified on the plasma-facing

surface of the material immersed within the plasma (e.g., the antenna surface) as well

as at the exterior of the simulation domain. The boundary conditions used in our

warm plasma model for the fields and the fluid are now discussed.

Poisson’s Equation

On the surface of the conductor there are two distinct types of boundary conditions

implemented for the solution of Poisson’s equation, based on whether or not the

conducting element is active or passive. If the element is active, as in the case of

a transmitting antenna, the potential on the conducting surface is forced to be the

driving potential. If the element is passive, the situation is slightly more complex. A

conducting body immersed in a plasma collects space charge, creating a floating DC

potential on the conducting surface as a result of the different mobility of each plasma

species. At a temperature of T =2000◦ K, this negative DC floating potential has a

magnitude on the order of a few tenths of an electron-volt (eV). The passive condition

corresponds to the initial conditions of the fluid simulation since it is the initial state of
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any non-transmitting element in a plasma. Therefore, in our simulations, this initial

floating state of the conductor is first run as a separate self-consistent simulation,

providing the initial conditions used in the active antenna simulations. The solution

of Poisson’s equation for the floating conductor utilizes the capacity matrix method

developed by Hockney and Eastwood [1981].

At the edge of the computational space, our model utilizes a Robin boundary

condition [Eriksson et al., 1996, page 184] for Poisson’s equation which allows us

to specify, for the potential Φ, a Dirichlet condition Φ = Υ, Neumann condition

dΦ/dx = Υ, or any linear combination thereof for a value of the constant Υ and

spatial variable x. The partial differential equation describing a Robin boundary

condition for the potential Φ in the x̂-direction is given by Equation 5.11.

ηΦ + ξ
dΦ

dx
= Υ (5.11)

where η and ξ are user-adjustable constants. We assume the plasma to be quasi-

neutral far from the sheath region and therefore implement a Dirichlet boundary

condition with the potential at the outer boundary of the domain equal to zero. In

this case, we set η=1, ξ=0, and Υ=0, and adjust the corresponding boundary values

in the potential matrix.

Fluid Equations

The boundary conditions at the conductor surface for each of the fluid moments are

found by integrating an assumed Maxwellian distribution in either the left or right half

plane for each quantity that is crossing an imaginary flux surface in a single direction.

For the first two moments, the distribution function is assumed to be a drifting

Maxwellian given by Equation 2.2. For the pressure and heat flux moments which

only take into account the thermal motions of the particles, the distribution function

is modeled as a non-drifting Maxwellian. For the 0th moment which corresponds to

mass density, we assume a zero gradient or Neumann condition across the surface of

the conductor. For the 1st moment corresponding to momentum conservation, the

uni-directional velocity vs of a fluid element at the surface of a conductor located in
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the right half plane is given by Equation 5.12:

vs =
1

2

{
e−v2

0/(2v2
th)
√

2

π
vth +

[
1 + erf

(
v0√
2vth

)]
vo

}
(5.12)

where v0 is the Maxwellian drift velocity, vth is the thermal velocity, and erf [ ] repre-

sents the error function. Figure 5.2 is a plot of Equation 5.12 showing the relationship

between the drift velocity and total velocity of the particles.
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Figure 5.2: Fluid velocity boundary condition at material facing surface.

From Figure 5.2, it can be seen that the total velocity of the fluid element is always

directed into the material. Thus, on a microscopic scale, when a particle impacts on

the surface of the conductor, it is absorbed and is thus not able to return to the

bulk plasma. High energy particles impacting the surface could certainly spawn the

emission of secondary particles. However, for reasons outlined in Chapter 2, this

effect is not included in our present model. The pressure and heat flux elements

at the conductor surface are found in a similar manner by integrating with respect

to a uni-directional velocity distribution in the direction facing the conductor. This

integration produces a pressure tensor at the material boundary for which all off-

diagonal elements are zero, resulting from the integration of an odd function in the

directions perpendicular to the material-facing surface.



Chapter 6

Plasma Sheath Results

The warm plasma fluid formulation is designed for the study of sheath formation sur-

rounding an electric dipole antenna. In this chapter we apply the AIP code in the elec-

trostatic regime to study the sheath properties. We show that it is the sheath which

dominantly determines the terminal impedance and thus the tuning requirements for

the antenna, and that it is thus imperative to accurately simulate its contribution.

We begin by validating our fluid model in the context of one-dimensional planar

sheath simulations through comparison with the analytical work of Bohm [1949]. As

discussed in Chapter 1, these analytical formulas provide a reasonable approximation

to the floating sheath and are documented in many plasma physics textbooks [Bit-

tencourt , 2003, pages 279-288]. Next, we examine the effect of various closure mech-

anisms on the formation of the sheath around a two-dimensional infinite line source

considering both isotropic and magnetized plasmas. Finally, simulation results for

the sheath surrounding a 20 m long electric dipole antenna in three-dimensions are

presented for four case studies. Geometric and terminal impedance characteristics of

the dipole antenna are highlighted in interpreting the results of these simulation runs.

73
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6.1 One-dimensional Planar Sheath

6.1.1 Bohm Sheath Derivation

In the presence of a conservative force field, the equilibrium steady-state Maxwell-

Boltzmann distribution of Equation 2.2 is modified by an additional exponential

forcing function which is called the Boltzmann factor and is equal to [Bittencourt ,

2003, page 181]:

exp

[
−U(r)

kBT

]
(6.1)

where U(r)= qΦ(r) for a potential field Φ(r) and position vector r. Once again, q is

the charge of the particle, kB is Boltzmann’s constant and T is temperature. Using

the assumption that the electrostatic potential is weak relative to the background

temperature of the plasma, i.e., qΦ(r)� kBT , one can derive the formula for the

Debye shielding distance λD which is equal to:

λD =

√
ε0kBT

neq2
e

(6.2)

where ne is the electron number density and all other variables were defined earlier.

The relation qΦ(r)�kBT and Equation 6.1 form the basis of the derivation in Bohm

[1949], allowing for the closed form solution of the planar-sheath which develops

adjacent to a conducting wall. The details of the formulation, which are based upon

the first two linearized moments of Equation 2.1 coupled with Poisson’s equation,

are outlined in [Bittencourt , 2003, pages 279-288]. A summary of these analytical

formulas with which we compare our nonlinear warm plasma formulation in a regime

for which the analytical results are valid is now given. Subsequently, we point out

the inherent weaknesses in these analytical formulations as they relate to AC antenna

sheath analysis at high voltages.

The sheath develops as a result of the vastly different mobilities of the electrons

and protons in our two species plasma. As electrons collect on the conductor, being

much lighter and more mobile, they produce a net negative potential on the surface
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of the floating conductor which prevents additional electrons from being collected.

Eventually, a steady state is reached when the net current draw onto the conductor

is zero. The analytical floating potential on the wall in this steady state situation is

equal to:

Φwall = −kBT

4|qe|
ln

(
mp

me

)
(6.3)

where mp and me are the mass of a proton and electron respectively. Allowing for

1-D variations in x̂ only, the steady-state electron and proton density profiles in the

x̂-direction are found to be:

ne(x) = n0 exp

[
|qe|Φ(x)

kBT

]
(6.4a)

np(x) = n0

[
1− 2|qe|Φ(x)

mpu2
op

]−1/2

(6.4b)

where n0 is the bulk plasma density and uop is the drift velocity of the protons entering

the sheath originating from x=∞. The final approximation needed in the derivation

of Equations 6.4a-6.4b is given by Equation 6.5:

meu
2
e � kBT � mpu

2
p (6.5)

where ue and up are the velocities of the electrons and proton fluids throughout the

sheath region. Equation 6.5 is simply a statement that the kinetic energy of the ions

is greater than their thermal energy, while for the electrons, the opposite is assumed.

6.1.2 1-D Simulation of Planar Sheath

To test our warm plasma simulation tool, we consider a collisionless, fully ionized

plasma with parameters corresponding to L=2 in the equatorial plane as in the cold

plasma results of Chapter 4. The Debye length for this plasma is λD'7 cm and the

proton-electron mass ratio is (mp/me)=1836. The cell size in the simulation domain

is chosen as to capture any Debye-scale effects under these low-voltage conditions and
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is made to be ∆x = 2.5 cm, with the entire space being 2.5 m in length or roughly

36 λD. For these one-dimensional planar sheath calculations we neglect the magnetic

field. A floating (no applied potential) conducting wall is placed in the left half plane

of the 1-D simulation space with the initial number densities of electrons and protons

made constant across the simulation domain. In addition, the initial velocities of both

the protons and electrons are zero with the only non-zero element being the directed

drift-velocity boundary condition specified in Equation 5.12 and shown in Figure 5.2.

The boundary condition of Equation 5.12 is the initial condition that allows for the

electrons to initially collect on the surface of the conductor and eventually form a

negative potential barrier. On the outside of the simulation domain, the potential is

held at 0 V and the boundary conditions for the fluid elements utilize a Neumann

condition as discussed in Chapter 5.

Figure 6.1 represents a comparison between our fully nonlinear warm plasma

model and the analytical results of Bohm [1949]. Simulations were performed us-

ing all three warm plasma closure mechanisms outlined in Chapter 2. However, there

were negligible differences between the simulation runs for the one-dimensional float-

ing sheath since we are in an essentially linear regime. Thus, only the simulation

results obtained by using the full non-adiabatic closure assumption represented by

Equations 2.4a-2.4d are shown.

Figure 6.1 presents comparisons of our sheath model with that of Bohm [1949]

for the potential, electron density and proton density variations, given by Equations,

6.3, 6.4a and 6.4b. It can be seen from the figure that our warm plasma results are

in very good agreement with the analytical results, as to be expected for the case

of a floating potential. The floating potential on the conducting surface as shown

in Figure 6.1a is Φwall '−0.2 V, which is slightly less than the background plasma

potential.

Unlike the analytical results of Bohm [1949] which force a steady-state sheath

condition, our simulations let this condition develop naturally in a self consistent

manner. The total simulation time to reach the quasi-steady state condition repre-

sented by our model in Figure 6.1 was about t = 5 ms which corresponds to 2000
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Figure 6.1: Comparison of 1-D planar sheath simulation with analytical results of Bohm.
(a) Potential. (b) Electron number density. (c) Proton number density.

τpe, where τpe is an electron plasma period equal to 2.5 µs at L=2. If the 5 ms sim-

ulation time was to represent the period of an AC voltage source, the steady-state

sheath would develop on scales corresponding to the period of a 200 Hz sine wave, a

frequency far lower than the VLF range for the wave-particle interaction applications

that motivate our study. In addition, with a plasma potential of ∼ 0.2 eV at L=2,

application of even 1 V across the antenna elements would already imply a regime in

which the linear analytical theory is not valid. For the collisionless plasma considered

here, it is thus evident, based on the time-scales involved in sheath formation, that

the distribution function never reaches the steady-state equilibrium described by the

Boltzmann factor of Equation 6.1 for a source that is varying at VLF frequencies.

This fact puts into serious question any analytical sheath derivations that utilize this

Boltzmann factor for voltages in excess of the plasma potential, for anything other

than DC applied potentials in a collisionless plasma, such as the work of Song et al.

[2007]. On the other hand, collisions such as those present in a dense ionospheric

plasma, could certainly aid in speeding up the relaxation of the distribution function
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back to a Maxwellian state over time scales comparable to or less than the period

corresponding to VLF frequencies [Mlodnosky and Garriott , 1963; Baker et al., 1973].

6.2 Two-dimensional Infinite Line Source

The purpose of the two-dimensional studies is two-fold. The first is to determine the

importance of the proton dynamics in sheath formation. The second is to compare the

various truncation schemes in order to gauge the importance of higher order moments

in the fluid formulation for characterizing the time-varying sheath. In the interest of

limiting the computational demands imposed by keeping the full heat-flux tensor in

higher dimensions, we consider only the isothermal and adiabatic approximations for

all subsequent 2-D simulation runs.

Using our validated fluid model, we examine the sheath structure surrounding a

two-dimensional infinite line element. This study considers a two-dimensional infinite

line source in an isotropic plasma with parameters corresponding to L=3 where the

ambient background number densities of the plasma are 109 m−3 for both species.

We use an artificial proton-electron mass ratio of (mp/me) = 200; a commonly used

practice in order to ease the computation burden [Calder et al., 1993]. The scaled

proton plasma frequency in this case is fp = 20 kHz. The simulation uses Neumann

boundary conditions for the fluid at the edge of the space and any particles hitting

the line source are completely absorbed as in the planar sheath simulation of the

previous section. A sketch of the simulation domain is shown in Figure 6.2.

We examine the time-varying sheath formation using a quasi-electrostatic ap-

proach as discussed earlier. This approach involves the use of Poisson’s equation in

which a sinusoidal potential is applied to the line element with a source frequency of

fs =25 kHz and peak potential of approximately 1000 times the background plasma

potential, which is ∼172 V.
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Figure 6.2: Conceptual drawing of two-dimensional simulation region.

6.2.1 Proton Dynamics

In order to determine the importance of the proton dynamics in sheath formation, we

consider RF frequencies above and below the proton plasma frequency. To illustrate

the density variations within the sheath, we assume an isotropic plasma and recog-

nizing the resulting azimuthal symmetry, we take a vertical slice plane through the

line element and plot the resulting potential and density profiles using a 1-D repre-

sentation. Furthermore, we use the full adiabatic (3-moment) approximation for this

purpose. A diagram of the slice plane is shown in Figure 6.3.

Bo 
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^z

Slice plane along y-direction

Figure 6.3: Slice plane through infinite line source.

At time t=0 s, the sinusoidal potential starts with the positive cycle. During the

initial transient response, the protons are pushed away from the line source while the

electrons accelerate toward the antenna and are collected. Due to their inertia, and
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the fact that the source frequency is in the vicinity of the proton plasma frequency, the

majority of the protons traveling outward from the conductor cannot respond to the

change in electric field as the potential switches to the negative portion of the cycle

and are permanently displaced from the sheath region. This displacement forms an

evacuated or proton-depleted region for which the only substantial current collection

on the line element is now due solely to the electron response. Figure 6.4 depicts

the potential and density profiles at two specific times during this initial transient

response corresponding to the maximum and minimum potentials during the first

cycle of the sinusoidal waveform represented by t+ and t− respectively.
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Figure 6.4: Transient response of 2-d simulation at L=3. The symbols t+ and t− corre-
spond to the first positive and negative peaks of the potential cycle for the 25 kHz sinusoidal
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to quantities at t−. (a) Potential variation. (b) Electron and proton number densities.

During the negative potential cycle denoted by t− in Figure 6.4, the electrons are

pushed away from the sheath region, but due to their higher mobility, surpass the

outward propagating proton wavefront. Since the tendency of the plasma is to neu-

tralize any electric field perturbations that may exist, the electrons which exhibited
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the initial overshoot relative to the outward propagating protons start to electrostat-

ically shield the proton density perturbation, forming plasma frequency oscillations

at the sheath edge. After several sinusoidal cycles, this double-layer ceases to exist,

forming an outward propagating ion acoustic wave, which is shielded by the electrons

and eventually leaves the space. This behavior is in stark disagreement with some an-

alytical formulations in which the proton motion was neglected since it was thought

that the much heavier mass of the protons would essentially make them immobile

[Song et al., 2007].

The steady state situation near the line element is represented by Figures 6.5 and

6.6 which display time snapshots of the potential and density profiles for the electrons

and protons of our two species plasma after a number of periods of the 25 kHz applied

potential (which is 5 kHz above the proton plasma frequency) by which time the

response is periodic (except for the outward propagating density disturbance).
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Figure 6.5: Snapshot during positive potential cycle of infinite line source.

During the positive cycle, the few ions that are left in the sheath region are repelled

from the line element, whereas the electrons instantaneously react to the sinusoidal

varying potential since the operating frequency is well below the electron plasma

frequency being roughly fpe =284 kHz at L=3.

At a much later time, the density disturbance exits the simulation domain and

the electron and proton density profiles remain relatively unchanged at a distance of

up to 7 meters from the conductor. Beyond this point, the number density of both
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Figure 6.6: Snapshot during negative potential cycle of infinite line source.

species is approximately equal to the ambient density of the plasma.

6.2.2 Comparison of Isothermal and Adiabatic Closure Con-

ditions for Sinusoidal Excitation

In this section, we compare the isothermal and adiabatic closure relations for an AC

driven line element operating in both isotropic and magnetized plasmas by compar-

ing the current-voltage characteristics on the infinite line element. We consider two

frequencies that are 5 kHz above and below the proton gyrofrequency and for the

magnetized plasma, the magnetic field is oriented along the axis of the element in the

ẑ-direction.

Figures 6.7-6.10 represent the entire time-sequence for the voltage and current

collection on the line element for a given RF applied potential for frequencies that

are 5 kHz above and below the proton plasma frequency. The blue curves represent

the isothermal approximation (2-moments) and the red curves represent the adiabatic

approximation (3-moments) with the term mAdB indicating miliamps on a decibel

scale.

The current I on the conductor is calculated by taking the integral around the

closed surface S defined by the exterior of the element. This integral is represented

by Equation 6.6:
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Figure 6.7: Current-voltage relationship for isotropic plasma with sinusoidal applied po-
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I =©
∫∫
S

J · dS (6.6)

For the 2-D line source represented in Figure 6.2, Equation 6.6 amounts to a closed

line integral in the x̂-ŷ plane representing a current per unit length.

Figures 6.7 and 6.8 represent the current collection on the line element assuming an
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isotropic plasma. The current waveform is shown in both linear and log scales in order

to illustrate the small contribution of the protons. Although the proton contribution

to the current is negligible as seen per the rectified nature of the waveform, it is

nevertheless non-zero. The other important point is that there is little difference

between the isothermal and adiabatic approximations, suggesting that only a small

number of moments are necessary in order to capture the relevant physics in sheath

formation even under the collisionless assumption. This conclusion is supported by

the earlier work of Thiemann et al. [1992] who compared both a 2-moment fluid code

and a particle in cell (PIC) code with good qualitative agreement in a collisionless

isotropic plasma.

Figures 6.9 and 6.10 include the effects of a static magnetic field oriented in the

ẑ-direction as shown in Figure 6.2.
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Figure 6.9: Current-voltage relationship for magnetized plasma with sinusoidal applied
potential at 15 kHz. ‘Blue’ - 2 moments. ‘Red’ - 3 moments.

The inclusion of the magnetic field in the formulation has the effect of limiting the

current flow to the line element, as expected since charged particles gyrate around

magnetic field lines. The magnetic field has a much less pronounced effect on the

proton collection as seen in the log scale plots of Figures 6.9-6.10. The more massive

protons have a much larger gyroradius and therefore their contribution to the cur-

rent collection is relatively unchanged between the cases with and without the static
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Figure 6.10: Current-voltage relationship for magnetized plasma with sinusoidal applied
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magnetic field.

6.2.3 Comparison of Isothermal and Adiabatic Closure Con-

ditions for Pulse Train Excitation

The last set of 2-D comparisons is with respect to a pulse train in order to highlight

the highly dynamic character of the sheath resulting from instantaneous changes in

DC applied potentials. These results also illustrate the reason why the steady-state

Boltzmann factor of Equation 6.1 is not valid for a collisionless plasma perturbed via

DC applied potentials when driven at VLF frequencies.

Similar to the previous examples entailing sinusoidal applied waveforms, Figures

6.11-6.14 represent the entire time-sequence for the voltage and current collection

on the line element operating at frequencies in the vicinity of the proton plasma

frequency assuming an isotropic plasma with plasma density corresponding to L=3.

In the simulations represented by Figures 6.11-6.14, the same rectified behavior is

present; however, the peaks of the current waveforms exhibit very strong plasma fre-

quency oscillations that were also present in the simulations of Calder and Laframboise

[1990], Ma and Schunk [1989], Thiemann et al. [1992] and Ma and Schunk [1992a,b]
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Figure 6.11: Current-voltage relationship for isotropic plasma with pulse train applied
potential at 15 kHz. ‘Blue’ - 2 moments. ‘Red’ - 3 moments.
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Figure 6.12: Current-voltage relationship for isotropic plasma with pulse train applied
potential at 25 kHz. ‘Blue’ - 2 moments. ‘Red’ - 3 moments.

when studying current collection characteristics under DC applied potentials. The

plasma ringing starts to decay over the length of the positive pulse and then reappears

during the next cycle. Since the ringing is still evident even at frequencies below the

proton plasma frequency, the system never reaches a steady state and therefore the

Boltzmann factor of Equation 6.1 is not applicable at these frequencies. In addition,

the peak current during the positive cycle for both the sinusoidal cases (Figures 6.7
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and 6.8) and the pulse train cases (Figures 6.11 and 6.12) is roughly the same, being

1.5 mA at 15 kHz and 2 mA at 25 kHz, suggesting that the dominant factor governing

the current collection is the fundamental driving frequency and not the form of the

excitation.

We complete this section by including the effects of a ẑ-directed static magnetic

field as shown in Figure 6.2. Figures 6.13 and 6.14 represent the current-voltage

characteristics for this case, exhibiting the same decrease in current collection as with

the sinusoidal waveform, once again resulting from the magnetic field inhibiting free-

streaming particle flow. Even with the presence of the magnetic field which inhibits

particle motion across field lines, the plasma frequency oscillations are still present.
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Figure 6.13: Current-voltage relationship for magnetized plasma with pulse train applied
potential at 15 kHz. ‘Blue’ - 2 moments. ‘Red’ - 3 moments.

The major difference between the pulse and sinusoidal excitations other than the

plasma ringing is in the transient current collection. When the potential is stepped

to a DC value as opposed to slowly varying as in the sinusoidal case, the transient

current draw is much larger during the first cycle of the waveform for both isotropic

and magnetized plasmas.
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Figure 6.14: Current-voltage relationship for magnetized plasma with pulse train applied
potential at 25 kHz. ‘Blue’ - 2 moments. ‘Red’ - 3 moments.

6.3 Three-dimensional Dipole Antenna

In this section we use our three-moment (adiabatic approximation) warm fluid code

to examine the formation of the sheath surrounding a dipole antenna in a magnetized

plasma in 3-dimensions. The electric dipole antenna considered is 20 m in length

(tip-to-tip), 10 cm in diameter, and possesses a gap distance ranging from 20 cm

to 2 m between the two antenna elements. For these simulations, we consider cases

for which the operation of an electric dipole is under conditions corresponding to

L=2 and L=3 in the geomagnetic equatorial plane. The antenna is excited using a

sinusoidal inter-element potential difference of ∼ 86 V, approximately 500 times the

background plasma potential which we denote as 500Φp. In addition, the same scaled

proton-electron mass ratio of (mp/me)=200 is used as in the 2-D simulations. Only

perpendicular antenna orientations with respect to the background magnetic field

are considered as in the cold plasma simulation runs. Since there was virtually no

difference in the behavior of the current collection for the 2-D cases for frequencies just

above and below the proton plasma frequency, all 3-D simulation runs are performed

at a frequency 5 kHz above the local proton plasma frequency, being 28.4 kHz and

20 kHz at L=2 and L=3 respectively for the scaled mass ratio of (mp/me)=200.

As shown in Section 6.1, a floating conductor immersed in a plasma develops a
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negative potential due to the high mobilities of the electrons. An electric dipole an-

tenna experiences the same charging mechanism, if the collected charge is not removed

from the antenna using, for example, an electron gun. However, unlike the floating

wall, a transmitting antenna operating at high voltage relative to the background

plasma potential accumulates a large number of electrons on the positively biased

element during the sinusoidal cycle. This accumulation has the effect of producing a

negative bias on the antenna elements that causes the entire system to drift to some

negative DC potential. Instead of a symmetrically driven system, one of the elements

is at a large negative potential while the other is at only a slight positive potential,

forming asymmetric sheaths around the elements. In the following simulation runs,

we examine a number of different scenarios by varying the plasma environment, gap

spacing, and consider both a case for which an electron gun is used as well as that

for which the electrons are allowed to accumulate (i.e., no electron gun).

As mentioned in Chapter 1, the actual location of the sheath ‘edge’ is quite ar-

bitrary with no consensus on the defining criteria for this point [Franklin, 2004]. In

this dissertation, we define the edge of the plasma sheath as a point in the field

distribution at which the potential drops to within 10% of the maximum/minimum

amplitude as shown in Figure 6.15.

r

Potential
Amax

Sheath Width

−Amax

0.1Amax

Figure 6.15: Diagram describing location of sheath edge.

This definition of the sheath edge provides a much more stable result since the

densities are constantly varying during the sinusoidal cycle with electrostatic waves
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propagating outward from the sheath region. The electrostatic potential distribution

nevertheless remains periodic with the sheath edge remaining relatively unchanged

throughout the simulation runs.

6.3.1 Antenna at L=3 with Electron Gun and 2 m Gap

In this first case study, we consider the antenna to be located in the equatorial plane

at L=3 and assume that an electron gun removes negative charge from the antenna.

We initially start at L=3 since the magnetic field is weaker and the Debye length is

larger than the corresponding situation at L=2. Thus, the L=3 scenario is slightly

more reminiscent of an isotropic plasma. A sketch of the simulation region is shown

in Figure 6.16, with the x̂-directed background magnetic field oriented perpendicular

to the antenna.

60 m

Bo  
^x

^x

^y

^z

80 m

60 m

Figure 6.16: 3-dimensional computational domain at L=3.

As with Figures 6.5 and 6.6 from the 2-D runs of the previous section, we present

a time-snapshot of the sheath during the peak of a sinusoidal cycle after a quasi-

steady state has been reached. Figure 6.17 represents an orthographic projection of

the sheath during the peak of the sinusoidal cycle after several periods in each slice

plane. It can be seen from Figure 6.17 that the sheath is approximately 1 m wide

and is virtually symmetric in each of the slice planes suggesting that the background

magnetic field strength at L=3 does not play much of a role in the steady-state

formation of the sheath. On the other hand, it is clearly seen from Figure 6.17 that

the sheaths are not the same size on each element. This disparity is due to the fact
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that the expanding sheath does not instantaneously react to the applied voltage on

the antenna, due to the mass difference and finite transit time of the protons and

electrons through the sheath region. Therefore, the negative and positive sheaths

surrounding each element fully expand to roughly the same size, but just not at the

same time.
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Figure 6.17: Orthographic projection of expanded sheath for L=3 at maximum potential
difference 500Φp. Operating frequency is at f =25 kHz.

Figure 6.18 represents the 1-D variation of the potential and number density

for a radial slice taken through the midpoint of one of the dipole elements in the x̂-

direction. Analogous to Figure 6.4, the steady-state density variations for each species

during the negative and positive peaks of the sinusoidal cycle are shown. The steady-

state situation represented in Figure 6.18 is reached after 5 periods of the waveform.

Although the sheath itself is only 1 m wide as seen in Figures 6.17 and 6.18a, the

presheath region, which is defined by the density profiles, extends several meters from
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the conductor. However, the large outward propagating density perturbation seen in

the 2-D simulations has all but vanished by this time as can be seen in Figure 6.18b.
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Figure 6.18: Electron and proton density variation for cross-section through midpoint of
dipole antenna element at L=3. The symbols t+ and t− correspond to the first positive and
negative peaks of the potential cycle after 5 periods of the sinusoidal waveform. All quan-
tities shown by a dashed line correspond to t+ and all solid lines correspond to quantities
at t−. (a) Potential variation. (b) Electron and proton number densities.

The time-domain waveforms in Figures 6.19a-6.19c represent the terminal charac-

teristics for a single element of the dipole antenna located at L=3, including potential,

current and charge. The current on the element is calculated using Equation 6.6 while

the charge Q is calculated using Equation 6.7:

Q =©
∫∫
S

ε0E · dS (6.7)

where E is the electric field emanating from the dipole element. The charge is cal-

culated by evaluating Gauss’ law around the conductor where the electric field E is

obtained from the solution of Poisson’s equation via E=−∇Φ where Φ is the potential

applied to the element.
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Figure 6.19: Terminal characteristics for 20 m antenna located at L=3. (a) Voltage. (b)
Current. (c) Charge.

The presence of discontinuities in the current profile of Figure 6.19b produces

high frequency content in the Fourier domain. As such, the resistance function, being

highly nonlinear, would render the design of a tuning circuit, a challenging task. It

is seen from Figure 6.19 that the transient behavior during initial sheath formation

has subsided after the first excitation period. Figure 6.19b exhibits the same rectified

sine wave behavior present in the 2-D simulations resulting from negligible proton

current flowing to the dipole element.

In order to obtain a rough approximation of the steady-state sheath’s contribution

to the terminal properties of the dipole antenna, we calculate the time-domain root

mean square (RMS) capacitance and resistance values using Equations 6.8a and 6.8b:

Crms =
Qrms

Φrms

(6.8a)

Rrms =
Φrms

Irms

(6.8b)

where Φrms, Irms, Qrms, Crms and Rrms are the RMS values of potential, current, charge,

capacitance and resistance respectively. Substituting the RMS values inferred from

Figure 6.19 into the formulas given by Equations 6.8a and 6.8b, the time-domain ca-

pacitance and resistance values at the driving frequency of 25 kHz are roughly C∼169
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pF and R∼13.7 kΩ respectively, thus it can be concluded that the sheath dominates

the tuning characteristics of the antenna relative to the cold plasma impedance cal-

culations of Chapter 4.

It is important to note that due to the nonlinear nature of the sheath, capacitance

and resistance values used for tuning purposes are only valid for the peak sinusoidal

voltage at which the transmitter is driven. Therefore, separate simulation runs would

need to be made to calculate the sheath’s contribution to the terminal impedance

properties for each excitation waveform and driving potential used for a particular

plasma environment.

To complete the sheath analysis of the dipole antenna at L=3, Figure 6.20 repre-

sents a plot of the time-domain current flowing within the center of the gap between

the elements. The current is determined by integrating the flux of particles flowing

through a cross section with radius equal to the sheath width, being 1 m in this case.

Results from this calculation allow us to determine the importance of inter-element

current flow on the total current moment of the antenna so as to ascertain whether

or not the dipole elements should be spaced at some minimum distance to prevent

adverse effects on the radiation resistance.
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-100
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Figure 6.20: Inter-element gap current for dipole antenna at L=3.

From Figure 6.20, it is seen that after the initial transient has diminished (∼ 60

µs), a steady-state current is reached, having a peak value of approximately 40 µA.

In the next few sections, we compare this value of the gap current with that of dipole

antennas possessing a smaller gap spacing, floating potential, and operating in more

dense plasma environments.



CHAPTER 6. PLASMA SHEATH RESULTS 95

6.3.2 Antenna at L=2 with Electron Gun and 2 m Gap

The next case study is that of an electric dipole antenna located at L=2 where the

magnetic field is more appreciable than that at L=3. Since the Debye length is

smaller at L=2 with a number density that is approximately a factor of two larger,

the computational domain is slightly smaller in size. A sketch of the simulation region

is shown in Figure 6.21.
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^z
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30 m

Figure 6.21: 3-dimensional computational domain at L=2.

Although not shown here, one major difference between the runs at L=2 and L=3

is during the initial transient response in which the transient sheath expands along

the field line. However, the steady-state sheath (reached after a few sinusoidal cycles)

is virtually the same as that found at L=3 with only a very slight increase in the

amount of asymmetry along the slice planes. Figure 6.22 represents the corresponding

orthographic projection of the fully expanded sheath for the case at L=2.

The sheath structure as shown in Figure 6.22 exhibits some minor differences

over the previous simulation run at L=3. The radius of the sheath surrounding the

negative element is ∼ 1 m again, whereas the sheath around the positive element

is closer to 1.5 m along the x̂-direction which corresponds to the direction of the

magnetic field. In the ŷ-direction however, which is perpendicular to the magnetic

field, the sheath radius is slightly smaller for both elements. This difference is due to

the magnetic field and not the finite transit time as discussed in the previous section.

The larger magnetic field strength at L=2 has the effect of decreasing the electron

gyroradius from ∼ 85 cm at L=3 to ∼ 25 cm at L=2 for electrons traveling at the
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Figure 6.22: Orthographic projection of expanded sheath for L=2 at maximum potential
difference 500Φp. Operating frequency is at f =33.4 kHz.

thermal velocity. Thus any electrons traveling close to the thermal velocity have a

gyroradius that is smaller than the sheath radius and therefore do not travel along

straight lines toward the antenna elements, thus producing the deviation from axial

symmetry. At L=3, both the positive and negative sheaths surrounding the elements

expand and contract at roughly the same time; however at L=2, the positive sheath

expands and contracts at a rate quicker than the sheath surrounding the negative

element. Though the negative sheath takes more time to fully expand, it persists

for a longer duration of time for the following reasons. After the periodic steady-

state sheath has developed, the ions are pushed away during the positive cycle while

the electrons at the edge of the sheath are attracted. However, due to the smaller

gyroradius of the electrons and weak electric field at the sheath boundary, the electron

motion across the magnetic field lines is hindered, decreasing the total number of
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electrons that are able to shield the positive potential. For a negative applied potential

however, the electrons within the sheath region experience a much stronger force and

possess a larger gyroradius as a result, and are thus quickly repelled from the antenna

without their trajectories being significantly altered by the magnetic field.

The effect of the magnetic field on the density profiles is readily seen in Figure

6.23 which represents a slice plane through the center of one of the dipole elements

depicting the potential and number density variations for each species.
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Figure 6.23: Electron and proton density variation for cross-section through midpoint of
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negative peaks of the potential cycle after 5 periods of the sinusoidal waveform. All quan-
tities shown by a dashed line correspond to t+ and all solid lines correspond to quantities
at t−. (a) Potential variation. (b) Electron and proton number densities.

The smaller shielding distance resulting from the smaller Debye length can be seen in

Figure 6.23b where the protons and electrons follow the same density profile beyond a

distance of 2 m, as opposed to roughly 3 m as seen in Figure 6.18 for the case at L=3.

A new feature that results from the larger magnetic field at L=2 is the bunching

of particles beyond the edge of the sheath region at a distance of ∼ 7 m where the

densities of both the protons and electrons are larger than the ambient value of 2×109
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m−3.

Figure 6.24 is a plot of the terminal properties for the dipole antenna located

at L=2. It can be seen from the figure that the current-voltage characteristics are

similar to the case study at L=3 with a slightly larger peak current of 6 mA versus

5 mA at L=3.
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Figure 6.24: Terminal characteristics for 20 m antenna located at L=2. (a) Voltage. (b)
Current. (c) Charge.

In Figure 6.24c, a similar value in peak charge accumulation (∼8 nC) at the driving

frequency of 33.4 kHz is seen relative to the case at L=3 represented by Figure 6.19c.

The RMS capacitance and resistance values derived from the terminal characteristics

depicted in the waveforms of Figure 6.24 at the driving frequency of 33.4 kHz for the

antenna located at L=2 are 169 pF and 9.95 kΩ respectively for the element shown.

The inter-element gap current of Figure 6.25 shows a significant difference in the

transient behavior relative to the corresponding case at L=3 with the current being

larger at steady-state than during the initial few periods. This effect can be attributed

to the large magnetic field hindering the initial flow of electrons through the gap which

dominate the current response due to their high mobility. Instead of freely flowing

back and forth between the elements as in Figure 6.20, the particles gyrate around

the field lines and take a greater duration of time to reach steady-state behavior. The

steady-state gap current at L=2 is not established for about 4 periods as opposed to

only 3 periods for the dipole antenna at L=3. The greater magnitude of the current
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relative to the corresponding case at L=3 can be attributed to the larger density of

particles in this region of space.
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Figure 6.25: Inter-element gap current for dipole antenna at L=2.

6.3.3 Antenna at L=3 with Electron Gun and 20 cm Gap

For this next case study, we examine the sheath and terminal characteristics of a

dipole antenna with an inter-element gap that is 20 cm in width. As alluded to

earlier, it is possible that with elements that are not as electrically isolated in the

plasma as those with a larger gap spacing, substantial currents may flow from one

dipole element to the other. Such a short circuit current could potentially cause

a significant decrease in the radiation resistance of the antenna, with most of the

radiation being produced by a current flowing across a very small area. This case

study aims to assess the importance of this short-circuit effect.

For this purpose, we assume an operating environment corresponding to L=3 with

a simulation space that is identical to that shown in Figure 6.16 with the only dif-

ference being the decrease in gap separation. Figure 6.26 represents the orthographic

projection of the sheath for this case with results that are not markedly different from

the case study at L=3 with the 2 m gap separation.

In fact, the sheaths surrounding the positive and negative elements are virtually

identical to those for the larger gap spacing with the only difference being the sep-

aration distance. Likewise, the potential and number density variations represented

in Figure 6.27 at the peak of a steady-state sinusoidal cycle are very similar to the
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Figure 6.26: Orthographic projection of expanded sheath for L=3 with 20 cm gap at
maximum potential difference 500Φp. Operating frequency is at f =25 kHz.

baseline case with the 2 m gap. This negligible difference in density and sheath pro-

files between the two cases is likely due to the fact that the small gap spacing only

effects the profiles near the terminals of the dipole elements.

Along with the density and potential variations shown in Figure 6.27, the RMS

capacitance and resistance values determined from the terminal characteristics repre-

sented in Figure 6.28 are very similar to those found for the larger gap spacing, with

values of C∼187 pF and R∼13.5 kΩ at the driving frequency.

On the other hand, we might expect to see a significant difference between the two

cases at L=3 in the time domain gap current plot of Figure 6.29. With the smaller gap

separation, the electric field is much larger since the potential difference between the

two antennas is over a distance that is a factor of 10 less for the case presented here.

Surprisingly enough however, it can be seen from Figure 6.29 that the inter-element
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Figure 6.27: Electron and proton density variation for cross-section through midpoint of
dipole antenna element at L=3 with 20 cm gap. The symbols t+ and t− correspond to the
first positive and negative peaks of the potential cycle after 5 periods of the sinusoidal wave-
form. All quantities shown by a dashed line correspond to t+ and all solid lines correspond
to quantities at t−. (a) Potential variation. (b) Electron and proton number densities.

gap current is roughly the same as that for antenna with the 2 m gap separation,

still being ∼40 µA. Although the velocity of the fluid element is undoubtedly larger

due to the increase in electric field strength, this proportional increase in current is

likely offset by the smaller density of particles present between the terminals of the

antenna. This balance between density and field strength results in a current that is

equivalent to that which is found in the case of antenna with a 2 m gap separation.

We can conclude on this basis that a small inter-element gap spacing does not have

a detrimental effect on the current moment of the antenna versus that with a large

gap separation.
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Figure 6.28: Terminal characteristics for 20 m antenna located at L=3 with 20 cm gap.
(a) Voltage. (b) Current. (c) Charge.
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Figure 6.29: Inter-element gap current for dipole antenna at L=3 with 20 cm gap.

6.3.4 Antenna at L=3 without Electron Gun and 2 m Gap

The final case study is that of a dipole antenna with no electron gun present, allowing

for charge buildup on the antenna surface. Analogous to the case of a floating con-

ductor in a plasma, this net negative charge buildup due to the higher mobility of the

electrons has the effect of producing a net negative potential bias on both elements of

the antenna since they are electrically connected through the internal circuitry of the

space-craft. This negative drift is readily seen in the orthographic projections of the

sheath shown in Figure 6.30. As seen in Figure 6.30, the positive sheath is relatively

small, being ∼0.5 m in radius, while the negative sheath has a radius of ∼1 m. The

asymmetry between the positive and negative sheaths is most readily seen in Figure
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6.31 representing the 1-D potential and density variation through one of the elements.
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Figure 6.30: Orthographic projection of expanded sheath for L=3 without electron gun
at maximum potential difference 500Φp. Operating frequency is at f =25 kHz.

The major difference between the floating dipole and that in which an electron

gun is used is in the current collection due to the electron contribution on the element

as shown in Figure 6.31b. Because the antenna system is allowed to drift to a large

negative potential, it does not collect as many electrons during the positive potential

cycle. However, because of the large negative bias, the number of protons collected on

the antenna surface is much larger than that for the non-floating case, contributing

to the small positive voltage seen in Figure 6.31a.

The potential difference between the two elements is governed by the voltage-

source, although without the removal of excess charge, the entire system operates

primarily in a negative voltage regime. Figure 6.32 shows the time-domain terminal

characteristics for both elements of the dipole antenna. As seen in Figure 6.32a, the
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Figure 6.31: Electron and proton density variation for cross-section through midpoint of
dipole antenna element at L=3 without electron gun. The symbols t+ and t− correspond
to the first positive and negative peaks of the potential cycle after 5 periods of the sinu-
soidal waveform. All quantities shown by a dashed line correspond to t+ and all solid lines
correspond to quantities at t−. (a) Potential variation. (b) Electron and proton number
densities.

potential on Element #1 stays just above 0 V during the first half cycle, while Element

#2 drifts to a potential that is approximately twice the peak sinusoidal amplitude of

the waveform. The voltage in Figure 6.32a is highly nonlinear, oscillating between

the positive potential of only several volts, to a large negative potential, with the

potential difference between the two elements equal to the 25 kHz driving sinusoid as

shown in Figure 6.32b. The current waveforms for both elements, shown in Figure

6.32c, are vastly different than the electron-gun case where it is seen that a large flux

of protons is clearly hitting the antenna, unlike the previous case studies in which the

current waveform resembled a rectified sinusoid. This large proton flux is also seen

in Figure 6.31b where there is a significant proton density adjacent to the antenna

during both negative and positive cycles, exceeding that of the electrons. In fact, the

proton current at steady-state, represented by I <0 in Figure 6.32c, is roughly equal
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Figure 6.32: Terminal characteristics for 20 m antenna located at L=3 without electron
gun. (a) Voltage. (b) Inter-element potential difference. (c) Current. (d) Charge.

to half of the contribution due to the electrons, showing a significant increase over

previous case studies.

Although the RMS capacitance value is only slightly different from that of the

previous case studies, the RMS resistance is significantly larger due to the reduced

electron flux through the surface of the dipole element resulting from the negative

potential bias of the system. The RMS capacitance and resistance values at the 25

kHz driving frequency for this floating dipole antenna are 177 pF and 107 kΩ respec-

tively with the resistance value exhibiting a significant deviation from the previous

calculations which utilized an electron gun.

Finally in Figure 6.33, we examine the gap current for the floating dipole antenna.

The gap current waveform is very similar to that of the other L=3 case studies except

that the magnitude is down by a factor of two being approximately 20 µA.
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6.3.5 Antenna Tuning

In all of the cases considered, the nonlinear structure of the sheath is readily appar-

ent in terms of the terminal characteristics and hence, tuning properties. For the

sinusoidal waveforms considered, the structure of the sheath does exhibit a steady-

state nature with each of the dipole elements possessing very similar characteristics

in terms of voltage, charge and current draw. Thus one might expect, based on our

findings, that the tuning circuit used to maximize the power delivered to the antenna

would be the same for each dipole element, albeit complicated. It is also clear from

our warm plasma findings that for frequencies above fLHR, the complex impedance

of the antenna is dominated by the sheath characteristics as opposed to the almost

perfectly tuned antenna that the cold plasma model predicts. As such, the results

presented in our warm plasma model constitute one of the first complete attempts to

determine the plasma sheath contribution to the near-field antenna-plasma coupling

response. This coupling would need to separately be determined for every driving

potential and frequency content of the source excitation waveform considered as well

as for each environment in which the antenna will be operating. Though the capac-

itance and resistance values calculated in this section are not meant to be used in

practical design implementation, they do provide a first order approximation of the

sheath’s impact on tuning requirements. The generality of our simulation tool allows

for its use in determining the near field coupling of antennas of arbitrary geometry

and operating environments making it a flexible and useful tool in future antenna

design and analysis.



Chapter 7

Summary and Suggestions for

Future Work

In this dissertation, we have addressed the near-field coupling of electric dipole anten-

nas to a collisionless magnetized plasma using a multi-moment fluid approach. The

first approach entailed the development of both time and frequency cold plasma elec-

tromagnetic models to determine the current distribution and terminal impedance

of an electric dipole antenna without considering the sheath. The second approach

involved the development of a nonlinear warm plasma electrostatic model to deter-

mine the effects of the plasma sheath on the terminal characteristics of electric dipole

antennas.

7.1 Cold Plasma Model Contributions

We have illustrated some of the difficulties in modeling electromagnetic wave propa-

gation in a magnetized plasma and have verified an important assumption inherent

in past analytical work, namely the assumed current distribution along the dipole

antenna. The current distribution appears to be triangular for virtually all cases

shown at whistler-mode frequencies and our results for the terminal impedance of the

dipole antennas studied here agree well with those of past analytical work. It has

also been shown that for the cases of longer antennas and higher plasma frequencies,
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the current distribution exhibits exponential decay along the length of the element

for antenna orientations that are perpendicular to the static background magnetic

field. It should also be noted that the antennas at both L=2 and L=3 seem to be

self tuning for the frequencies simulated above fLHR in that the reactive part of the

impedance shown in Figures 4.6 and 4.8 are virtually zero across the range given.

With the current distribution thus verified to be triangular, the results of Wang and

Bell [1972a] can be used to determine the power radiation pattern since the pattern

should be unaffected by the near-field contribution of the sheath.

The cold plasma model represents an initial step in the development of a more

complete (in terms of the underlying physics) electromagnetic code to self-consistently

solve for both the near and far fields generated by electric dipole antennas. The

numerical methods including the PML boundary condition utilized herein resolve a

number of difficult challenges which are not specific to a cold plasma environment. As

such, this work also represents an advance in the numerical study of electromagnetic

wave propagation in a magnetized plasma in particular, or more generally for arbitrary

anisotropic media.

7.2 Warm Plasma Model Contributions

The cold plasma model was the simplest approximation used, and from the results

we were able to verify that an electrostatic approximation is valid for the simulation

of the near field-properties of antennas operating in an anisotropic environment with

high refractive indicies. With the addition of the warm plasma fluid equations, we

gained the capability of examining the formation of the electrostatic sheath and were

able to draw a number of conclusions based on these results. The first result is that

sheath structure is periodic using a sinusoidal waveform excitation, exhibiting a quasi-

steady state structure. In addition, we have shown that the Boltzmann factor is not

adequate in describing the density modification to the distribution function under AC

applied potentials in a collisionless plasma. We find that the common assumption of

immobile protons used in past work is incorrect, and that the density of protons varies

significantly throughout the sheath region and contributes to the current collection.
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Lastly, we have shown that not only does the sheath dominate the tuning properties of

the antenna, but that the time-varying resistance and capacitance throughout the RF

cycle do not vary by orders of magnitude as suggested by previous authors [Mlodnosky

and Garriott , 1963; Baker et al., 1973; Song et al., 2007].

7.3 Suggestions for Future Research

Although the application of our models is specific to particular magnetospheric loca-

tions, the AIP code itself is very general, allowing for electromagnetic and electrostatic

simulations in many types of isotropic and anisotropic media. We have gained a great

deal of insight into the operation of electric dipole antennas in a magnetoplasma; how-

ever, there are still a number of areas in which the capability of our AIP code can be

extended.

7.3.1 Adaptive Mesh Refinement

The current modeling methodology utilizes a non-uniform Cartesian grid for both

the warm and cold plasma simulation tools. For explicit time-integration methods,

the time-step is constrained by the maximum velocity in the space and the small-

est cell size used. Therefore, to remain stable, the largest time-step for the entire

computational domain is limited by the smallest cell size. For the frequency domain

methods presented in Chapter 3, the convergence rate is in part, subject to these same

constraints. In addition, the small cell sizes are only used to capture the detailed ge-

ometry of the object in the center of the domain, i.e. the antenna, but are not needed

toward the outside of the domain. However, in a highly anisotropic medium such as a

plasma with refractive indicies which vary as a function of both frequency and wave

normal angle with respect to the static magnetic field, it is difficult to determine in

advance where to apply the resolution need to capture the small wavelengths that

may exist within the simulation region.

An Adaptive Mesh Refinement (AMR) strategy would prove to be quite beneficial

for this purpose. AMR only applies refinement where necessary such as in areas with
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large spatial gradients in the solution or to capture the geometry of an object placed

within the computational domain. The time-stepping algorithm used in an AMR

methodology only applies time steps that are proportional to the local cell size in the

subdivided region. Therefore, where the space is locally refined, the AMR package

super-cycles the time step in that local region, and a larger time step is used in grid

which are coarser. This would be of great benefit in our plasma simulations.

7.3.2 Unstructured Grids and Sub-cell Modeling

Cartesian grids have limited use when it comes to complex geometric structures such

as circular loops or structures with a number of overlapping parts. The solutions

usually become first order accurate in these regions and the resulting block-structured

approximation is usually insufficient to capture fine-scale field structure especially

around a curved surface. Two techniques that can be used to resolve this problem

are unstructured grids and local sub-cell methods. Both have inherent strengths and

weakness, but both methods are suitable to model more complex geometric structures

than the traditional Cartesian mesh.

7.3.3 Particle in Cell Methods

Finally, our model would greatly benefit from the incorporation of particles, perhaps

as an additional species so that wave-particle effects can be included. This improve-

ment would allow for the study of instabilities, trapping, and a host of other single

particle phenomena that are not resolved using a fluid approach. We could then

gain the capability to model a more general category of plasma behavior in various

operating environments.



Appendix A

Tensor Quantities

This Appendix gives the form of the velocity, pressure, heat-flux, and R-moment

tensors discussed in Chapter 2.

u =


ux

uy

uz

 (A.1)

P =


pxx pxy pxz

pyx pyy pyz

pzx pzy pzz

 (A.2)
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(A.3)
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R =
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(A.4)



Appendix B

Time Integration Schemes

B.1 Staggered Leapfrog

The first method is the staggered leapfrog method which is commonly used in FDTD

calculations [Taflove and Hagness , 2000]. As the name implies, this method entails

the staggering of the electric and magnetic fields in time by 1/2 a time step. The

method is 2nd order accurate and the most efficient of the explicit methods discussed

in terms of time and storage requirements. The leapfrog method is conditionally

stable with a time step governed by the Courant condition. A detailed description of

this method is found in Taflove and Hagness [2000].

B.2 Runge-Kutta Methods

Unlike the staggered leapfrog presented in the last section, Runge-Kutta methods

assume that all variables are located at the same instance in time. Runge Kutta

methods are a class of multi-step methods in which the approximation of the time

derivative is made up of a linear combination of intermediate steps. Runge Kutta

methods differ from other multi-step methods such as Adams-Bashforth or Adams-

Moulton methods in that they do not require storage of more than one previous

function value to calculate the solution at the next incremental step. Instead, they

only require knowledge of the past step and make subsequent approximations of the
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c1 a11 a12 a13 · · · a1s

c2 a21 a22 a23 · · · a2s

c3 a31 a32 a33 · · · a3s
...

...
...

...
. . .

...
cs as1 as2 as3 · · · ass

b1 b2 b3 · · · bs

Table B.1: Butcher array for general s−stage Runge-Kutta method

solution in the range tn−tn+1 where in this case, the incremental step is time. Though

Runge-Kutta methods are not specific to the evaluation of time derivatives, this is

the purpose for which we will use them, therefore all subsequent references will be

with respect to a time.

Runge Kutta methods are commonly used in Computational Fluid Dynamics

(CFD) codes which make them a convenient choice for their use in the fully non-

linear warm plasma fluid code. Runge-Kutta (RK) methods are useful for solving

systems of time-dependent first order differential equations of the form:

dȳ

dt
= f(ȳ, t) (B.1)

where ȳ is a vector of unknowns and f is a function of ȳ and time t. For an s−stage

Runge-Kutta method, the solution at the next time-step denoted yn+1, is equal to:

yn+1 = yn + h
s∑

i=1

biki (B.2)

ki = f

(
tn + cih, yn + h

s∑
j=1

aijkj

)

where h is the time-step, yn is the solution at the past time step, and the coefficients

a,b and c are elements of the corresponding Butcher array [Hairer et al., 2000; Hairer

and Warner , 2002]:
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c1 0 0 0 · · · 0
c2 a21 0 0 · · · 0
c3 a31 a32 0 · · · 0
...

...
...

...
. . .

...
cs as1 as2 as3 · · · 0

b1 b2 b3 · · · bs

Table B.2: Butcher array for s−stage Explicit Runge-Kutta (ERK) method

B.2.1 Explicit Runge Kutta

Explicit Runge-Kutta (ERK) methods are conditionally stable methods in which

all variables are located at the same instance of time. In an ERK method, each

intermediate function evaluation described by Equation B.3 only requires knowledge

of the previous steps in the evaluation. The generalized s−stage ERK method is

represented by the Butcher array of Table B.2.

The methods chosen for implementation into our model are those found in Spiteri

and Ruuth [2002]. They are a family of Strong Stability Preserving (SSP) methods

which offer a larger region of stability relative to the Courant condition than do other

types of Runge Kutta methods. The methods chosen here range from 2nd to 4th

order accuracy.

B.2.2 Implicit Runge Kutta

The last types of time integration scheme incorporated into the model are called Im-

plicit Runge Kutta (IRK) methods. These are fully implicit Runge Kutta methods

with implementations that range from 2nd to 4th order accuracy. IRK methods are

unconditionally stable and provide accurate integration for stiff systems of equations.

This allows for time steps to far exceed the Courant condition, limited only by accu-

racy constraints. These methods are very useful in both the cold and warm plasma

models that possess vastly different time scales. Such time-scales include the plasma

and gyro frequencies, wave phase velocities and excitation frequencies, which will vary

by orders of magnitude depending on cell size, among other factors.

Unlike the ERK methods of Section B.2.1, Implicit Runge-Kutta (IRK) methods



APPENDIX B. TIME INTEGRATION SCHEMES 116

c1 a11 0 0 · · · 0
c2 a21 a22 0 · · · 0
c3 a31 a32 a33 · · · 0
...

...
...

...
. . .

...
cs as1 as2 as3 · · · ass

b1 b2 b3 · · · bs

Table B.3: Butcher array for s−stage Single Diagonally Implicit Kunge-Kutta (SDIRK)
method.

are unconditionally stable. In an IRK method, each intermediate function evaluation

described by Equation B.3 requires function evaluations at both past and present

values of the time step. Since the values of the solution at the current time step are

unknown, this requires the use of a matrix inversion in order to find the solution. This

matrix inversion solves the system defined by the intermediate steps of Equation B.3:

ki − f

(
tn + cih, yn + h

s∑
j=1

aijkj

)
= 0 (B.3)

The most general IRK method is given by the Butcher array in Table B.1. Since

all elements of the Butcher array are unknown at each intermediate step, the size of

the matrix inversion is equal to s−times the number of field unknowns making it an

extremely computational intensive operation.

Single Diagonally Implicit Runge-Kutta (SDIRK) methods alleviate some of this

difficulty by minimizing the size of the matrix inversion [Hairer and Warner , 2002,

pages 91-101]. Instead of solving a single iteration which includes all s−stages of the

RK method, each intermediate stage evaluation requires knowledge of only current

and previous stages. Thus, although one needs to perform a matrix inversion for each

stage, this process is sequential and the size of each stage is now only the number

of field unknowns (a factor of n less than the full IRK method). The Butcher array

corresponding to an SDIRK method is given in Table B.3

The nonlinear fluid moments of 2.1 requires a nonlinear solver. Thus the SDIRK

methods utilize an analytical Jacobian in conjunction with a Newton-step for each

stage of the Runge-Kutta update for the the system of differential equations given by
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Equations 2.4a-2.4d.

B.3 Alternating Direction Implicit

All Runge-Kutta methods require additional time steps to be stored, resulting in

increased time and memory requirements. Another type of method which was con-

sidered but dismissed as a viable alternative to the fully implicit method was the

Alternating Direction Implicit (ADI) method Zheng et al. [1999]. ADI methods have

been around for decades, but Zheng et al. [1999] proved the unconditional stability

for the 3-D system of Maxwell’s equations. However, this method suffers from a few

serious drawbacks as it relates to our model. The first is shown by Garcia et al.

[2002] in that the ADI method, though unconditionally stable, is inaccurate for time

steps well beyond the Courant condition. The second is that the ADI method is not

easily implemented for a system of nonlinear equations as represented by the first few

moments of Equation 2.1, and would prove too cumbersome for future extensions of

the existing model, and is thus not included in our formulation.



Appendix C

Time Domain Solution to Z-mode

Instability

Noise level transients are always present in FDTD based numerical simulations re-

gardless of the source excitation characteristics. The frequency content of these sim-

ulations is limited only by the temporal sampling rate. Thus a PML which amplifies

for given modes in the system will also amplify signals which exist in the noise levels.

Analogous to the PML which amplifies waves in the whistler mode which possess

wave normal vectors orthogonal to the static magnetic field, Z-mode wave propaga-

tion can exhibit these same instabilities inside of the PML. The difference between

the two cases is that frequencies which correspond to Z-mode propagation are not

intentionally excited and are a consequence of source transients at startup. Figure

3.8 illustrates this instability as a result of the Z-mode refractive index surface.

It is seen from Figure 3.8 that the PML oriented along the magnetic field which

attenuated waves at frequencies in the whistler mode is now unstable for Z-mode

propagation. However since we are not concerned with propagation at these frequen-

cies for the purposes of radiation belt remediation, we can filter this frequency range

out as discussed in the following section.
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C.1 Low-Pass Filtering of Cold Plasma Equations

The filtering of Z-mode frequencies is performed through the use of an FIR (Finite

Impulse Response) filter. The application of FIR filtering to our system of equations

follows that performed by Sarto and Scarlatti [2001] using the FDTD method. Sarto

and Scarlatti [2001] originally proposed the use of low-pass FIR filters for removing

high frequency transients which were a result of the free-space absorbing boundary

condition used. The FIR filter as applied to our system of equations is a low-pass

filter used to remove all frequencies beyond the whistler mode so that waves ampli-

fied at frequencies above the electron gyrofrequency due to a PML instability are

immediately suppressed. FIR filters are chosen for their linear phase, and constant

group delay. The linear phase means that there will be no phase distortion of the

electromagnetic waves at different frequencies. The constant group delay means that

the group delay is the same for all frequencies. The group delay is proportional to

the number of ‘taps’ or ‘zeros’ of the filter as well as it’s causality. As it pertains to

our simulation. the group delay constitutes a change in the refractive index of the

medium. Therefore the larger the order of the filter, the smaller the wavelength. For

instance, a group delay of 1 would modify the wavelength of a wave to 1/2 of its

free-space value.

The filter response is realized by taking a weighted product of the filter coefficients

with past, present and future values of the function you wish to filter as described

by:

y[n] =
M−1∑
k=0

h (k) x (n− k) (C.1)

where M is the filter order, h represents the filter coefficients, x is the input sequence,

and y is the output sequence. Since a distortion-less response is required for accurate

simulation, we must make sure that the group delay is zero for all filters chosen. This

limits the size of the filter since each filter coefficient of an FIR filter constitutes an

additional past time-step to be stored and used in the time integration. For instance,

a 5th order filter would not only require the storage of 4 additional time steps over
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the current value, but the time integration scheme would need to utilize field values

at two future time steps to maintain a zero group delay resulting in an FIR filter that

is impossible to implement. The models presented here follow the lead of Sarto and

Scarlatti [2001] and use a 3rd order filter requiring only one past and one future time

step. The one future time step being the next stage in the time-sequence, is a natural

bi-product of the solution process.

Since we have virtually no control over the frequency response of a 3rd order FIR

filter due to the small number of coefficients used to describe the filter response, we

must make sure that we have enough attenuation in the stop band. For a filter of

a given order, this is controlled by the sampling frequency. If the frequency is too

large (or the time step is too small such as for explicit time integration methods) the

filter does not possess sufficient roll-off in the transition band to compensate for the

exponential increase of the wave inside of the unstable PML. Thus as the cell size

decreases, implicit methods now become mandatory in order to control the sampling

frequency. Implicit methods such as the SDIRK method presented in Appendix B

are not restricted by the Courant condition and thus the sampling frequency can be

made much smaller, limited only by accuracy constraints.



Appendix D

Details of Finite Volume Method

The system of fluid moments comprising our plasma description can be cast into the

following conservative form:

∂Ū

∂t
+∇ · F

(
Ū
)

= S̄ (5.6)

where Ū is a vector of conserved quantities, F is a nonlinear flux function, and S̄

corresponds to the source terms for each moment.

D.1 Shocks and Artificial Viscosity

In computational fluid dynamics (CFD), shocks are defined as spatial fluctuations

that are smaller than the minimum cell size used in the simulation space. The inade-

quate spatial sampling of the shock wave will, in turn, produce oscillations resulting

from Gibbs phenomena, since the mesh is unable to capture the extremely high spa-

tial frequencies. Shock capturing schemes are methods which attempt to capture

these small wavelength features without producing spurious oscillations. The method

of Kurganov and Tadmor [2000] uses artificial viscosity which adds a second order

diffusion term to each moment in the system of fluid equations. Assuming a 1-d so-

lution with x̂−dependence only, the conservation law of Equation 5.6 with artificial

diffusion is represented by Equation D.1:
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∂Ū

∂t
+

∂F
∂x
−D

∂2Ū

∂x2
= 0 (D.1)

where D is the diffusion coefficient.

D.2 Flux Calculation

The method of Kurganov and Tadmor [2000] includes the artificial viscosity using

a nonlinear limiting function which is summarized in this section. The diffusion

coefficient of Kurganov and Tadmor [2000] is present within the flux contribution for

the corresponding cell face. Assuming the 1-d system defined by Equation D.1 and

neglecting the diffusion term, the x̂−component of the flux is:

dU

dt
= −

Fi+ 1
2
− Fi− 1

2

∆x
(D.2)

where the flux function through the positive cell face at i + 1
2

is given as:

Fi+ 1
2

:=
F (U+

i+ 1
2

) + F (U−
i+ 1

2

)

2
−

ai+ 1
2

2

[
U+

i+ 1
2

− U−
i+ 1

2

]
(D.3)

The term
a

i+1
2

2

[
U+

i+ 1
2

− U−
i+ 1

2

]
represents the positive flux contribution of the artificial

diffusion component and the spectral radius an
j+ 1

2

was given previously in Equation

5.8 of Chapter 5 as:

an
j+ 1

2
= max

Ū∈C
(
U−

j+1/2
,U+

j+1/2

) ρ

(
∂F
∂Ū

(
Ū
))

(5.8)

The intermediate values are:

U+
i+ 1

2

:= Ui+1 −
∆x

2
(Ux)i+1 (D.4a)

U−
i+ 1

2

:= Ui +
∆x

2
(Ux)i (D.4b)

where the the quantity (Ux)i represents a derivative given by:
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(Ux)i := minmod

(
Ui − Ui−1

∆x
,
Ui+1 − Ui−1

2∆x
,
Ui+1 − Ui

∆x

)
(D.5)

The minmod function is the nonlinear limiter which suppresses oscillations. This

function is equal to:

minmod(a, b) :=
1

2
[sgn(a) + sgn(b)] ·min(|a|, |b|) (D.6)

where min is a function which takes the smallest value of the list of arguments and

sgn represents the signum function given by Equation D.7

sgn (x) =


−1 : x < 0

0 : x = 0

1 : x > 0

(D.7)

D.3 Shock Capture

The benefit of the artificial diffusion term is most readily shown in Figure D.1 which

represents the propagation of a Gaussian pulse and square wave at a particular in-

stance in time t>0. Figures D.1a-D.1c demonstrate the effectiveness of three different

spatial differencing methods on capturing solutions with steep gradients. The meth-

ods shown in Figures D.1a, D.1b, and D.1c are Lax-Wendroff, the 1st-order upwind

method, and a FV method using the minmod limiter. The Lax-Wendroff method,

which uses finite differences as in the FDTD technique, produces highly oscillatory

behavior. The 1st-order upwind method contains implicit diffusion but is not tailored

to the local wave speeds and is thus very diffusive. Meanwhile, the solution represent-

ing the minmod limiter of Figure D.1c suppresses oscillations yet is able to capture

the steep gradients in the solution.
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Figure D.1: Example of shock capturing scheme. (a) Lax-Wendroff. (b) 1st order upwind
method. (c) Minmod limiter.
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