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Abstract

The Perfectly Matched Layer (PML) absorbing boundary condition was introduced

by Berenger (1993) and Chew and Weedon (1994) as a means for truncating Finite-

Difference Time-Domain (FDTD) and Finite-Difference Frequency Domain (FDFD)

lattices in order to accurately simulate electromagnetic antenna and scattering prob-

lems in isotropic media. In the ionosphere and magnetosphere, where the dominant

medium is a magnetized plasma, numerous interesting electromagnetic wave phe-

nomena occur. Many of these would be well suited for analysis by the FDTD and/or

FDFD methods, however, until recent developments, including contributions in this

dissertation, the PML had not been efficiently extended nor capable, in some cases,

to truncate domains containing magnetized plasma. In this dissertation, we develop

two methods for extending Chew’s formulation to robustly and efficiently truncate

any linear magnetized plasma as well as any linear media.

The first PML method developed in this dissertation is a novel approach to the

general time domain representation of the Chew and Weedon (1994) PML. This

new approach mathematically operates on the spatial field derivatives by convolving

them with causal decaying exponential functions. The approach allows the PML

update equations to be trivially derived from any set of general linear medium update

equations.

The development of the second PML method in this dissertation is motivated by

shortcomings of the Perfectly Matched Layer in certain cases involving propagation

in anisotropic media, such as whistler-mode propagation in a magnetized plasma, for

which the vector component normal to the PML of the group velocity vector and the

k-vector are anti-parallel with each other. This new type of PML utilizes information

v



on the k-vector direction by applying relevant spatial derivatives to the PML update

equations. We demonstrate the numerical stability and performance of the new PML

for whistler-mode propagation in a magnetized plasma with respect to the traditional

PML.

A method for calculating the numerical reflection coefficient for the PMLs intro-

duced in this dissertation is developed for general linear media. The derived expres-

sions for the numerical reflection coefficient are used to quantify the performance of

the PML for incident plane waves at any incident angle, frequency and polarization.

Two and three dimensional numerical test results, which validate the calculation of

the numerical reflection coefficient, are presented. For the case of the PML truncating

free space, values of up to -100 dB for the numerical reflection coefficient are realized.

For the case of the PML truncating a magnetized plasma, values from -40 dB up to

-90 dB are realized, depending on the orientation of the ambient magnetic field.

Finally, a technique is developed for the efficient modeling of propagation over

long paths (hundreds of wavelengths) by breaking the path up into segments and ap-

propriately applying the PML and the total-field/scattered-field method. For FDTD

simulations the new technique is well suited to model both slow and fast wave modes

as well as scattering inhomogeneities along the path. In addition, the new technique is

directly applicable to FDFD simulations. Both FDTD and FDFD numerical simula-

tions of propagation within the Earth-ionosphere waveguide are performed to validate

the new technique.
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Chapter 1

Introduction

The application of finite difference grids to model complex radiation and scattering

problems in electromagnetics and plasma physics has become increasingly popular due

to both the intuitive and robust nature of the technique as well as the ever increasing

speed and RAM of computers. The technique itself is very simple. The basic idea

is to take a continuous space, e.g., the Earth-ionosphere waveguide of Figure 1.1a,

and apply a finite-difference grid, Figure 1.1b, in which the fields and local material

properties are sampled at discrete locations on each cell of the grid.

For this dissertation we apply what is known as the Yee cell [Yee (1966)], where

the electric fields and electric currents are located on the edges of the cell while the

magnetic fields are located on the cell faces as shown in Figure 1.2a. At each field

quantity location, the local material properties are specified. Figure 1.2b shows the

specific case for the Hz field where the geometric spacing of the Yee cell electric fields

yields a natural curl about Hz. One can easily see this is true of all the electric

and magnetic fields. Throughout this dissertation the fields are solved for in one of

two ways, one of which is to solve for the transient fields as a function of time while

the other is to solve for the fields at a single frequency. These two methods are re-

spectively termed the finite-difference time-domain (FDTD) and the finite-difference

frequency-domain (FDFD) techniques and are further described in Section 1.1. A

key component in any numerical modeling is the boundary condition with which the

space is terminated. In this dissertation, we use the so-called Perfectly Matched Layer

1



2 CHAPTER 1. INTRODUCTION

(PML) methods, described in Section 1.2 and in later chapters. The contributions of

this work are listed in Section 1.3

1.1 The Finite-Difference Techniques

To solve the fields as a function of time, we apply the finite-difference time-domain

technique to the electromagnetic Maxwell equations. As an example, we apply it to

the ẑ-directed Faraday’s law

µ0

Hzt |n+.5
i+.5,j+.5,k−Hzt |n−.5

i+.5,j+.5,k

∆t
=

Ext |ni+.5,j+1,k−Ext |ni+.5,j,k

∆y

−Eyt |ni+1,j+.5,k−Eyt |ni,j+.5,k

∆x
(1.1)

where for FDTD the fields are sampled at discrete points in time as well as space. The

notation for the fields, taking Ey for example is, Eyt |ni,j+.5,k, where n is the timestep,

and i, j, k is the grid node location. The electric and magnetic fields are sampled half

of a timestep, i.e. ∆t, apart which yields central-differenced time derivatives about

each other. With the Yee cell, the electric and magnetic fields are central-differenced

in time and space which results in second-order accuracy. To solve the fields through

time, we assume we know the magnetic fields at timestep n−.5 and all electric fields at

timestep n. For the Hz field, we apply equation (1.1) to yield the Hz field at timestep

n + .5. This same procedure is then implemented for all magnetic fields throughout

the grid using their associated FDTD equation. We then update all the electric fields

in the same manner. This technique is known as leapfrogging. When electric currents

are present, they are updated with the magnetic fields. More complete descriptions

of the FDTD technique are available elsewhere [Taflove and Hagness (2000)].

To solve the fields at a single frequency, we apply the finite-difference frequency-

domain technique to Maxwell equations. As an example, we apply it to the ẑ-directed
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a)

b)

Figure 1.1: a) continous space of the earth ionosphere waveguide. b) applying a finite
difference grid to the space where the fields and material properties are sampled and
solved at discrete locations.

Faraday’s law

jωµ0Hzt |ωi+.5,j+.5,k =
Ext |ωi+.5,j+1,k−Ext |ωi+.5,j,k

∆y

−Eyt |ωi+1,j+.5,k−Eyt |ωi,j+.5,k

∆x
(1.2)

where the notation for the fields, taking Ey for example is, Eyt |ωi,j+.5,k, where ω is

the angular frequency, and i, j, k is the grid node location. Unlike FDTD methods,

which result in explicit equations, the FDFD equations are all coupled together and

all fields throughout the space must be solved together implicitly. As a result, the

FDFD method typically requires much more RAM than FDTD. More information on

FDFD can be found in Zhao et al. (2002).
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(i,j,k)

(i+1,j+1,k-1)

z

a) b)

Figure 1.2: a) Yee cell. b) plane of Yee cells depicting the natural geometric curl of
the fields.

For a complete list of both the FDTD equations and the FDFD equations used in

this dissertation we refer the reader to Appendix A.

1.2 The Perfectly Matched Layer

In many situations the space to be modeled is unbounded in at least one direction. For

the case of the Earth-ionosphere waveguide, it is unbounded along the waveguiding

direction. Another example is shown in Figure 1.3a where we have an electric dipole

antenna in some infinite homogeneous medium. Due to time and memory constraints

we must truncate our space such that we solve the fields in the particular region

of interest, i.e., within the dashed box. In figure 1.3b we place a special material of

finite thickness surrounding the dashed box region. Theoretically, any incident waves,

evanescent or propagating, on this material are absorbed by the material such that

the fields in the spaces inside the dashed box are identical for both the infinite space

and the truncated space. This special material is known as the Perfectly Matched

Layer (PML) and was introduced to the computational electromagnetics community

by Berenger (1994) and Chew and Weedon (1994). In practice, however, for both

FDTD and FDFD the PML can reflect some waves back into the space depending

on the the types of waves incident. Since both the capabilities and optimization
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of the PML as well as the introduction of new forms of it, are central topics of this

dissertation, the PML is further described and discussed in great detail in the chapters

that follow.

Perfectly Matched Layer

absorbing boundary condition

a) b)

Figure 1.3: a) Infinite domain. b) truncated domain with absorbing boundary con-
dition.
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1.3 Thesis Contributions

One of the important limitations of both the FDTD and FDFD techniques is the re-

quirement to retain information about all of the field quantities at all grid points. This

requirement significantly limits their applicability involving long distance (many hun-

dreds of wavelengths) propagation. In this dissertation we develop a new Segmented-

Long-Path (SLP) method which facilitates the use of finite-difference methods for

long propagation paths. This method is described in Chapter 5.

Another important limitation of the FDTD and FDFD techniques is the need

to efficiently truncate the numerical space so as to avoid unwanted reflections from

its edges. In this dissertation we develop and introduce two new methodologies for

application of the so-called Perfectly Matched Layer absorbing boundary condition for

general linear and anisotropic media. These contributions are discussed in Chapters

2, 3, and 4.

The original contributions of this thesis are as follows

1. Introduction of a general time domain representation of the Chew and Weedon

[1994] stretched coordinate Perfectly Matched Layer (PML) absorbing boundary

condition is described. This new approach mathematically operates on the

spatial field derivatives and allows the PML update equations to be trivially

derived from any set of general linear medium update equations. The method

provides a more robust method for reducing the error of the PML over a desired

frequency range. The results were published in Chevalier and Inan (2004)

2. Development of a new type of PML that utilizes information on the k-vector

direction by applying relevant spatial derivatives to the PML update equations.

This new PML, deemed the KPML, allows the decay of single frequency whistler

mode waves within the PML for which the vector component normal to the PML

of the group velocity vector and the k-vector can be parallel or anti-parallel,

depending on the incidence angle. All other PML’s used prior to the KPML

would instead amplify these types of waves and render the simulation unstable.

The KPML is described in a paper by Chevalier et al. (2006)
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3. Development of an analytical method for the calculation of the numerical reflec-

tion coefficient for all the PMLs described in this thesis. The method is suitable

for any incident wave, propagating or evanescent. The majority of these results

are presented in Chevalier and Inan (2004) and Chevalier et al. (2006).

4. Development of a new technique for efficient modeling of propagation over long

paths (hundreds of λ) by breaking the path up into segments and appropriately

applying the Perfectly Matched Layer absorbing boundary condition and the

total field/scattered field boundary condition. The technique is applicable to

both FDTD and FDFD, and is described in Chevalier and Inan (2007).



Chapter 2

A PML Using a Convolutional

Curl Operator

The introduction of the Perfectly Matched Layer (PML) by Berenger (1994) and

Chew and Weedon (1994) has revolutionized the absorbing boundary condition for

the finite-difference time-domain (FDTD) technique as well as for other methods

of numerical electromagnetic modeling. Although both approaches were originally

derived to truncate domains of lossless dielectric media, there has since been efforts

by other researchers to advance the PML to truncate domains of general linear media,

including linear anisotropic media. These advancements include the approach by

Gedney (1996), the uniaxial PML, which is Maxwellian and which does not require the

field splitting technique employed by Berenger (1994) and Chew and Weedon (1994),

and which has been derived to match linear isotropic media. Fang (1995) describes the

Generalized Perfectly Matched Layer to match lossy isotropic media, using the field

splitting technique. Finally, Teixeira (1998) recognizes that the methods of Berenger

(1994) and Chew and Weedon (1994) are applicable to general linear media, including

anisotropic media, while continuing to employ the field splitting technique. In this

chapter we build upon and extend this past work starting from Teixeira (1998).

Section 2.2 represents the contents of Chevalier (1999), a presentation given at

the URSI conference in Boulder,CO in 1999. We reference Roden and Gedney (2000)

which involved the CPML (convolutional PML), a method similar to that presented

8
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here (both apply the recursive convolution technique) and whose work was also carried

out during an overlapping time period. In Section 2.3 we mathematically compare the

CPML of Roden and Gedney (2000) with the PML presented in Chevalier and Inan

(2004) to show that the latter has a more general form. Gedney (1996) applied the

CPML technique to establish an unconditionally stable ADI-FDTD method. Since

the introduction of the CPML, there have been other unsplit time domain formu-

lations developed. For example, Ramadan and Oztoprak (2002) used the unsplit

formulation to derive a time domain formulation using DSP techniques.

2.1 General Frequency Domain PML Equations

We express the Chew and Weedon (1994) equations in a different form, which is more

easily adapted to the time domain PML technique introduced here. We start with

the general 3D PML equations

∇PML =
1

1 + gx(jω)

∂

∂x
âx +

1

1 + gy(jω)

∂

∂y
ây

+
1

1 + gz(jω)

∂

∂z
âz (2.1a)

∇PML × ~H = jωε ~E + ~J (2.1b)

∇PML × ~E = −jωµ0
~H (2.1c)

~J = σ ~E (2.1d)

where gx(jω), gy(jω), gz(jω) are complex, frequency dependent functions. The form

of the plane wave solution for the field quantities described by (2.1a)-(2.1d) is written:

e−jk[x sin(θ) cos(φ)+y sin(θ) sin(φ)+z cos(θ)]e−jk[gx(jω)x sin(θ) cos(φ)+gy(jω)y sin(θ) sin(φ)+gz(jω)z cos(θ)]
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where ε is isotropic permittivity, µ0 is the free space permeability, σ is the conductivity

and can be an tensor, and k is the wavenumber which can be a function of both ω, θ

and φ. We define ω as the radial frequency. θ is the angle with respect to the z-axis,

and φ is the azimuthal angle in the xy plane with respect to the x-axis. These are the

typical representation of the spherical coordinate angles. The form of the solution

can be verified by direct substitution into the equations. Maxwell’s equations and

their traditional plane wave solution can be obtained from (2.1a)-(2.1d) by setting

gx(jω)=gy(jω)=gz(jω)=0. The plane wave solution of the PML is the same as that

of Maxwell equations except that it is multiplied by a second exponential function,

which represents the adjustable dissipation of the PML and which can in general be

a complex and frequency-dependent function. The various impedance relationships

inherent in (2.1a)-(2.1d), i.e., the ratio of electric and magnetic field quatities such

as, Ex/Hy, can easily be shown to be identical to those obtained from Maxwell’s

Equations. Figure 2.1 illustrates in 2D the necessary mathematical relationships of

gx(jω) and gy(jω) within the FDTD space in order to realize the Perfectly Matched

Layer conditions, i.e., the condition of no reflection for an incident plane wave (at

any angle) on any of the PML interfaces. The extension to 3D follows the same type

of relationships. We refer the reader to [Berenger (1994); Chew and Weedon (1994)]

for a rigorous derivation of the necessary conditions for zero reflection at the PML

interface.

We can rewrite the ∇PML operator as

∇PML =

[
∂

∂x
− gx(jω)

1 + gx(jω)

∂

∂x

]
âx +

[
∂

∂y
− gy(jω)

1 + gy(jω)

∂

∂y

]
ây

+

[
∂

∂z
− gz(jω)

1 + gz(jω)

∂

∂z

]
âz (2.2)

a form which allows the PML to be implemented without the need for the field

splitting technique.
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gx(jω)=0

gy(jω)=0

gx(jω) = 0

gy(jω) = 0

gx(jω) = 0

gy(jω) = 0

z x

y

Figure 2.1: Configuration of the complex stretched coordinate equations to ensure a
Perfectly Matched Layer.

2.2 First Order CCO-PML

If we let gx(jω)=αx/jω, gy(jω)=αy/jω, and gz(jω)=αz/jω, where αx, αy, and αz

are positive real constants, the time domain ∇PML operator becomes:

∇PML =

[
∂

∂x
− u(t)αxe

−αxt ∗ ∂

∂x

]
âx +

[
∂

∂y
− u(t)αye

−αyt ∗ ∂

∂y

]
ây

+

[
∂

∂z
− u(t)αze

−αzt ∗ ∂

∂z

]
âz (2.3)
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where ”∗” represents convolution and u(t) is the unit step function. This form of the

PML has a temporal/spatial operation which involves a convolution between a decay-

ing (in time) exponential and the function that the spatial derivative operates on. It is

hereafter referred to as the 1st order CCO-PML (convolutional curl operation PML)

or sometimes just as CCO-PML. Mathematically, the 1st order CCO-PML yields

the same solutions as the final time domain representations of Berenger (1994) and

Chew and Weedon (1994). In the form represented by (2.3), the 1st order CCO-PML

trivially matches any general linear medium, including anisotropic media. Invoking

linearity we can arrange the CCO-PML equations which apply (2.3) into

[∇PML −∇]× ~H +∇× ~H =
∂ε ∗ ~E

∂t
+ ~J (2.4a)

[∇PML −∇]× ~E +∇× ~E = −µ0
∂ ~H

∂t
(2.4b)

where

[∇PML −∇]× ~H =

−
[
u(t)αye

−αyt ∗ ∂Hz

∂y
− u(t)αze

−αzt ∗ ∂Hy

∂z

]
âx

−
[
u(t)αze

−αzt ∗ ∂Hx

∂z
− u(t)αxe

−αxt ∗ ∂Hz

∂x

]
ây

−
[
u(t)αxe

−αxt ∗ ∂Hy

∂x
− u(t)αye

−αyt ∗ ∂Hx

∂y

]
âz (2.5)

and the corresponding curl of the electric field, i.e., [∇PML −∇] × ~E, has the same

form as above and can be obtained simply by replacing ~H’s with ~E’s. The Maxwell

update equations and the CCO-PML update equations are identical except for the

extra convolution terms included in the CCO-PML updates. The convolutions can

be efficiently calculated using the piecewise linear recursive convolution technique
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of Kelley and Luebbers (1996). The memory requirements are larger for the CCO-

PML update equations relative to Maxwell’s update equations, since at the location

of each field component up to 2 convolution sums must be stored. Nevertheless,

detailed analysis indicates that the memory requirements are similar to those for the

free space PML derived in Berenger (1994). It should further be noted the number

of extra variables needed to implement the 1st order CCO-PML does not depend on

the complexity of the medium.

2.3 General Nth Order CCO-PML

For complicated dispersive media such as magnetized plasmas the optimized 1st order

CCO-PML for a given thickness T may not achieve the desired reflection coefficient

over the frequency range of interest. We may, therefore, try to improve the perfor-

mance of the CCO-PML by including more convolutional terms. We can assume

1

1 + gx(jω)
= 1−

N∑

n=1

bxnαxn

jω + αxn

(2.6)

with [1 + gy(jω)]−1 and [1 + gz(jω)]−1 also having the same forms. In this case the

frequency domain ∇PML operator becomes

∇PML =

[
∂

∂x
−

(
N∑

n=1

bxnαxn

jω + αxn

)
∂

∂x

]
âx +

[
∂

∂y
−

(
N∑

n=1

bynαyn

jω + αyn

)
∂

∂y

]
ây

+

[
∂

∂z
−

(
N∑

n=1

bznαzn

jω + αzn

)
∂

∂z

]
âz (2.7)

It can be easily shown that with this higher order ∇PML operator the PML character

of the equation is still mathematically preserved. The time domain [∇PML −∇]× ~H

then becomes

[∇PML −∇]× ~H =
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−
{

Re

{
N∑

n=1

u(t)bynαyne
−αynt

}
∗ ∂Hz

∂y
−Re

{
N∑

n=1

u(t)bznαzne
−αznt

}
∗ ∂Hy

∂z

}
âx

−
{

Re

{
N∑

n=1

u(t)bznαzne
−αznt

}
∗ ∂Hx

∂z
−Re

{
N∑

n=1

u(t)bxnαxne
−αxnt

}
∗ ∂Hz

∂x

}
ây

−
{

Re

{
N∑

n=1

u(t)bxnαxne
−αxnt

}
∗ ∂Hy

∂x
−Re

{
N∑

n=1

u(t)bynαyne
−αynt

}
∗ ∂Hx

∂y

}
âz

(2.8)

where bxn(i) and αxn(i), also known as the CCO-PML coefficients, can be complex.

For complex coefficients we take the real part of the convolution, e.g.,

Re
{
u(t)bx1αx1e

−αx1t
}
∗ ∂Hz

∂x
=

1

2

{
u(t)bx1αx1e

−αx1t + u(t)b∗x1α
∗
x1e

−α∗x1t
}
∗ ∂Hz

∂x
(2.9)

because the functions that are convolved with the fields must be real. We will apply

complex convolutions in Section 2.5. Also note that complex convolutions require

twice as much memory, so that if memory is a limitation then real valued coefficients

should be used. Note that [∇PML −∇]× ~E has the same form as (2.8); obtained by

replacing the ~H’s with ~E’s. The equations for the Nth order CCO-PML are no more

difficult to solve than those for the 1st order CCO-PML, except that N times as many

convolutions are involved, all of which can be readily computed with the piecewise

linear recursive convolution technique of Kelley and Luebbers (1996).

One question arises in this context: Why not double the thickness of the PML

instead of including extra convolutional terms? By doubling the thickness we increase,

within the PML, the computational time and the number of variables by a factor of

2. In most of the PML region we have attenuation in only one direction, except at

the corners. Recognizing that such is the case and for a free space grid, if we increase

the number of convolutional terms to, say N=2, it can easily be shown that, within

the PML, the computational time and the number of extra update variables increase

by a factor of 1.4. For N=3, this increase factor is 1.8, still less than 2. The saving

would be even greater for grids containing more complex materials where prior values

of the fields need to be saved, such as Lorentz or Debye materials.
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To demonstrate the generality of the CCO-PML scheme we derive the standard

form given in Roden and Gedney (2000) from a second order (N =2) CCO-PML. We

direct our analysis at the term

∂Hz

∂x
−Re

[
N∑

n=1

u(t)bxnαxne
−αxnt

]
∗ ∂Hz

∂x
(2.10)

whose results are easily generalized. Knowing that

∂Hz

∂x
= δ(t) ∗ ∂Hz

∂x
(2.11)

and substituting (2.11) into (2.10) we get

[
δ(t)− u(t)bx1αx1e

−αx1t − u(t)bx2αx2e
−αx2t

]
∗ ∂Hz

∂x
(2.12)

It is easily shown that in the limit as αx1 →∞ we obtain

u(t)αx1e
−αx1t = δ(t) (2.13)

i.e., the delta function. We refer the reader to Appendix B for the proof both in the

continuous domain and for finite difference equations. We then find

[
(1− bx1)δ(t) + u(t)bx2αx2e

−αx2t
]
∗ ∂Hz

∂x
(2.14)

has the same form as equation (5) from Roden and Gedney (2000), where for equality

(1− bx1) =
1

ki

(2.15)

bx2αx2 =
σi

ki
2ε0

(2.16)

αx2 =
σi

kiε0

+
αi

ε0

(2.17)

where [bx1,bx2,αx2] represent three independent parameters of the CCO-PML while
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[ki,σi,αi] represent three independent parameters of equation (5) of Roden and Gedney

(2000).

2.4 Error due to the PML in an FDTD grid

 
PML

z

x

y

i=1

i=T+1  

incident plane wave

PEC at i=T+1  boundary 

i=0

Figure 2.2: Illustration of plane waves travelling within an FDTD grid of a semi-
infinite grid of a homogenious medium with a matching PML. Scattered fields are
present but are not explicitly shown.

In Chapter 4 a method is developed for calculating the numerical reflection co-

efficient for a plane wave, in a general linear medium, incident onto an Nth order

CCO-PML for a given set of PML coefficients and for a given PML cell thickness

T. The calculation procedure is illustrated in Figure 2.2. The incident plane wave is

written out in general as a function of incident angle (including complex angles), fre-

quency, and polarization (important for anisotropic media). The reflection coefficient

calculation quantifies the time-harmonic scattered plane wave fields, i.e., the error

due to the imperfections of the PML. The motivation for this calculation is to quan-

titatively determine the efficiency of the PML method. The method is quite general,

since any general electromagnetic field can be described by a linear superposition of

both evanescent and propagating plane waves over incident angle and frequency, so

that the PML efficiency for specific types of wave structures can be inferred from
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Figure 2.3: Typical reflection coefficient with design constraints.

the plane wave results. The numerical results presented in this Chapter apply this

numerical reflection coefficient method developed in Chapter 4.

The method described in Chapter 4 allows one to solve for all fields within the

space defined. Moreover we can calculate three important quantities; Hxs |n+.5,ω
i=0,j0+.5,k0+.5,

Hys |n+.5,ω
i=.5,j0,k0+.5 and Hzs |n+.5,ω

i=.5,j=j0+.5,k0
, namely the reflected fields just outside the

PML. We define the collocated incident fields as: Hxi |n+.5,ω
i=0,j0+.5,k0+.5, Hyi |n+.5,ω

i=.5,j0,k0+.5

and Hzi |n+.5,ω
i=.5,j=j0+.5,k0

, and the normalized error as

||R(ω, θ, φ)||2 =√√√√√√

∣∣∣Hxs |n+.5,ω
i=0,j0+.5,k0+.5

∣∣∣
2
+

∣∣∣Hys |n+.5,ω
i=.5,j0,k0+.5

∣∣∣
2
+

∣∣∣Hzs |n+.5,ω
i=.5,j=j0+.5,k0

∣∣∣
2

∣∣∣Hxi |n+.5,ω
i=0,j0+.5,k0+.5

∣∣∣
2
+

∣∣∣Hyi |n+.5,ω
i=.5,j0,k0+.5

∣∣∣
2
+

∣∣∣Hzi |n+.5,ω
i=.5,j=j0+.5,k0

∣∣∣
2 (2.18)

which is simply the normalized Euclidean norm of the scattered magnetic field due

to the PML, i.e., the magnitude of the numerical reflection coefficient. For ease of

presentation we refer to ||R(ω, θ, φ)||2 as the numerical reflection coefficient due to

the PML for a given frequency and angle of incidence. We can therefore adjust the

CCO-PML coefficients, bxn(i) and αxn(i) until ||R(ω, θ, φ)||2 is minimized over the
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frequencies and incident angles of interest. Figure 2.3 displays a plot of ||R(ω, θ, φ)||2
versus frequency, for a wave in free space incident onto the PML at 30 degrees, i.e.

θ = π/2, φ = π/6. We can improve ||R(ω, θ, φ)||2. by setting a band of minimum

reflection, 0 < ω < ωc. We would require ||R(ω, θ, φ)||2 < αc for 0 < ω < ωc. Or

we could require ||R(ω, θ, φ)||2 < αc for 0 < ω < ωc, which is the average reflection

coefficient. Another requirement would be to have ||R(ω, θ, φ)||2 < αp = 1.0 for ω >

ωc. This condition forces the boundary condition to be stable over all frequencies. We

would minimize αc for a given ωc by iteratively adjusting the CCO-PML coefficients,

given an initial starting value for the coefficients, until αc reaches a minimum. In

most cases we would minimize over a range of incident angles as well. This is the

procedure used in this chapter for improving the PML to match particular media, the

results of which are presented in the numerical results of section 2.5.

2.5 Numerical Tests

In this section we present numerical results obtained by the application of the fre-

quency domain numerical reflection coefficient calculation derived in Chapter 4 to

specific types of media matched by the CCO-PML. To validate the reflection coeffi-

cient method, we also calculate the reflection coefficient from time domain simulations

of the plane wave incident problem as shown in Figure 2.2, by selecting a portion of

the space as illustrated in Figure 2.4a. This selected portion is an FDTD grid, dis-

played as an orthographic projection representation in Figures 2.4b, 2.4c and 2.4d.

The grid is a 3 × 3 × (T + 1) cell space where the center front cell represents the

(i = 0,j = j0, k = k0) cell, where our choice of j0 and k0 is arbitrary. Note that we

could have used any M ×N × (T + 1) cell space, where M,N > 2. In order for the

fields within the FDTD grid to represent an incident plane wave being scattered from

the PML, we must properly specify the grid’s surface boundary fields over time, at

the boundaries indicated by the bold black line segments. The method for calculating

the numerical reflection coefficient discussed in Chapter 4 also allows us to calculate

all fields within the PML, and within the entire space of Figure 2.2 for that matter, as

a function of frequency, incident angle, and the input incident fields. In other words,
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Figure 2.4: Orthographic projection representation of the 3× 3× (T + 1) cell FDTD
space used to calculate the PML reflection coefficient in the time domain numerical
experiments.

we know the quantities Ext |n=0,ω
i+.5,j0,k0

, Eyt |n=0,ω
i,j0+.5,k0

, and Ezt |n=0,ω
i,j0,k0+.5 for i=0 through

i=T + 1. For a given angle of incidence, we apply the plane wave relations in the y

and z directions

Ẽxt |ωi+.5,j0+m,k0+p = Ext |n=0,ω
i+.5,j0,k0

e−j(kym∆y+kzp∆z) (2.19)

Ẽyt |ωi,j0+.5+m,k0+p = Eyt |n=0,ω
i,j0+.5,k0

e−j(kym∆y+kzp∆z) (2.20)

Ẽzt |ωi,j0+m,k0+.5+p = Ezt |n=0,ω
i,j0,k0+.5 e−j(kym∆y+kzp∆z) (2.21)
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to calculate the grid surface boundary fields as a function of frequency, where m

and p are integers whose allowed values correspond to all fields located on the grid

surface. Note that the ” ˜ ” symbol above the field variables associates these fields

with the 3 × 3 × (T + 1) cell space. For waves in anisotropic materials, such as a

magnetized plasma (discussed in Section 2.5.2 and elsewhere in this dissertation), we

also need to specify J̃xt |ωi+.5,j0+m,k0+p, J̃yt |ωi,j0+.5+m,k0+p, and J̃zt |ωi,j0+m,k0+.5+p , which

are found in the same manner as the electric fields. These specified fields provide

enough information to carry out the simulations.

Our general procedure for calculating the reflection coefficient using the time do-

main simulation can be described as follows:

1) We multiply grid surface boundary fields by the input spectrum of the incident

wave, S(ω), and compute the inverse FFT of these fields to obtain the time

domain boundary fields as follows:

Ẽxt |ni+.5,j0+m,k0+p = FFT−1(Ẽxt |ωi+.5,j0+m,k0+p)

= FFT−1(Ext |n=0,ω
i−.5,j0,k0

e−j(kym∆y+kzp∆z)S(ω))

(2.22)

Ẽyt |ni,j0+.5+m,k0+p = FFT−1(Ẽyt |ωi,j0+.5+m,k0+p)

= FFT−1(Eyt |n=0,ω
i,j0+.5,k0

e−j(kym∆y+kzp∆z)S(ω))

(2.23)

Ẽzt |ni,j0+m,k0+.5+p = FFT−1(Ẽzt |ωi,j0+m,k0+.5+p)

= FFT−1(Ezt |n=0,ω
i,j0,k0+.5 e−j(kym∆y+kzp∆z)S(ω))

(2.24)

where for anisotropic materials, the boundary fields J̃xt |ni+.5,j0+m,k0+p ,

J̃yt |ni,j0+.5+m,k0+p , and J̃zt |ni,j0+m,k0+.5+p are found in the same manner.

2) We run the FDTD equations within the space coupled with the grid surface
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boundary fields while saving H̃xt |n+.5
i=0,j0+.5,k0+.5, H̃yt |n+.5

i=+.5,j0,k0+.5 and

H̃zt |n+.5
i=+.5,j0+.5,k0

over time.

3) We compute the FFT of these field values and divide by the input spectrum to

normalize the fields as follows:

Ĥxt |ωi=0,j0+5,k0+.5 = FFT (H̃xt |n+.5
i=0,j0+.5,k0+.5)/S(ω)

(2.25)

Ĥyt |ωi=+.5,j0,k0+.5 = FFT (H̃yt |n+.5
i=+.5,j0,k0+.5)/S(ω)

(2.26)

Ĥzt |ωi=+.5,j0+.5,k0
= FFT (H̃zt |n+.5

i=+.5,j0+.5,k0
)/S(ω)

(2.27)

4) We calculate the reflection coefficient with the following equation.

∣∣∣
∣∣∣R̂(ω, θ, φ)

∣∣∣
∣∣∣
2

=
√√√√√√

∣∣∣Ĥxs |ωi=0,j0+.5,k0+.5

∣∣∣
2
+

∣∣∣Ĥys |ωi=.5,j0,k0+.5

∣∣∣
2
+

∣∣∣Ĥzs |ωi=.5,j=j0+.5,k0

∣∣∣
2

∣∣∣Hxi |n=+.5,ω
i=0,j0+.5,k0+.5

∣∣∣
2
+

∣∣∣Hyi |n=+.5,ω
i=.5,j0,k0+.5

∣∣∣
2
+

∣∣∣Hzi |n=+.5,ω
i=.5,j=j0+.5,k0

∣∣∣
2

(2.28)

This time domain method for calculating the numerical reflection coefficient is equiv-

alent to the frequency domain derivation discussed in Chapter 4. Mathematically,

they must yield the same results over the spectral energy range of S(ω) because both

methods originate from the same difference equations. Any differences between the

results of the two methods must thus be due to numerical error.
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Table 2.1: Numerical values of the CCO-PML coefficient profile, Profile A.

i bx1(i) eαx1(i)∆t

1.0 1.0 0.9997
1.5 1.0 0.9984
2.0 1.0 0.9953
2.5 1.0 0.9897
3.0 1.0 0.9807
3.5 1.0 0.9674
4.0 1.0 0.9487
4.5 1.0 0.9237
5.0 1.0 0.8914
5.5 1.0 0.8508

i bx1(i) eαx1(i)∆t

6.0 1.0 0.8012
6.5 1.0 0.7421
7.0 1.0 0.6730
7.5 1.0 0.5941
8.0 1.0 0.5062
8.5 1.0 0.4115
9.0 1.0 0.3142
9.5 1.0 0.2203
10.0 1.0 0.1379
10.5 1.0 0.0741

We present three numerical experiments below in Sections 2.5.1, 2.5.2, and 2.5.3.

Each numerical experiment involves calculating the reflection coefficient of a plane

wave incident onto the PML at various angles of incidence (or various modes for the

case of waveguides). For all numerical experiments the incident wave time domain

input pulse at Ẽzi |ni=0,j0,k0+.5 is a modulated Gaussian with a full-width half-maximum

of 45∆t for the Gaussian envelope and a modulation angular frequency of 2π/12.5∆t.

Table 2.5 shows the numerical values of the CCO-PML coefficient profile, denoted

Profile A. In all numerical tests we apply Profile A, which is an order N=1 CCO-

PML and has only real coefficients. In all the numerical tests we also show results

for an optimized profile obtained by adjustment of coefficients to minimize error.

In this context, note that Profile A is the initial profile given to the optimizer for

every optimized profile presented in the numerical experiments. For the optimization

we use gradient methods which yield a local minimum, but not necessarily a global

minimum, to optimize ||R(ω, θ, φ)||2 for our frequency range of interest.

2.5.1 Plane Waves Incident onto the PML from Free Space

Our first experiment compares the calculation of the reflection coefficient for a free

space plane wave incident on the PML for both the frequency and time domain
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Figure 2.5: Refection coefficient for the frequency and time domain methods (S(ω)
also plotted) for various angles of incidence (free space). a) Profile A, (θ = π/3,
φ = π/10). b) Profile B, (θ = π/3, φ = π/10). c) Profile A, (θ = π/2, φ = π/2.9). d)
Profile B, (θ=π/2, φ=π/2.9).

methods. This comparison is provided for two different incident angles, (θ = π/3,

φ=π/10) and (θ=π/2, φ=π/2.9). The cell size of our space is, ∆x=∆y=∆z= .01 m.

The time domain method was run for 4000 timesteps with ∆t=∆x/(
√

3c). We ran the

optimization scheme described in Section 2.4, optimizing ||R(ω, θ, φ)||2, using profile

A as the initial profile of an order N=1 CCO-PML profile with complex coefficients.

The resulting optimized profile, so determined by locally minimizing error, is termed

’Profile B’. The reflection coefficients using Profile A for the two different angles of

incidence are respectively shown in Figure 2.5a and 2.5c. The reflection coefficients

using Profile B for the two different angles of incidence are respectively shown in

Figure 2.5b and 2.5d. In each case, the frequency and time domain methods are

identical for the spectral energy range of S(ω) (also plotted), except in Figure 2.5b and
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Figure 2.6: Refection coefficient for the frequency and time domain methods (S(ω)
also plotted) for various angles of incidence (magnetoplasma). a) Profile A, (θ=π/3,
φ=π/10). b) Profile C, (θ=π/3, φ=π/10). c) Profile A, (θ=π/2, φ=0). d) Profile
C, (θ=π/2, φ=0).

2.5d where there is some noise in the time domain method at the lowest frequencies.

This is due to the fact that the 4000 timesteps used are not long enough for the time

domain method at low frequencies so that results have not properly converged. For the

incidence angle (θ=π/3, φ=π/10), the reflection coefficients for Profile A and Profile

B are quite similar. For incidence angle (θ=π/2, φ=π/2.9) the reflection coefficient

for Profile B is about 18 dB better on the average. At the lowest frequencies, the

reflection coefficients for Profile B have a poorer response. The maximum frequency

plotted in Figure 2.5 corresponds to 4.5 cells per free space wavelength.
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Figure 2.7: Refection coefficient for the frequency and time domain methods (S(ω)
also plotted) for various incident modes (free space waveguide). a) Profile A, n = 1
mode. b) Profile D , n = 1 mode. c) Profile A, n = 2 mode. d) Profile D, n = 2
mode.

2.5.2 Plane Waves Incident onto the PML from a Magneto-

plasma

Our second experiment compares the calculated reflection coefficients for a right-

hand elliptically polarized plane wave in an anisotropic magnetoplasma incident on

the PML for both the frequency and time domain methods. To model the plasma we

apply the method of Lee and Kalluri (1999) except for the fact that in our grid we

collocate the vector electric currents with the vector electric fields instead of locating

the vector electric currents on the Yee cell vertices. The update equations for the

anisotropic current tensor, ~J = σ ~E derived by the Lee and Kalluri (1999) method are

(A.7)-(A.9) in Appendix A.

Results are calculated for two different incident angles, (θ = π/3, φ = π/10) and
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(θ=π/2, φ=0). The cell size of our space is ∆x=∆y =∆z =10 m. The parameters

of the magnetoplasma are the ambient magnetic field, ~B0 = 1 × 10−5âx Tesla, the

electron density Ne =1× 1011 el/m3, and the collision frequency ν =5× 106 s−1. The

time domain method was run for 8000 timesteps with ∆t = ∆x/(
√

3c). We ran the

optimization scheme described in Section 2.4, using Profile A as the input profile.

Our optimized profile is an order N=2 CCO-PML profile with complex coefficients

which we refer to as ’Profile C’. The reflection coefficients using profile A for the two

different angles of incidence are respectively shown in Figure 2.6a and Figure 2.6c

while those for Profile C are respectively shown in Figure 2.6b and 2.6d. In each case,

the frequency and time domain methods are identical for the spectral energy range of

S(ω) (also plotted), except for some noise in the lower and higher frequencies in the

time domain method curve due to the fact that 8000 timesteps is not quite enough

for the time domain method. Figure 2.6a shows a peak between 1.8 and 3.8 MHz.

We see that in Figure 2.6b, the use of Profile C leads to a reduction of this peak. We

had originally tried optimizing an order N=1 CCO-PML profile, but that resulting

optimized profile was not able to remove the peak. The lower frequency responses

are also better for Profile B as well. The maximum frequency plotted in Figure 2.6

corresponds to 4.5 cells per free space wavelength.

2.5.3 Waveguide Modes Incident onto the PML

Our final numerical experiment examines the performance of the optimized PML

for TMz free space waveguide modes, propagating and evanescent. The dispersion

relationship for the modes are

ε0µ0

[
2j sin ω∆t

2

∆t

]2

=


2j sin k sin(θ) cos(φ)∆x

2

∆x




2

+


2j sin k sin(θ) sin(φ)∆y

2

∆y




2

+


2j sin k cos(θ)∆z

2

∆z




2
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(2.29)

k sin(θ) sin(φ)∆y =
nπ

Ncells + 1
(2.30)

where θ=π/2. The wave number k and the complex angle φ are obtained from the two

equations above. Ncells is the cellular width of the waveguide with n being the mode

number. Our FDTD space has ∆x=∆y=∆z= .01 m and solutions are calculated for

modes n=1 and 2. Again we apply the method since we still have an incident plane

wave, albeit evanescent or propagating. The time domain method in this case was

run for 6000 timesteps with ∆t = ∆x/(
√

3c). The optimization scheme described in

Section 2.4 was applied using Profile A as the starting profile. Our optimized profile

is an order N=1 CCO-PML profile with complex coefficients which we refer to as

’Profile D’. The reflection coefficients using Profile A for the two different modes are

respectively shown in Figure 2.7a and 2.7c while those for Profile D are respectively

shown in Figure 2.7b and 2.7d. In each case, the frequency and time domain methods

are identical for the spectral energy range of S(ω) (also plotted), except for some

noise in the time domain curve due to 6000 timesteps not being quite long enough for

the time domain method. For both modes, the evanescent regions of the reflection

coefficient are much improved using Profile D. The reflection coefficients are similar

within the propagating regions for the two profiles. The maximum frequency plotted

in Figure 2.7 corresponds to 4.5 cells per free space wavelength.



Chapter 3

A PML Utilizing k-Vector

Information

The original PMLs introduced by Berenger (1994) and Chew and Weedon (1994)

work well when the group and phase velocities of the incident wave are in the same

direction. However, if these directions differ, as is the case for negative refractive

index materials (NIMs) [Veselago, 1968; Eleftheriades and Balmain, 2005] and some

anistropic materials, such as certain electromagnetic propagation modes in magne-

tized plasmas, the regular PML ceases to attenuate the field and can in fact act as

an amplifier. Becache et al. (2003) confirm this behavior with a theoretical analysis

of PMLs for anisotropic media including acoustic waves in elastic materials as well as

electromagnetic waves. Their work is based on the split-field formulation of Berenger

(1994). Cummer (2005) discusses the PML amplification phenomenon for NIMs which

exhibit both positive and negative refractive indexes over a range of frequencies. He

then derives a frequency dependent solution referred to as the NIMPML which is an

adaptation of the previously introduced NPML [Cummer, 2003].

Chevalier et al. (2006a) encounter the problems discussed in Becache et al. (2003)

when modeling the performance of an antenna in a magnetized plasma for whistler-

mode plasma waves. In this paper, we discuss a PML which can be adapted to

the direction of the group velocity as a function of frequency and k-vector direction.

We then explicitly derive the PML equations for the whistler-mode in a magnetized

28
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plasma with the ambient magnetic field perpendicular to the direction of the PML

as discussed in Chevalier et al. (2006a). We also derive expressions for the reflection

coefficient and present numerical results for reflection coefficient calculations as well

as for time domain simulations.

3.1 Derivation of k-Vector Dependent PML

We start with a brief review of the results of Becache et al. (2003) and Cummer

(2005). We discuss 2D wave propagation in the xy plane only, and assume a k-vector

of ~k = kxx̂+kyŷ and a group velocity of ~vg = vgxx̂+vgyŷ, where ~k is the k-vector and

~vg is the group velocity. Our concern here is with the dot product of the x̂-directed

components of ~vg and ~k, namely vgxkx. Figure 3.1a displays two index of refraction

surfaces [Helliwell, 1965, p. 200] each at some chosen frequency. The direction of

the vector from the origin to a given point on the index of refraction surface is the

the k-vector direction, i.e. the direction of the phase velocity. The magnitude of the

same vector is the wave number |~k| for that particular angle θ between the k-vector

and the magnetic field ~B0. The direction of the vector that is normal to the index

of refraction surface at the tip of the k-vector is the group velocity direction. The

surface on the left is for a positive index of refraction, isotropic material, for which

vgxkx > 0 always holds true. For the surface on the right hand side, which represents

the whistler mode in a magnetized plasma, we see that vgx1kx1 > 0 but vgx2kx2 < 0.

The so-called ‘Gendrin’ angle [Gendrin, 1961], labeled θg in Figure 3.1a, is the angle

at which the product n cos θ, where n is the whistler-mode index of refraction, exhibits

a minimum along the x-axis at two locations. The Gendrin angle is also the non-zero

k-vector angle at which the group velocity is (anti)parallel to the ambient magnetic

field and is the transition angle at which vgxkx changes sign. The relationship for

the Gendrin angle in a dense magnetized plasma is cos(θg) ' 2ω/ωc, where ωc is the

local electron gyrofrequency. By a dense plasma, we mean ωc <<ωp, where ωp is the

local electron plasma frequency. In the rest of this chapter we consider an x-directed

PML only, unless otherwise noted. Figure 3.1b shows an x-directed PML, i.e., only

PML attenuation in the x-direction, where the two examples [~vg1, ~k1] and [~vg2, ~k2]
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from the whistler index of refraction surface in Figure 3.1a have been placed incident

onto the PML region. In both cases, it is the group velocity in the x-direction, ’vgx’

that describes the speed in the x-direction at which the wave energy is incident on

the PML, but it is the k-vector in the x-direction, ’kx’ that determines whether the

PML amplifies or attenuates the wave. The x-directed wave solution within the PML

region has the form

e−jkxxe−
σxkxx

ω

(3.1)

For vgx > 0, kx > 0 the wave solution attenuates within the PML, i.e., the case for

vgx1, kx1. For vgx > 0, kx < 0 the wave solution grows within the PML, i.e., the case

for vgx2, kx2. We therefore need to somehow incorporate information about vgxkx into

the PML, or at least about the appropriate sign of vgxkx. We define the incident k-

vector as ~kinc = kxx̂+kyŷ and the k-vector within the PML to be ~kpml = kxpml
x̂+kyŷ.

In accordance with Snell’s law and for an x-directed PML, ky is preserved through

the two media. We introduce the function, f(ω, kxpml
, ky) as a means to introduce

k-vector dependence into the PML function. The x-directed portion of the PML wave

solution is taken to have the form:

e−jkxpml
x = e−j(κkxx(1+

σxf(ω,kxpml
,ky)

jω
)) = e−jkxsxx

(3.2)

where f(ω, kxpml
, ky) = 1 reduces to the original Berenger PML. The term κ is the

tradition PML term for attenuating evanescent fields. In order for (3.2) to always

have an attenuating solution we require that f(ω, kxpml
, ky) has the same sign as vgxkx.

Equation (3.2) is similar to the formulation of Cummer (2005), but we have addition-

ally included k-vector direction information by including k-dependence explicitly in

our PML attenuation function. We refer to this new PML as the ‘KPML’, where

‘K’ refers to the use of k-vector information. Considering the whistler mode in a
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Figure 3.1: a) Index of refraction surfaces. b) Two whistler waves incident on the
PML [Chevalier et al., 2006a].

magnetized plasma as an explicit example, ideally the function f(·) might be

fideal(ω, kx, ky) = k2
[
cos2(θ)− cos2(θg)

] 1

1− ω2/ω0
2

=

(
k2

y −
4ω2

ωc
2

[
kx

2 + ky
2
]) 1

1− ω2/ω0
2

(3.3)

where we define θ as the angle with respect to the y-axis as well as the static mag-

netic field as in Figure 3.1a. The function fideal(·) has perfect transition through

the Gendrin angle from positive to negative values following the sign of the quantity

vgxkx. The term 1/(1− ω2/ω0
2) is applied from Cummer (2005) for generality and

changes sign at ω = ω0, where ω0 is a user-adjustable parameter. To ensure that
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1/(1− ω2/ω0
2) is positive over the frequency range of the whistler mode we require

that ω0 >ωc. For actual implementation, f(·) must have the form

f(ω, kxpml
, ky) =



k2

y −
4ω2

ωc
2




[
kxpml

κ

]2

+ ky
2








1

1− ω2/ω0
2

(3.4)

where we have simply replaced kx, the x-component of the k-vector in the magnetized

plasma, from (3.3) with kxpml
/κ, the x-component of the k-vector within the PML.

The reason that f(·) must necessarily be of the form in (3.4) is the fact that (3.4)

can be implemented using linear differential equations, as show below. On the other

hand, it is not apparent how this can be done within the PML for the ideal function,

given by (3.3). Note that kxpml
is in general complex since it includes the PML losses

as well as information about the incident wave kx. From (3.2) it can be shown that

kxpml
= κkx

[
1 + σxf(ω, kxpml

, ky)/jω
]
. As a result, f(·) is complex, and we therefore

must apply it with care. Also, to clarify, in (3.4), the term (kxpml
/κ)2 is this way

because it removes the evanescent scaling factor κ from kxpml
so that kxpml

/κ more

closely maps to kx, especially as σx → 0.

In the following, we derive the update equations for the implementation of (3.4),

by applying the stretched coordinate form of [Chew and Weedon (1994)] on our x-

directed PML spatial operator to obtain the form:

1

sx

∂

∂x
=

1/κ

1 + σxf(ω, kxpml
, ky)/jω

∂

∂x

(3.5)

Assuming f(ω, kxpml
, ky) takes the form of (3.4), the PML spatial operator then be-

comes

1

sx

∂

∂x
=

(
jω + [jω]3/ω0

2
)
/κ

jω + (jω)3/ω0
2 + σx

(
k2

y − 4ω2

ωc
2

[
(

kxpml

κ
)2 + ky

2
]) ∂

∂x

(3.6)
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Since we exclusively consider plane wave analysis we have ∂/∂x → −jkxpml
. If we

assume to operate on Hz and introduce the auxiliary variable, Ψx
Hz

, we can rewrite

equation (3.6) as

−jkxpml

(
jω + [jω]3/ω0

2
)
/κ

jω + (jω)3/ω0
2 + σx

(
k2

y − 4ω2

ωc
2

[
(

kxpml

κ
)2 + ky

2
])Hz = Ψx

Hz

(3.7)

for which the most natural method of solution would be an auxiliary differential

equation. After some manipulation and inverse transformation from k space we obtain

jω
∂Hz

κ∂x
+

[jω]3

ω0
2

∂Hz

κ∂x
= jωΨx

Hz
+

[jω]3

ω0
2

Ψx
Hz
− σx

∂2

∂y2
Ψx

Hz

−σx
4 [jω]2

ωc
2

(
∂2

κ2∂x2
Ψx

Hz
+

∂2

∂y2
Ψx

Hz

)

(3.8)

we then apply the inverse Fourier transform to yield the the time domain equation

∂

∂t

∂Hz

κ∂x
+

1

ω0
2

∂3

∂t3
∂Hz

κ∂x
=

∂

∂t
Ψx

Hz
+

1

ω0
2

∂3

∂t3
Ψx

Hz
− σx

∂2

∂y2
Ψx

Hz

−σx
4

ωc
2

(
∂4

∂t2κ2∂x2
Ψx

Hz
+

∂4

∂t2∂y2
Ψx

Hz

)

(3.9)

The important result in (3.8) and (3.9) is the use of spatial derivatives to gain in-

formation about the waves in the PML region, where we have tailored f(ω, kxpml
, ky)

such that it follows the sign of vgxkx. This procedure ensures that the PML attenuates

all whistler-mode waves within it, regardless of the sign of vgxkx.

Applying finite differences to the y-dependent spatial derivative terms yields

∂2

∂y2
Ψx

Hz
⇒ Ψx

Hz
|n+.5
i,j+1.5,k−2Ψx

Hz
|n+.5
i,j+.5,k +Ψx

Hz
|n+.5
i,j−.5,k

(∆y)2

(3.10)
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and

∂4

∂t2∂y2
Ψx

Hz
⇒ Ψx

Hz
|n+.5
i,j+1.5,k−2Ψx

Hz
|n+.5
i,j+.5,k +Ψx

Hz
|n+.5
i,j−.5,k

(∆t)2(∆y)2

−2
Ψx

Hz
|n−.5
i,j+1.5,k−2Ψx

Hz
|n−.5
i,j+.5,k +Ψx

Hz
|n−.5
i,j−.5,k

(∆t)2(∆y)2

+
Ψx

Hz
|n−1.5
i,j+1.5,k−2Ψx

Hz
|n−1.5
i,j+.5,k +Ψx

Hz
|n−1.5
i,j−.5,k

(∆t)2(∆y)2

(3.11)

where we would apply finite differences to the x-dependent derivative terms in the

same manner. Note that since the Ψx
Hz

variables are updated to n + .5 the terms in

(3.10) and (3.11) are implicit because to update Ψx
Hz

at the timestep n + .5 requires

information of its nearest Ψx
Hz

neighbors at the timestep n + .5. The solution of

the implicit equations is not difficult, but is computationally more demanding. Note

that the electric and magnetic fields can still be updated using explicit leap-frog

equations. For algorithmic speed, we therefore seek an explicit method for updating

this equation. We can approximate (3.10) and (3.11) by shifting the Ψx
Hz

terms

located at i, j + 1.5, k and i, j − .5, k back one timestep yielding

∂2

∂y2
Ψx

Hz
'⇒ Ψx

Hz
|n−.5
i,j+1.5,k−2Ψx

Hz
|n+.5
i,j+.5,k +Ψx

Hz
|n−.5
i,j−.5,k

(∆y)2

(3.12)

and

∂4

∂t2∂y2
Ψx

Hz
'⇒ Ψx

Hz
|n−.5
i,j+1.5,k−2Ψx

Hz
|n+.5
i,j+.5,k +Ψx

Hz
|n−.5
i,j−.5,k

(∆t)2(∆y)2

−2
Ψx

Hz
|n−1.5
i,j+1.5,k−2Ψx

Hz
|n−.5
i,j+.5,k +Ψx

Hz
|n−1.5
i,j−.5,k

(∆t)2(∆y)2

+
Ψx

Hz
|n−2.5
i,j+1.5,k−2ΨEy,x |n−1.5

i,j+.5,k +Ψx
Hz
|n−2.5
i,j−.5,k

(∆t)2(∆y)2

(3.13)
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This method would also be applied to the x-dependent derivative terms. Solving (3.9)

in this manner produces an explicit update equation with the only unknown variable

being the Ψx
Hz

term located at i, j + .5, k and at timestep n + .5. We examine results

of both explicit and implicit time domain simulations in Section 3.2. Also, one can

use (3.8) with the Finite-Difference Frequency-Domain (FDFD) method, although,

numerical results for this are not presented in this dissertation.

3.2 Numerical Results

In this section we present results from time domain simulations as well as numerical

reflection coefficient calculations for the KPML. The derivation of the numerical re-

flection coefficient is presented in Chapter 4. For some numerical tests we represent

the PML attenuation factor σx(i) as

σx(i)∆t = σmax∆t
(

i− .5

T

)m

(3.14)

where T is the PML thickness in number of cells and σx(i) is nonzero for i ≥ 1, i.e.,

the PML exists at i ≥ 1. We define D = [σmax∆t,m] so that D = [1.5, 2] simply

means that σx(i)∆t = 1.5 ([i− .5] /T )2. For some numerical tests we use a Gaussian

PML attenuation profile defined as

σx(i)∆t = σmax∆te−(b
(i−T−1)

4T
)2 (3.15)

where the Gaussian profile is represented as G = [σmax∆t, b]. When specifying the

evanescent term κ(i) for ease of implementation, from Chevalier and Inan (2004) we

have 1/κ(i) = 1− b0(i) where

b0(i) = b0max

(
i− .5

T

)p

(3.16)

where the evanescent profile is simply represented by B0 = [b0max, p].
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curve: KPML, dashed curve: convolutional PML. c) magnetized plasma reflection
coefficients for incident angle of 45 degrees; solid curve: KPML, dashed curve: con-
volutional PML.

3.2.1 Free space and free space waveguide

We first apply the KPML to familiar situations, i.e., free-space propagation and the

free-space-filled waveguide, as a reality check before we apply it to a magnetized

plasma. For both cases the FDTD spaces have ∆x = ∆y = ∆z = 30 m and ∆t =

∆x/
√

3c. For a given PML attenuation profile we calculate the numerical reflection

coefficient. For both the free-space and the free-space-filled waveguide, we use profile

D = [15.5, 2.0], which is not an optimized attenuation profile and is in fact not

meant to be. We apply no evanescent attenuation, i.e., κ(i) = 1.0, B0 = [0, 0]. The

PML thickness is T = 15 cells. Figure 3.2a plots the reflection coefficient for a few
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different functions of f(ω, kxpml
, ky). For f(ω, kxpml

, ky) = ky
2, i.e., the curve labeled

1, we have poor low frequency response and excellent response at higher frequencies,

as expected mathematically since ky is always real and increases with frequency.

For f(ω, kxpml
, ky) = kxpml

2, i.e., the curve labeled 2, the reflection coefficient ranges

between −30 to −50 dB. This performance is not very good, but since we know

that kxpml
is complex within the PML we do not expect outstanding performance;

nevertheless, we see that the formulation does work. For f(ω, kxpml
, ky)=kxpml

2 +ky
2,

we find results to be about the average of the two previous ones. Finally, the dashed

line represents the traditional PML, f(ω, kxpml
, ky)=1.0, using the same attenuation

profile and calculated using the convolutional PML method. The convolutional PML

performs the best overall.

We next calculate the reflection coefficient for the N = 2 mode of a 2D free-space-

filled waveguide whose width is 20 cells. Figure 3.2b plots the reflection coefficient

for the convolutional PML (dashed line) and for f(ω, kxpml
, ky) = ky

2 = sin2(2π/20)

(solid line). The KPML and the convolutional PML perform in a similar manner.

In addition, we obtained numerical results from both explicit and implicit time

domain simulations. For the explicit simulations we apply standard Yee cell FDTD

with the explicit implementation of (3.9). For the implicit time domain simulations

we use a 2D fully implicit FDTD electromagnetic solver that applies the Single Di-

agonally Implicit Runge Kutta Methods (SDIRK) [Hairer et al. (2000, 2002)]. These

fully implicit methods are unconditionally stable and provide accurate integration for

stiff systems of equations, i.e, there is an at least an order of magnitude difference

between the smallest and largest eigenvalues. We performed time domain tests with

both the KPML and the convolutional PML coexisting within the space for a free-

space grid and found the simulations to be stable, i.e., no numerical instabilities nor

amplification of waves by the PML, over time for 20,000 timesteps for both the explicit

and implicit simulations. Results of our tests indicate that these KPML functions

work as absorbing boundary conditions, not as well for open free-space problems as

the traditional PML, but reasonably well for the free-space-filled waveguide.
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3.2.2 Magnetized plasma

We now apply the KPML to whistler mode waves in a magnetized plasma for which we

expect it to perform better than the convolutional PML. For the reflection coefficient

calculations and the explicit simulation we use an adapted version of Lee and Kalluri

(1999) with the only modification being that we co-locate the vector electric currents

with the electric fields on the FDTD grid instead of at the Yee cell vertices. The

properties of the magnetoplasma considered herein are the electron density, Ne =

2x109 el/m3, and the ambient magnetic field, B̂0 =3x10−6ŷ Tesla. The FDTD spaces

have ∆x = ∆y = ∆z = 20 m and ∆t = ∆x/(
√

3c). The PML attenuation profile is

gaussian with G = [.15, 6.0] with a thickness of T = 20 cells. For the KPML we also

apply an evanescent attenuation profile where B0 = [0.9, 3].

Figure 3.2c plots the numerical reflection coefficient for the convolutional PML

(dashed line) and the KPML upon application of (3.4). The incident angle of the

wave is 45 degrees for vgxkx > 0 and 45+180 degrees for vgxkx < 0. The incident

power and reflected power are used to calculate the numerical reflection coefficient,

typically considering just the reflected magnetic field component. We use power (in-

stead of field components) for the magnetized plasma since Snell’s law requires two

reflected wavess (with different phase velocities) and that therefore the power of each

of the two reflected wave must be calculated and summed for a true representation of

the reflected wave energy. The region to the left of the vertical dashed line in the plot

(Figure 3.2c) is where the incident wave has vgxkx > 0, while to the right is where

vgxkx < 0. It is on the right side where we expect the KPML to outperform the con-

volutional PML and we see that it does indeed do substantially better. As expected,

the wave energy grows within the PML region for the case of the convolutional PML

while the KPML attenuates the waves up to −40 dB. Even at the lower frequencies,

where the incident wave has vgxkx > 0, the KPML performs better and attenuates all

waves while the convolutional PML exhibits some amplification. This result is due

to the fact that even for an incident wave with, vgxkx > 0, one of the two reflected

waves at the PEC boundary can have vgxkx < 0 and thus would amplify within the

convolutional PML. Also, one sees that the KPML reflection coefficient goes to zero

at the frequency corresponding to θg = 45 degrees, i.e., when the incident wave angle
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equals θg. This result is realized by design since f(·) → 0 under this condition. That

the reflection coefficient goes to zero at this angle does not cause a practical problem

since there is no energy entering the PML at this angle; instead the wave energy is

directed in the ŷ direction along the ambient magnetic field.

Next we perform time domain FDTD simulations for the space shown in Figure

3.3a. Once again we apply the explicit and implicit codes described in Section 3.2.1.

We use a 20x20 cell space adjacent to a 20 cell PML and excite the fields with a

single cell Ex source in the center of the space using a modulated Gaussian centered

at 40 kHz with a bandwidth of 20 kHz. From (3.9) we set our adjustable parameter

ω0 =
√

ωcωp. Additionally, another mode near the plasma frequency of the system is

amplified by the convolutional PML in the ŷ-direction [Chevalier et al., 2006a]. We

apply a first order lowpass filter [Sarto and Scarlatti, 2001] to the electric and magnetic

fields to remove the wave energy near and above the plasma frequency to suppress the

artificial growth of wave energy. The lowpass filter does little to the whistler mode

since its frequencies are at least an order of magnitude below the plasma frequency

for the parameters chosen here. We compare results for three different simulations;

Run 1: with the convolutional PML in the x̂-direction and PEC in the ŷ-direction,

and Run 2: with the KPML in the x̂-direction and PEC in the ŷ-direction, and Run

3: with the KPML in the x̂-direction and the convolutional PML in the ŷ-direction.

For all three simulations we measured the x̂-directed electric field at point ‘A’ in the

grid over time. The results of Run 1 are plotted in Figure 3.3b; we see reflected waves

amplified due to the convolutional PML as expected. For Run 2, results for which are

plotted in Figure 3.3c, we see that the KPML remains stable. However there is still

energy that is ringing around due to wave power that is directed in the ŷ-direction

which the KPML is not designed to absorb. Run 3 has both the KPML and the

convolutional PML coexisting in the grid. The results for Run 3 are plotted in Figure

3.3d. Here we see the field converges toward zero, as a function of time, as all waves

are now being absorbed by both PMLs. Just as important is that the system remain

stable for having both types of PMLs within the space. Simulations were run for

12,000 timesteps at the Courant condition, i.e., ∆t=∆x/(
√

3c), for the implicit code,

while for the explicit FDTD code it was run for 16,000 timesteps at .7 of the Courant
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condition. Both codes yield similar results. However, only the results for the explicit

code are plotted. It should be noted, at least in the case of the explicit code, that for

this simulation the KPML becomes unstable for σmax∆t > 5.0, absorbing the short

wavelength incident whistler waves but exhibiting growth in long wavelength waves

of the same frequency and eventually saturating the entire space. Therefore, in this

case, the KPML breaks down as an absorbing boundary condition and consequently

one must be careful in their choice of σmax∆t. However, for the free space case of

Section 3.2.1, we found the KPML to be stable for all values of σmax∆t so that the

stability of the method does depend on the medium that the KPML is designed to

match.
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Figure 3.3: a) FDTD space for the magnetized plasma. b)-d) x̂ directed electric field
at point ‘A’ over time for Run 1, Run 2 , and Run 3, respectively.



Chapter 4

General Numerical Reflection

Coefficient

In this Chapter, we develop a method for calculating the numerical reflection coeffi-

cient for a plane wave incident onto the PML. Numerical reflection coefficient calcu-

lations have been done previously. These include Chew and Jin (1996), Fang and Wu

(1996), and Berenger (1999), all of which have all developed reflection calculations

from a multi-layered split field PML. Berenger (2002a) develops and investigates the

numerical reflection coefficients for particular cases of non-lossy isotropic media for

various PML’s, including split field, unsplit field, and complex frequency shifted PML

(CFS-PML). Berenger (2002b) investigates the optimization of numerical reflection

coefficients for evanescent and propagating waves for the CFS-PML in waveguides.

We build upon this past work by deriving the numerical reflection coefficient for gen-

eral linear media, including anisotropic media, for the CCO-PML as described in

Chevalier and Inan (2004) and for the KPML as described in Chevalier et al. (2006).

In addition, our approach to derivation of the numerical reflection coefficient is dif-

ferent than previous work. All the referenced work extends the work by Chew and

Jin (1996), which derives an expression of the numerical reflection coefficient for one

cell and then extends it to a T cell PML system and only deriving it for PML’s trun-

cating the domains of isotropic media. We simply set up the system with all the field

variables, their governing equations and boundary conditions, which lends itself to a

42
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straight forward extension to anisotropic media.

We now develop the method for calculating the numerical reflection coefficient

for a plane wave, in a general linear medium, incident onto the Nth order CCO-

PML or KPML for a given set of PML coefficients for a given PML cell thickness,

T. The incident plane wave is written out explicitly as a function of incident angle

(including complex angles), frequency, and polarization (important for anisotropic

media) so that the dependence on each of these parameters can be studied. The

reflection coefficient calculation quantifies the time-harmonic scattered plane wave

fields, i.e., the numerical error due to the PML. The motivation for this calculation is

to quantitatively determine the efficiency of the PML. The method is quite general,

since any general electromagnetic field can be described by a linear superposition of

both evanescent and propagating plane waves over incident angle and frequency. The

notation for the time-harmonic fields within the finite difference grid, taking Ey for

example is, Eyt |n,ω
i=0,j0+.5,k0

, where n is the timestep, ω is radial frequency, and i, j, k

is the grid node. Ultimately, we solve the total fields, i.e., incident plus scattered, for

the incidence geometry in Figure 4.1b for i ≥ 0.

4.1 Incident/Scattered Fields at i=0 Boundary

For the boundary condition at i=0 in Figure 4.1b, we must specify the total electric

tangential fields and total electric tangential currents which can be decomposed into

incident and scattered fields:

Eyt |n,ω
i=0,j0+.5,k0

= Eyi |n,ω
i=0,j0+.5,k0

+Eys |n,ω
i=0,j0+.5,k0

(4.1)

Ezt |n,ω
i=0,j0,k0+.5 = Ezi |n,ω

i=0,j0,k0+.5 +Ezs |n,ω
i=0,j0,k0+.5 (4.2)
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In addition, for an anisotropic plasma, the tangential electric currents must also be

specified,

Jyt |n+.5,ω
i=0,j0+.5,k0

= Jyi |n+.5,ω
i=0,j0+.5,k0

+Jys |n+.5,ω
i=0,j0+.5,k0

(4.3)

Jzt |n+.5,ω
i=0,j0,k0+.5 = Jzi |n+.5,ω

i=0,j0,k0+.5 +Jzs |n+.5,ω
i=0,j0,k0+.5 (4.4)

In the next section we develop a method for calculating the incident fields, while Sec-

tion 4.1.2 we illustrate the representation of the scattered boundary fields Eys |n,ω
i=0,j0+.5,k0

,

Ezs |n,ω
i=0,j0,k0+.5, Jys |n+.5,ω

i=0,j0+.5,k0
, and Jzs |n+.5,ω

i=0,j0,k0+.5 at i = 0 in terms of the scattered

magnetic fields, Hys |n+.5,ω
i=.5,j0,k0+.5, Hzs |n+.5,ω

i=.5,j0+.5,k0
, which are given by

Hys |n+.5,ω
i=.5,j0,k0+.5 = Hyt |n+.5,ω

i=.5,j0,k0+.5−Hyi |n+.5,ω
i=.5,j0,k0+.5 (4.5)

Hzs |n+.5,ω
i=.5,j0+.5,k0

= Hzt |n+.5,ω
i=.5,j0+.5,k0

−Hzi |n+.5,ω
i=.5,j0+.5,k0

(4.6)

By doing so, we arrive at a closed system since boundary conditions are now specified

by our incident fields and the total magnetic fields just inside the boundary from

which we can uniquely solve the fields everywhere. We now discuss the calculation of

the properties of the incident and scattered fields.

4.1.1 Incident fields

In this section we present the calculation of the properties of the incident plane

wave (pictorially depicted in Figure 4.1a). We assume the wave is in an infinite

homogeneous medium, i.e. without the PML. As in Chew and Jin (1996), Fang and

Wu (1996), and Berenger (1999), we assume single frequency and plane wave fields.

The incident wave has the form:

ejωn∆te−j(kxix∆x+kyiy∆y+kziz∆z) = ejωn∆te−j(k sin(θ) cos(φ)ix∆x+k sin(θ) sin(φ)iy∆y+k cos(θ)iz∆z)
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incident plane wave

incident plane wave in 

infinite homogeneous 
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PEC at i=T+1  boundary  

i=0

Figure 4.1: Illustration of plane waves travelling within an FDTD grid. a) An infinite
grid of a homogeneous medium. b) A semi-infinite grid of a homogeneous medium
with a matching PML. Scattered fields are present but are not explicitly shown.

(4.7)

where ix, iy, iz are all integer indices. The indices ix, iy, iz are heretofore replaced

with the indices i, j, k. The j =
√−1 term is also used in the equations but the

indices i, j, k always appear together so there should be no confusion. We also have

kx = k sin(θ) cos(φ),ky = k sin(θ) sin(φ), and kz = k cos(θ). The wave number k is

the actual wave number in the FDTD grid for a given frequency and propagation
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angle. As a preview, it can be shown [Taflove and Hagness, 2000] that the dispersion

characteristics for the plane wave in an FDTD space of a homogeneous isotropic

medium is described by the equation

[
ε̄
2j sin ω∆t

2

∆t
+ σ cos

ω∆t

2

]
µ0

2j sin ω∆t
2

∆t
=


2j sin k sin(θ) cos(φ)∆x

2

∆x




2

+


2j sin k sin(θ) sin(φ)∆y

2

∆y




2

+


2j sin k cos(θ)∆z

2

∆z




2

(4.8)

which allows one to solve for k for any given propagation angle and frequency. For

anisotropic media, the dispersion relationship is not so simple but can nevertheless be

calculated. In the following we discuss our method of iterative numerical solution for k

for the media considered here. Note that we treat the electrical polarization currents ~J

in the following analysis. For ease of presentation, the magnetic polarization currents

~M are set to zero since they are unnecessary in the media discussed in this dissertation.

In applications when such currents are present they are present, they would be treated

in the same manner as we treat ~J . The spatial relationships for the fields Ex and Hy

are:

Ex |n,ω
i+.5±1,j±1,k±1 = Ex |n,ω

i+.5,j,k e∓jkx∆xe∓jky∆ye∓jkz∆z (4.9a)

Hy |n+.5,ω
i+.5±1,j±1,k+.5±1 = Hy |n+.5,ω

i+.5,j,k+.5 e∓jkx∆xe∓jky∆ye∓jkz∆z (4.9b)

The above examples are directly applicable to the derivation of the spatial relation-

ships for other field components Ey, Ez, Hy, Hz, etc. We also assume the following

time relationships for Ex and Hy

Ex |n±1,ω
i+.5,j,k = Ex |n,ω

i+.5,j,k e±jω∆t (4.10a)
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Hy |n+.5±1,ω
i+.5,j,k+.5 = Hy |n+.5,ω

i+.5,j,k+.5 e±jω∆t (4.10b)

and their forms are directly applicable to the derivation of the time relationships

for the other field components. The following set of equations define plane wave

propagation in our medium Note that we use the field variables Exi, Eyi, Ezi, Hxi,

Hyi, Hzi, etc., where the ‘i’ is simply an indication that the quantity is the incident

field. The general form of the time, spatial harmonic form the FDTD Maxwell update

equations for the incident wave are

ε̄
ejω∆t − 1

∆t
Exi |n,ω

i+.5,j,k +Jxi |n+.5,ω
i+.5,j,k = −1− ejkz∆z

∆z
Hyi |n+.5,,ω

i+.5,j,k+.5

+
1− ejky∆y

∆y
Hzi |n+.5,ω

i+.5,j+.5,k

(4.11)

ε̄
ejω∆t − 1

∆t
Eyi |n,ω

i,j+.5,k +Jyi |n+.5,ω
i,j+.5,k =

1− ejkz∆z

∆z
Hxi |n+.5,ω

i,j+.5,k+.5

−1− ejkx∆x

∆x
Hzi |n+.5,ω

i+.5,j+.5,k

(4.12)

ε̄
ejω∆t − 1

∆t
Ezi |n,ω

i,j,k+.5 +Jzi |n+.5,ω
i,j,k+.5 = −1− ejky∆y

∆y
Hxi |n+.5,ω

i,j+.5,k+.5

+
1− ejkx∆x

∆x
Hyi |n+.5,ω

i+.5,j,k+.5

(4.13)

µ0
1− e−jω∆t

∆t
Hxi |n+.5,ω

i,j+.5,k+.5 =
e−jkz∆z − 1

∆z
Eyi |n,ω

i,j+.5,k−
e−jky∆y − 1

∆y
Ezi |n,ω

i,j,k+.5
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(4.14)

µ0
1− e−jω∆t

∆t
Hyi |n+.5,ω

i+.5,j,k+.5 = −e−jkz∆z − 1

∆z
Exi |n,ω

i+.5,j,k +
1− ejkx∆x

∆x
Ezi |n,ω

i,j,k+.5

(4.15)

µ0
1− e−jω∆t

∆t
Hzi |n+.5,ω

i+.5,j+.5,k =
e−jky∆y − 1

∆y
Exi |n,ω

i+.5,j,k−
1− ejkx∆x

∆x
Eyi |n,ω

i,j+.5,k

(4.16)

Jxi |n+.5,ω
i+.5,j,k, Jyi |n+.5,ω

i,j+.5,k, and Jzi |n+.5,ω
i,j,k+.5 are the polarization currents and are, in general,

frequency dependent and anisotropic. Their update equations can be written out as

complicated averages in time and space of the surrounding electric fields and electric

currents which we apply from the work of Lee and Kalluri (1999) differing only in

that we co-locate the vector electric currents with the vector electric fields, e.g. ~Jx

is collocated with ~Ex, as mentioned prior. The time, spatial harmonic form of the

FDTD equations are

Jxi |n+.5,ω
i+.5,j,k = e−jω∆ta11Jxi |n+.5,ω

i+.5,j,k +e−jω∆ta12
1 + ejky∆y

2

e−jkx∆x + 1

2
Jyi |n+.5,ω

i,j+.5,k

+e−jω∆ta13
1 + ejkz∆z

2

e−jkx∆x + 1

2
Jzi |n+.5,ω

i,j,k+.5

+k11Exi |n,ω
i+.5,j,k +k12

1 + ejky∆y

2

e−jkx∆x + 1

2
Eyi |n,ω

i,j+.5,k

+k13
1 + ejkz∆z

2

e−jkx∆x + 1

2
Ezi |n,ω

i,j,k+.5

(4.17)

Jyi |n+.5,ω
i,j+.5,k = e−jω∆ta21

e−jky∆y + 1

2

1 + ejkx∆x

2
Jxi |n+.5,ω

i+.5,j,k +e−jω∆ta22Jyi |n+.5,ω
i,j+.5,k
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+e−jω∆ta23
1 + ejkz∆z

2

e−jky∆y + 1

2
Jzi |n+.5,ω

i,j,k+.5

k21
e−jky∆y + 1

2

1 + ejkx∆x

2
Exi |n,ω

i+.5,j,k +k22Eyi |n,ω
i,j+.5,k

+k23
1 + ejkz∆z

2

e−jky∆y + 1

2
Ezi |n,ω

i,j,k+.5

(4.18)

Jzi |n+.5,ω
i,j,k+.5 = e−jω∆ta31

e−jkz∆z + 1

2

1 + ejkx∆x

2
Jxi |n+.5,ω

i+.5,j,k

+e−jω∆ta32
1 + ejky∆y

2

e−jkz∆z + 1

2
Jyi |n+.5,ω

i,j+.5,k +e−jω∆ta33Jzi |n+.5,ω
i,j,k+.5

k31
e−jkz∆z + 1

2

1 + ejkx∆x

2
Exi |n,ω

i+.5,j,k

+k32
1 + ejky∆y

2

e−jkz∆z + 1

2
Eyi |n,ω

i,j+.5,k +k33Ezi |n,ω
i,j,k+.5

(4.19)

The medium considered here could range from free space (J=0) to a linear magnetized

plasma. Instead of deriving some general expression, such as (4.8), we solve for the

wave number k by setting the determinant of the above system to zero for a given

frequency and incident angle. We iteratively adjust k until the equality is satisfied.

Isotropic media generally have two solutions for k, both of which are either propa-

gating or evanescent. We choose the solution which, if propagating, has its Poynting

vector into the PML or if evanescent, is decaying into the PML. The anisotropic

medium we consider, a magnetized plasma, generally has four solutions for k, for

which there are two solutions of k that each satisfy the constraint that its Poynting

vector into the PML, if propagating, or is decaying into the PML, if evanescent. We

must choose one of these solutions as our incident wave. This procedure is followed

for each frequency, ω, and incident angle, θ and φ of interest.

We solve for the incident fields about the timestep, n, and grid node, i = 0, j =

j0, k = k0, which other than i = 0 are arbitrary choices since we solve for the

steady state field amplitudes. For isotropic media we set Ezi |n,ω
0,j0,k0+.5 = 1.0 and
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Hzi |n+.5,ω
.5,j0+.5,k0

= 0.0; both of these fields values are arbitrary but both must be as-

signed values to uniquely define the incident wave. We can then explicitly solve for

the other field components of the system Eyi |n,ω
0,j0+.5,k0

= Eyi0, Exi |n,ω
.5,j0,k0

= Exi0,

Hxi |n+.5,ω
0,j0+.5,k0+.5 = Hxi0, Hyi |n+.5,ω

.5,j0,k0+.5 = Hyi0, etc. For the magnetized plasma we

set Ezi |n,ω
i=0,j,k+.5 = 1.0; this field value is arbitrary but must be assigned a value to

uniquely define our incident wave. We can then explicitly solve for the other field

components of the system. With our incident fields now defined, we next develop

expressions for the scattered tangential boundary fields.

4.1.2 Scattered fields

To specify the scattered boundary fields we observe the following rules:

1. For the isotropic case, Snell’s law requires that the reflected wave number is

preserved and the reflected angle equals the incident angle.

(a) We use equations 4.11-4.19, replacing the subscript ’i’ for ’incident’ with

’s’ for ’scattered, e.g.,

Exi |n,ω
.5,j0,k0

→ Exs |n,ω
.5,j0,k0

, etc., and replacing kx, ky, kz with kxs, kys, kzs

where from snell’s law, kx = −kxs, ky = kys, kz = kzs. We then let

Hys |n+.5,ω
.5,j0,k0+.5 = 1.0. Also, since the incident field Hzi |n+.5,ω

.5,j0+.5,k0
= 0.0 we

have Hzs |n+.5,ω
.5,j0+.5,k0

= 0.0 as well, for the isotropic case. Solving the system

yields the field values for Eys0 |n,ω
0,j0+.5,k0

, Ezs0 |n,ω
0,j0,k0+.5 which are denoted as

Eys0, Ezs0. And since in general Hys1 |n+.5,ω
.5,j0,k0+.5 6= 1.0 we obtain

Eys |n,ω
0,j0+.5,k0

= Eys0Hys |n+.5,ω
.5,j0,k0+.5

Ezs |n,ω
0,j0,k0+.5 = Ezs0Hys |n+.5,ω

.5,j0,k0+.5

It is then easy to show that the total electric fields can be written as

Eyt |n,ω
0,j0+.5,k0

= Eyi |n,ω
0,j0+.5,k0

+Eys0

[
Hyt |n+.5,ω

.5,j0,k0+.5−Hyi |n+.5,ω
i=.5,j0,k0+.5

]
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Similar expressions are trivially obtained for Ezt |n,ω
0,j0,k0+.5, Jyt |n+.5,ω

0,j0+.5,k0
, and

Jzt |n+.5,ω
0,j0,k0+.5.

2. The magnetized plasma case is more complicated. When reflected from the

PML, the single mode incident wave, be it a Right-Hand Elliptically Polarized

(RHEP) or Left-Hand Elliptically Polarized (LHEP) wave, can couple into both

the LHEP and RHEP reflected modes [Ratcliffe, 1959]. Also, because this

is an anisotropic medium, even though Snell’s law is satisfied, the angle of

incidence does not necessarily equal the angle of reflection. This is because the

reflected wave number k is a function of propagation direction, θ and φ, and

wave polarization.

(a) For the two scattered modes, with k-vectors, ~ks1 and ~ks2, Snell’s law re-

quires ky = kys1 = kys2, kz = kzs2 = kzs1. This allows us to determine,

kxs1, and kxs2. To calculate kxs1 we use equations 4.11-4.19, replacing kx,

ky, kz with kxs1, kys1, kzs1, and set the determinant of the system to zero.

We solve for kxs1 with the constraints that the polarization of the resultant

wave is RHEP and the wave energy is either directed out of the PML if

propagating or decaying out of the PML if evanescent. We do the same for

solving kxs2 with constraints that the polarization of the resultant wave is

LHEP and the wave energy is directed out of the PML if propagating or

decaying out of the PML if evanescent.

(b) We use equations 4.11-4.19, replacing the subscript ’i’ for ’incident’ with

’s1’ for ’scattered 1’ (RHEP), e.g. Exi |n,ω
.5,j0,k0

→ Exs1 |n,ω
.5,j0,k0

, etc, and

replacing kx, ky, kz with kxs1, kys1, kzs1 If we assume that Hys1 |n+.5,ω
.5,j0,k0+.5 =

1.0, solving the system yields the field values for

Hzs1 |n+.5,ω
.5,j0+.5,k0

, Eys1 |n,ω
0,j0+.5,k0

, Ezs1 |n,ω
0,j0,k0+.5, Jys1 |n+.5,ω

0,j0+.5,k0
, Jzs1 |n+.5,ω

0,j0,k0+.5 we’ll

denote as Hzs10, Eys10, Ezs10, Jys10, Jzs10

and since in general Hys1 |n+.5,ω
.5,j0,k0+.5 6= 1.0 we obtain

Hzs1 |n+.5,ω
.5,j0+.5,k0

= Hzs10Hys1 |n+.5,ω
.5,j0,k0+.5
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Eys1 |n,ω
0,j0+.5,k0

= Eys10Hys1 |n+.5,ω
.5,j0,k0+.5

Ezs1 |n,ω
0,j0,k0+.5 = Ezs10Hys1 |n+.5,ω

.5,j0,k0+.5

Jys1 |n+.5,ω
0,j0+.5,k0

= Jys10Hys1 |n+.5,ω
.5,j0,k0+.5

Jzs1 |n+.5,ω
0,j0,k0+.5 = Jzs10Hys1 |n+.5,ω

.5,j0,k0+.5

(c) Once again, using equations 4.11-4.19, replacing the subscript ’i’ for ’in-

cident’ with ’s2’ for ’scattered 2’ (LHEP), e.g., Exi |n,ω
.5,j0,k0

→ Exs2 |n,ω
.5,j0,k0

,

etc, and replacing kx, ky, kz with kxs2, kys2, kzs2. Continuing the same

procedure as (b) we obtain

Hzs2 |n+.5,ω
.5,j0+.5,k0

= Hzs20Hys2 |n+.5,ω
.5,j0,k0+.5

Eys2 |n,ω
0,j0+.5,k0

= Eys20Hys2 |n+.5,ω
.5,j0,k0+.5

Ezs2 |n,ω
0,j0,k0+.5 = Ezs20Hys2 |n+.5,ω

.5,j0,k0+.5

Jys2 |n+.5,ω
0,j0+.5,k0

= Jys20Hys2 |n+.5,ω
.5,j0,k0+.5

Jzs2 |n+.5,ω
0,j0,k0+.5 = Jzs20Hys2 |n+.5,ω

.5,j0,k0+.5

(d) The scattered magnetic fields are the sum of the magnetic fields of the two

scattered waves


 Hzs |n+.5,ω

.5,j0+.5,k0

Hys |n+.5,ω
.5,j0,k0+.5


 =


 Hzs1 |n+.5,ω

.5,j0+.5,k0
+Hzs2 |n+.5,ω

.5,j0+.5,k0

Hys1 |n+.5,ω
.5,j0,k0+.5 +Hys2 |n+.5,ω

.5,j0,k0+.5



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=


 Hzs10 Hzs20

1 1





 Hys1 |n+.5,ω

.5,j0,k0+.5

Hys2 |n+.5,ω
.5,j0,k0+.5




= T−1


 Hys1 |n+.5,ω

.5,j0,k0+.5

Hys2 |n+.5,ω
.5,j0,k0+.5


 (4.20)

Therefore


 Hys1 |n+.5,ω

.5,j0,k0+.5

Hys2 |n+.5,ω
.5,j0,k0+.5


 = T


 Hzs |n+.5,ω

.5,j0+.5,k0

Hys |n+.5,ω
.5,j0,k0+.5




=


 t11 t12

t21 t22





 Hzs |n+.5,ω

.5,j0+.5,k0

Hys |n+.5,ω
.5,j0,k0+.5


 (4.21)

The scattered electric fields are the sum of electric fields of the two scat-

tered waves. Starting with Eys |n,ω
0,j0+.5,k0

we have

Eys |n,ω
0,j0+.5,k0

= Eys1 |n,ω
0,j0+.5,k0

+Eys2 |n,ω
0,j0+.5,k0

=
(

Eys10 Eys20

)

 Hys1 |n+.5,ω

.5,j0,k0+.5

Hys2 |n+.5,ω
.5,j0,k0+.5




=
(

Eys10 Eys20

)

 t11 t12

t21 t22





 Hzs |n+.5,ω

.5,j0+.5,k0

Hys |n+.5,ω
.5,j0,k0+.5




= (Eys10t11 + Eys20t21)Hzs |n+.5,ω
.5,j0+.5,k0

+ (Eys10t12 + Eys20t22)Hys |n+.5,ω
.5,j0,k0+.5

= (Eys10t11 + Eys20t21)(Hzt |n+.5,ω
.5,j0+.5,k0

−Hzi |n+.5,ω
.5,j0+.5,k0

)

+ (Eys10t12 + Eys20t22)(Hyt |n+.5,ω
.5,j0,k0+.5−Hyi |n+.5,ω

.5,j0,k0+.5)

(4.22)

Therefore we can write the total electric field as

Eyt |n,ω
0,j0+.5,k0

= Eyi |n,ω
0,j0+.5,k0

+ (Eys10t11 + Eys20t21)(Hzt |n+.5,ω
.5,j0+.5,k0

−Hzi |n+.5,ω
.5,j0+.5,k0

)

+ (Eys10t12 + Eys20t22)(Hyt |n+.5,ω
.5,j0,k0+.5−Hyi |n+.5,ω

.5,j0,k0+.5)
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(4.23)

Similar expressions are trivially obtained for Ezt |n,ω
0,j0,k0+.5, Jyt |n+.5,ω

0,j0+.5,k0
, and

Jzt |n+.5,ω
0,j0,k0+.5

We have developed a procedure to fully specify the total electric field and the total

electric current (anisotropic media) at the i = 0 boundary of Figure 4.1b by our

incident fields and the total magnetic fields just inside the boundary. In Section 4.2

we specify the equations within the space of Figure 4.1b for i > 0 as well as the

boundary conditions at the termination of the PML.

4.2 PML equations and Termination Boundary Con-

ditions

We now construct the time harmonic equations for the total fields in the space de-

picted in Figure 4.1b which includes the PML. This space, for any given incident

wave, produces scattered fields, and with this information a reflection coefficient can

be calculated. We have specified the boundary conditions at i = 0. We define the

PML to begin at i=1, while the medium that the PML is matching exists at i< 1.

We therefore assume non-zero PML coefficients, i.e., for i≥1 , in only the x̂-direction.

The y and z dependence of the fields within the PML are well defined since Snell’s

Law requires the PML fields to share the same y and z phase variation as the inci-

dent wave. However, within the space, PML included, the x dependence of the fields

cannot be explicitly specified since in the x̂-direction we have reflections, decay, etc.

Inserting the harmonic time and spatial relationships (excluding the x-dependent re-

lationship) into the PML FDTD equations we obtain the set of equations displayed

in Sections 4.2.1-4.2.9. Note that we use the field variables Ext, Eyt, Ezt, Hxt, Hyt,

Hzt, etc. where the ‘t’ simply indicates that the quantities are total fields.
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4.2.1 Ex, T + 1 equations

ε̄
ejω∆t − 1

∆t
Ext |n,ω

i+.5,j,k +Jxt |n+.5,ω
i+.5,j0,k0

= −1− ejkz∆z

∆z
Hyt |n+.5,ω

i+.5,j0,k0+.5

+
1− ejky∆y

∆y
Hzt |n+.5,ω

i+.5,j0+.5,k0

(4.24)

4.2.2 Ey, T equations

CCO-PML

ε̄
ejω∆t − 1

∆t
Eyt |n,ω

i,j0+.5,k0
+Jyt |n+.5,ω

i,j0+.5,k0
=

1− ejkz∆z

∆z
Hxt |n+.5,ω

i,j0+.5,k0+.5

−

(1− bx0(i))

Hzt |n+.5,ω
i+.5,j0+.5,k0

−Hzt |n+.5,ω
i−.5,j0+.5,k0

∆x
−

M∑

m=1

bxm(i)Ψx,m
Hzt

|n+.5,ω
i,j0+.5,k0




(4.25)

KPML

ε̄
ejω∆t − 1

∆t
Eyt |n,ω

i,j0+.5,k0
+Jyt |n+.5,ω

i,j0+.5,k0
=

1− ejkz∆z

∆z
Hxt |n+.5,ω

i,j0+.5,k0+.5

−(1− bx0(i))Ψ
x
Hzt
|n+.5,ω
i,j0+.5,k0

(4.26)

4.2.3 Ez, T equations

CCO-PML

ε̄
ejω∆t − 1

∆t
Ezt |n,ω

i,j0,k0+.5 +Jzt |n+.5,ω
i,j0,k0+.5 = −1− ejky∆y

∆y
Hxt |n+.5,ω

i,j0+.5,k0+.5

+


(1− bx0(i))

Hyt |n+.5,ω
i+.5,j0,k0+.5−Hyt |n+.5,ω

i−.5,j0,k0+.5

∆x
−

M∑

m=1

bxm(i)Ψx,m
Hyt

|n+.5,ω
i,j0,k0+.5




(4.27)
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KPML

ε̄
ejω∆t − 1

∆t
Ezt |n,ω

i,j0,k0+.5 +Jzt |n+.5,ω
i,j0,k0+.5 = −1− ejky∆y

∆y
Hxt |n+.5,ω

i,j0+.5,k0+.5

+(1− bx0(i))Ψ
x
Hyt

|n+.5,ω
i,j0,k0+.5

(4.28)

4.2.4 Hx, T equations

µ0
1− e−jω∆t

∆t
Hxt |n+.5,ω

i,j0+.5,k0+.5 =
e−jkz∆z − 1

∆z
Eyt |n,ω

i,j0+.5,k0
−e−jky∆y − 1

∆y
Ezt |n,ω

i,j0,k0+.5

(4.29)

4.2.5 Hy, T + 1 equations

For i = 0 (Just outside the PML)

µ0
1− e−jω∆t

∆t
Hyt |n+.5,ω

.5,j,k+.5 = −e−jkz∆z − 1

∆z
Ext |n,ω

.5,j,k +
Ezt |n,ω

1,j,k+.5−Ezt |n,ω
0,j,k+.5

∆x
(4.30)

where the expression for Ezt |n,ω
0,j0,k0+.5 is derived in the previous section.

For i >= 1 (Inside the PML)

CCO-PML

µ0
1− e−jω∆t

∆t
Hyt |n+.5,ω

i+.5,j0,k0+.5 = −e−jkz∆z − 1

∆z
Ext |n,ω

i+.5,j0,k0

+

[
(1− bx0(i + .5))

Ezt |n,ω
i+1,j0,k0+.5−Ezt |n,ω

i,j0,k0+.5

∆x
−

M∑

m=1

bxm(i + .5)Ψx,m
Ezt

|n,ω
i+.5,j0,k0+.5

]

(4.31)
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KPML

µ0
1− e−jω∆t

∆t
Hyt |n+.5,ω

i+.5,j0,k0+.5 = −e−jkz∆z − 1

∆z
Ext |n,ω

i+.5,j0,k0

+(1− bx0(i + .5))Ψx
Ezt
|n,ω
i+.5,j0,k0+.5

(4.32)

Since we have PEC for i ≥ T + 1 all tangential electric fields at i = T + 1 are zero,

thus Ezt |n,ω
T+1,j0,k0+.5 = 0.0

4.2.6 Hz, T + 1 equations

For i = 0 (Just outside the PML)

µ0
1− e−jω∆t

∆t
Hzt |n+.5,ω

.5,j0+.5,k0
=

e−jky∆y − 1

∆y
Ext |n,ω

.5,j0,k0
−Eyt |n,ω

1,j0+.5,k0
−Eyt |n,ω

0,j0+.5,k0

∆x

(4.33)

where the expression for the boundary field Eyt |n,ω
0,j0+.5,k0

is derived in the previous

section.

For i >= 1 (Inside the PML)

CCO-PML

µ0
1− e−jω∆t

∆t
Hzt |n+.5,ω

i+.5,j0+.5,k0
=

e−jky∆y − 1

∆y
Ext |n,ω

i+.5,j0,k0

−
[
(1− bx0(i + .5))

Eyt |n,ω
i+1,j0+.5,k0

−Eyt |n,ω
i,j0+.5,k0

∆x
−

M∑

m=1

bxm(i + .5)Ψx,m
Eyt

|n,ω
i+.5,j0+.5,k0

]

(4.34)

KPML

µ0
1− e−jω∆t

∆t
Hzt |n+.5,ω

i+.5,j0+.5,k0
=

e−jky∆y − 1

∆y
Ext |n,ω

i+.5,j0,k0
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−(1− bx0(i + .5))Ψx
Eyt
|n,ω
i+.5,j0+.5,k0

(4.35)

Since we have PEC for i ≥ T + 1 all tangential electric fields at i = T + 1 are zero,

thus Eyt |n,ω
T+1,j0+.5,k0

= 0.0.

4.2.7 Jx, T+1 equations

The general equation used is

Jxt |n+.5,ω
i+.5,j0,k0

= e−jω∆ta11Jxt |n+.5,ω
i+.5,j0,k0

+e−jω∆ta12
1 + ejky∆y

2

(Jyt |n+.5,ω
i,j0+.5,k0

+ Jyt |n+.5,ω
i+1,j0+.5,k0

)

2

+e−jω∆ta13
1 + ejkz∆z

2

(Jzt |n+.5,ω
i,j0,k0+.5 + Jzt |n+.5,ω

i+1,j0,k0+.5)

2
+k11Ext |n,ω

i+.5,j0,k0

+k12
1 + ejky∆y

2

(Eyt |n,ω
i,j0+.5,k0

+ Eyt |n,ω
i+1,j0+.5,k0

)

2

+k13
1 + ejkz∆z

2

(Ezt |0,ω
i,j0,k0+.5 + Ezt |0,ω

i+1,j0,k0+.5)

2
(4.36)

To solve Jxt |n+.5,ω
.5,j0,k0

requires the boundary fields at i=0, Eyt |n,ω
0,j0+.5,k0

, Ezt |n,ω
0,j0,k0+.5,

Jyt |n+.5,ω
0,j0+.5,k0

, Jzt |n+.5,ω
0,j0,k0+.5 The boundary conditions at i = T + 1 are those of PEC,

all tangential electric fields are zero, thus Eyt |n,ω
T+1,j0+.5,k0

= Ezt |n,ω
T+1,j0,k0+.5 = 0.0. In

addition, we’ll enforce Jyt |n+.5,ω
T+1,j0+.5,k0

= Jzt |n+.5,ω
T+1,j0,k0+.5 = 0.0

4.2.8 Jy, T equations

The general equation used is

Jyt |n+.5,ω
i,j0+.5,k0

= e−jω∆ta21
e−jky∆y + 1

2

(Jxt |n+.5,ω
i+.5,j0,k0

+Jxt |n+.5,ω
i−.5,j0,k0

)

2
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+e−jω∆ta22Jyt |n+.5,ω
i,j0+.5,k0

+e−jω∆ta23
1 + ejkz∆z

2

e−jky∆y + 1

2
Jzt |n+.5,ω

i,j0,k0+.5

+k21
e−jky∆y + 1

2

(Ext |n,ω
i+.5,j0,k0

+Ext |n,ω
i−.5,j0,k0

)

2
+k22Eyt |n,ω

i,j0+.5,k0

+k23
1 + ejkz∆z

2

e−jky∆y + 1

2
Ezt |n,ω

i,j0,k0+.5

(4.37)

4.2.9 Jz, T equations

The general equation used is

Jzt |n+.5,ω
i,j0,k0+.5 = e−jω∆ta31

e−jkz∆z + 1

2

(Jxt |n+.5,ω
i+.5,j0,k0

+Jxt |n+.5,ω
i−.5,j0,k0

)

2

+e−jω∆ta32
1 + ejky∆y

2

e−jkz∆z + 1

2
Jyt |n+.5,ω

i,j0+.5,k0

+e−jω∆ta33Jzt |n+.5,ω
i,j0,k0+.5

+k31
e−jkz∆z + 1

2

(Ext |n,ω
i+.5,j0,k0

+Ext |n,ω
i−.5,j0,k0

)

2

+k32
1 + ejky∆y

2

e−jkz∆z + 1

2
Eyt |n,ω

i,j0+.5,k0

+k33Ezt |n,ω
i,j0,k0+.5

(4.38)

4.2.10 Ψx,m
Eyt, Ψ

x,m
Ezt, Ψ

x,m
Hyt, Ψ

x,m
Hzt for CCO-PML

For the CCO-PML the time harmonic expression for the difference equation of Ψ =

u(t)αe−αt ∗ F is

Ψ |n−e−α∆tΨ |n−1 = F |n
[
1− e−α∆t

]
(4.39)

whose time harmonic expression is then
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Ψ |n
[
1− e−α∆te−iω∆t

]
= F |n

[
1− e−α∆t

]
(4.40)

where F is any time domain function, e.g., ∂Hzt/∂x. In our case, aside from different

complex amplitude valued fields, the time domain function is F = e−jωt, since we are

assuming single frequency fields. The quantity

Ψx,m
Hzt

= u(t)αxm(i)e−αxm(i)t ∗ ∂Hzt

∂x
(4.41)

is therefore

Ψx,m
Hzt

|n+.5,ω
i,j0+.5,k0

[
1− e−αxm(i)∆te−iω∆t

]
=

Hzt |n+.5,ω
i+.5,j0+.5,k0

−Hzt |n+.5,ω
i−.5,j0+.5,k0

∆x

[
1− e−αxm(i)∆t

]

(4.42)

The quantities Ψx,m
Eyt

|n,ω
i+.5,j0+.5,k0

, Ψx,m
Ezt

|n,ω
i+.5,j0,k0+.5, and Ψx,m

Hyt
|n+.5,ω
i,j0,k0+.5 all have a similar

form.

4.2.11 Ψx
Eyt, Ψ

x
Ezt, Ψ

x
Hyt, Ψ

x
Hzt for KPML

For the KPML the finite-difference time-domain form of (3.9) for Ψx
Hzt would be

1− e−jω∆t

∆t

[
1 +

1 + e−i2ω∆t − 2e−iω∆t

ω2
0(∆t)2

]

Hzt |n+.5,ω
i+.5,j0+.5,k0

−Hzt |n+.5,ω
i−.5,j0+.5,k0

∆x
=

1− e−jω∆t

∆t[
1 +

1 + e−i2ω∆t − 2e−iω∆t

ω2
0(∆t)2

]
Ψx

Hzt
|n+.5,ω
i,j0+.5,k0

−σx(i)(∆r)2

(
e−jky∆ye−iω∆t + ejky∆ye−iω∆t − 2

(∆y)2
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Ψx
Hzt
|n+.5,ω
i,j0+.5,k0

+4
1 + e−i2ω∆t − 2e−iω∆t

ω2
c (∆t)2


Ψx

Hzt
|n+.5,ω
i+1,j0+.5,k0

e−iω∆t

( 1
1−bx0(i)

)2(∆x)2
+

Ψx
Hzt
|n+.5,ω
i−1,j0+.5,k0

e−iω∆t − 2Ψx
Hzt
|n+.5,ω
i,j0+.5,k0

( 1
1−bx0(i)

)2(∆x)2

+
e−jky∆ye−iω∆t + ejky∆ye−iω∆t − 2

(∆y)2
Ψx

Hzt
|n+.5,ω
i,j0+.5,k0

])

(4.43)

The quantities Ψx
Eyt
|n,ω
i+.5,j0+.5,k0

, Ψx
Ezt
|n,ω
i+.5,j0,k0+.5, and Ψx

Hyt
|n+.5,ω
i,j0,k0+.5 all have a similar

form. With the KPML, we actually must specify a few more boundary conditions at

i=0. Because of the Laplacian in the x̂-direction, the calculation for Ψx
Hzt
|n+.5,ω
1,j0+.5,k0

requires Ψx
Hzt
|n+.5,ω
0,j0+.5,k0

which is outside the PML at i = 0 and has the form

Ψx
Hzt
|n+.5,ω
0,j0+.5,k0

=
Hzt |n+.5,ω

.5,j0+.5,k0
−Hzt |n+.5,ω

−.5,j0+.5,k0

∆x
(4.44)

Hzt |n+.5,ω
−.5,j0+.5,k0

is outside our space so we must specify it in terms of incident and

scattered fields inside our space

Hzt |n+.5,ω
−.5,j0+.5,k0

= Hzi |n+.5,ω
.5,j0+.5,k0

ejkx∆x

+
[
Hzs10e

jkxs1∆xt11 + Hzs20e
jkxs2∆xt21

] [
Hzt |n+.5,ω

i=.5,j0+.5,k0
−Hzi |n+.5,ω

i=.5,j0+.5,k0

]

+
[
Hzs10e

jkxs1∆xt12 + Hzs20e
jkxs2∆xt22

] [
Hyt |n+.5,ω

i=.5,j0,k0+.5−Hyi |n+.5,ω
i=.5,j0,k0+.5

]

(4.45)

and similarly for Ψx
Hyt

|n+.5,ω
1,j0,k0+.5 Ψx

Ezt
|n,ω
1.5,j0+.5,k0

, and Ψx
Eyt
|n,ω
1.5,j0,k0+.5 whose expressions

respectively require Ψx
Hyt

|n+.5,ω
0,j0,k0+.5 Ψx

Ezt
|n,ω
.5,j0+.5,k0

, and Ψx
Eyt
|n,ω
.5,j0,k0+.5 can be handled

in the same manner.

This completes our derivation of the necessary equations and boundary condi-

tions to describe the scattered fields from the PML, CCO-PML or KPML, for a

given incident plane wave. The method allows one to solve for all fields in the
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space and for most problems, i.e., when there is only one propagating reflected wave,

we define the reflection coefficient using the scattered and incident magnetic fields

Hxs |n+.5,ω
i=0,j0+.5,k0+.5, Hys |n+.5,ω

i=.5,j0,k0+.5, Hzs |n+.5,ω
i=.5,j=j0+.5,k0

, Hxi |n+.5,ω
i=0,j0+.5,k0+.5, Hyi |n+.5,ω

i=.5,j0,k0+.5

and Hzi |n+.5,ω
i=.5,j=j0+.5,k0

just outside the PML. We define the normalized error as

||R(ω, θ, φ)||2 =√√√√√√

∣∣∣Hxs |n+.5,ω
i=0,j0+.5,k0+.5

∣∣∣
2
+

∣∣∣Hys |n+.5,ω
i=.5,j0,k0+.5

∣∣∣
2
+

∣∣∣Hzs |n+.5,ω
i=.5,j=j0+.5,k0

∣∣∣
2

∣∣∣Hxi |n+.5,ω
i=0,j0+.5,k0+.5

∣∣∣
2
+

∣∣∣Hyi |n+.5,ω
i=.5,j0,k0+.5

∣∣∣
2
+

∣∣∣Hzi |n+.5,ω
i=.5,j=j0+.5,k0

∣∣∣
2 (4.46)

which is simply the normalized Euclidean norm of the scattered magnetic field due

to the PML, i.e., the magnitude of the reflection coefficient. But for some cases, as

in the magnetized plasma from Chapter 3, when there are two propagating reflected

waves, we must define the reflection coefficient, ||R(ω, θ, φ)||2, as the total reflected

power over the incident power, both in the x̂-direction. In either case, we can adjust

the PML coefficients [bx0(i), bxn(i), αxn(i)] for the CCO-PML or [bx0(i), σx(i)] for the

KPML) until ||R(ω, θ, φ)||2 is minimized over the frequencies, incident polarizations,

and incident angles of interest. We show in Appendix C that in general ||R(ω, θ, φ)||2
is not a convex function, meaning it has local minima, and finding a global minimum

is a difficult task. We therefore, in general, minimize ||R(ω, θ, φ)||2 over a limited

parameter space.



Chapter 5

Modeling Long Path Propagation

Modeling the electromagnetic fields over a long (typically hundreds of λ) propagation

path where the entire path is represented by a single static grid can be computa-

tionally prohibitive (in terms of RAM and/or CPU hours), as well as unnecessary.

For the case of a transient pulse propagating along a path within a Finite-Difference

Time-Domain (FDTD) grid, ahead of the transient the fields are zero, and behind the

transient the fields are typically small as well. Much of the fields within the space are

therefore being unnecessarily computed. The same holds true for the problem of start-

ing up a single frequency signal (e.g., that from a radio transmitter) in an FDTD grid.

Ahead of the startup transient are zero fields and behind the transient are steady-

state fields, where the continuous computation of either is unnecessary. Thevenot et

al. (1999) addressed this problem by developing a moving window technique to reduce

the computational domain which captures the moving transient field region along the

path. Their motivation was for modeling Very Low Frequency (VLF) propagation in

the Earth-ionosphere waveguide. Typically they achieved a grid reduction factor of

10 or so. However, their window size must accommodate all significantly contributing

waveguide modes which, in the extreme, can force the window to be as large as the

original space. A moving window technique was also developed by Akleman and Sevgi

(2000) at a similar time with similar computational efficiency and accuracy.

In this chapter, based on work from Chevalier and Inan (2007), we develop a

technique in which we break up the path into segments and through the use of the
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Figure 5.1: Earth-ionosphere waveguide. Segments 1 and 2 represent sequential
Finite-Difference spaces in which Maxwell’s equations are solved to calculate the
electromagnetic fields from the transmitter to the receiver. The fields from surface
’S1’ are saved from Segment 1 and used as input fields to Segment 2. The fields from
surface ’S2’ would then be used for Segment 3 (not shown), etc.

PML and the Total-field/Scattered-field technique we solve each segment sequentially.

The modeling of VLF propagation in the Earth-ionosphere waveguide is used as an

example to develop the idea, but the concept is general and can be applied to prop-

agation over any long path. It turns out that any segment size, in the absence of

scattering objects, will naturally accommodate all the forward propagating energy

of the waves. This technique is directly applicable to FDTD and Finite-Difference

Frequency-Domain (FDFD) simulations.
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5.1 A Segmented Long Path Propagation Tech-

nique

Figure 5.1 represents a 2D space within which there exists a transmitter on one end

and a receiver on the other. We assume the space to be 200x5000 cells, where our

cell size is 500 m (30 cells per wavelength at 20 kHz). For this particular space, the

ionosphere and the ground act as the reflecting boundaries of a lossy waveguide for

frequencies in the VLF range (∼ 20 kHz ) and it is known as the Earth-ionosphere

waveguide. In the past, modeling of the Earth-ionosphere waveguide was done by

Budden (1961) using mode-theory within a uniform waveguide. Ferguson et al. (1989)

later developed a mode-theory based computer algorithm that allowed for waveguide

nonuniformities , but did not apply to scattering objects with dimensions comparable

to a wavelength. The FDTD and FDFD methods, discussed below are more robust

because of their ability to model inhomogeneities within the waveguide with greater

ease than mode theory does. However, if we apply the FDTD technique to this

waveguide space it could take more than 15,000 timesteps for all the energy of a

transient pulse, originating at the transmitter, to pass through the space. Due to

higher order waveguide modes it could take a similar amount of time for the space to

reach steady state from the transient startup of the transmitter radiating at a single

frequency in FDTD. Also for the single-frequency case, we could apply the FDFD

technique, which requires an implicit solve, whose matrix solution requires 100’s of

GBs of RAM for a fast direct solver or up to 10’s of GB’s of RAM for slower iterative

solvers that require preconditioning matrices to condition the system. Due to resource

constraints, either in terms of RAM and/or CPU time it would be beneficial not to

have to solve the whole space at once.

In order to overcome these problems, we break up the space into overlapping

segments, an example of which is shown in Segment 1 and Segment 2 from Figure

5.1. Each segment is surrounded with the Perfectly Matched Layer (PML) boundary

condition [Berenger (1994); Chew and Weedon (1994); Chevalier and Inan (2004)]

to absorb outgoing waves. The idea here is to solve for the fields radiated from the

transmitter in Segment 1 while saving the fields over the surface labeled ’S1’; over
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time for FDTD or the solved complex fields for FDFD. These fields would be saved

in a file on the hard disk, not in RAM. Segment 2 overlaps Segment 1 such that ’S1’

represents the same region in space. The fields from surface ’S1’ in Segment 1 then

become the input source fields on the surface ’S1’ in Segment 2. Now in Segment

2, to the right of the input source fields at ’S1’, we calculate the total field while

to the left we calculate only the scattered fields. The surface at ’S1’ in Segment

2 is known as a Total-field/Scattered-field Boundary [Taflove and Hagness, 2000].

This formulation is adapted so that any backscatter due to spatial changes in the

ionospheric and/or ground parameters within the local segment are absorbed by the

PML in the scattered field region. We then calculate the fields within Segment 2

using the input source fields at ’S1’ and save the output fields at ’S2’. This process is

repeated for all subsequent segments until the receiver. This method is thus termed

the ’Segmented Long Path’ (SLP) technique.

By breaking our space up into segments we necessarily neglect interactions be-

tween scattering regions in different segments. It is thus important that a scattering

region is entirely contained within a segment so that the scattering is entirely solved

for within the segment. And by scattering region, we mean anything the causes

backscatter, e.g. inhomogeneities in material or terrain, etc. In this context, it is

important to note that the segments along the path can all be differing lengths.

In this paper we apply the SLP method to perform FDFD and pulsed FDTD

simulations. To reiterate, for the FDFD SLP runs the general algorithm is

1) Solve fields in Segment N ; save the electric and magnetic fields and currents

over the surface ‘SN ’. In Segment N +1 apply these fields as the incident fields

at the total-field/scattered-field boundary, i.e., surface ‘SN ’ in Segment N + 1.

2) Let N = N + 1, repeat procedure by going back to 1).

Likewise, for the pulsed FDTD SLP runs the general algorithm is
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1) Solve fields over time in Segment N ; when the fields at ‘SN ’ exceed some thresh-

old (set by user) save the electric and magnetic fields and currents over the sur-

face ‘SN ’ (in a file on hard disk) over the remaining duration of the run. In Seg-

ment N + 1 apply these fields as the incident fields at the total-field/scattered-

field boundary, i.e., surface ‘SN ’ in Segment N + 1.

2) Let N = N + 1, repeat procedure by going back to 1).

These are general algorithms independent of the order and the type of finite-difference

methods being applied. To properly solve the particular finite-difference equations at

the total-field/scattered-field boundary at the surface ‘SN ’ in Segment N + 1, then

one must save all the fields necessary in the prior Segment N , at surface ‘SN ’ to fully

specify the incident fields. The fields at surface ’SN ’ must be saved over a volume of

space which encompasses the cross section of the space and typically a few cells of

thickness along the path direction (e.g. 2 cells for 2nd order spatial differencing, 4

cells for 4th order spatial differencing, etc).

Each segment, because there is overlap between segments, has extra RAM over-

head proportional to the total length, in cells, of the overlap regions, Loverlap. For

cases in this chapter Loverlap = 40 cells. For our larger numerical tests, we will have

each segment be 1000 cells long and thus the percentage of extra RAM from overlap

is typically small.

5.2 Numerical Results and Discussion

We now present some numerical simulations of the SLP technique for both the

FDTD and the FDFD techniques applied to the same propagation path in the Earth-

ionosphere waveguide. Our space consists of a 2D grid in cylindrical coordinates,

which takes into account the curvature of the Earth from the transmitter to the re-

ceiver as depicted in Figure 5.1. The ionosphere is modeled as a cold magnetized

collisional electron plasma. The input parameters into the magnetized plasma equa-

tions are electron density, Ne, static magnetic field, ~B0, and collision frequency, ν,
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Figure 5.2: Ionospheric parameters used to model the earth-ionosphere waveguide.
a) electron density vs. altitude. b) ambient magnetic field vs altitude. c) electron
collision frequency vs. altitude.

all of which are functions of altitude, examples of which used in the modeling are

plotted in Figure 5.2. In the simulations presented the direction of ~B0 is taken to

be about 12 degrees with respect to the radial (ρ) axis in the ρ − θ plane; the 12

degree orientation is representative of an equatorward mid-latitude VLF propagation

path. The specific profiles we use are those of an ambient nighttime mid-latitude

ionosphere from Johnson et al. (1999) for which the reflection height of 20 kHz radio

waves are typically in the range of 80-90 km. The magnetized plasma equations for

the ionosphere are implemented in FDTD using equation (9) from Lee and Kalluri

(1999) and for FDFD using equation (6) from Lee and Kalluri (1999). However, our

grid implementation is slightly different only in that the cited authors located their

vector electric currents, ~J at the grid nodes, while we co-locate each vector electric

current component together with its corresponding vector electric field component,

i.e., ~Ex and ~Jx are collocated, etc. We refer the reader to Appendix A for the form of

the explicit equations used. For the ground we assume εr = 10.0, σ = 10−3 S/m, and

for sea-water we assume, εr = 81.0, σ = 4.0 S/m, where εr is the relative permitivity

and σ is the electrical conductivity. The transmitter is a short electric monopole

pointed in the ρ̂-direction located 1-km above the ground and 20 km into the space.
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We model the numerical space with approximately 500 m cells to properly sample

the free space wavelength of a 19.4 kHz wave with about 30 cells. All PML’s used

are 10 cells thick. All FDTD simulations were run at .7 of the Courant condition.

Two tests were run for both the FDFD and FDTD techniques. In Test 1 we

model the space from Figure 5.1 along the first 500 km of the path. For Run 1 of

Test 1 we model the entire 500 km path in a single grid. For Run 2 of Test 1 we

apply the SLP technique using the following sequence L of segment lengths (in km)

where L = (100, 100, 100, 100, 100, 100) and thus a total of 6 segments are used. Each

successive segment overlaps the prior segment for 20 km, i.e, the total/scattered

boundary occurs at 10 km into the space and the fields saved near the end of the

segment occurs at 10 km before the end of the space.

Test 1 was run by first applying the FDFD technique at 19.4 kHz (which is the

frequency of operation of a Stanford University VLF transmitter located at South Pole

[Chevalier et al., 2006b]), extracting the ρ-directed electric fields along the ground and

then plotting the amplitude of Eρ and Eθ versus distance. The results are plotted

in Figure 5.3a and show excellent agreement between Runs 1 and 2 (i.e., between

single grid and segmented path models). Figure 5.3b shows a zoom-in on the Eθ field

plot to display the slight error due to the SLP technique. For the FDTD technique,

the source used was a modulated Gaussian pulse centered at 19.4 kHz with a 10

kHz bandwidth. For Run 1 the FDTD simulation was continued for 5000 timesteps.

For Run 2a the SLP simulation used the following sequence T of timesteps where

T = (3500, 3500, 3500, 3500, 3500, 3500) and Ti, the ith timestep entry, corresponds

to the amount of timesteps that ith segment runs for. For FDTD, in addition to

the RAM savings, we can calculate percentage savings of CPU hours for the SLP

technique relative to the full grid technique and is given by the formula.

percentage of CPU hour savings =
(
1− ΣiTiLi

TfLf

)
× 100 (5.1)

where Ti is the number of timesteps run in the ith segment and Li is the length of

the ith segment. Lf is the full grid length (in km) and Tf is the number of timesteps

the full grid ran. Applying (5.1) results in a CPU hour savings of about 14 percent.



70 CHAPTER 5. MODELING LONG PATH PROPAGATION

For Run 2b the SLP simulation used the following sequence T of timesteps where

T = (1500, 1500, 1750, 2000, 2250, 2500). In this particular sequency T the number

of timesteps for each successive segment is increased to account for the dispersion of

the fields. Applying (5.1) results in a CPU hour savings of about 54 percent. Figure

5.3c and 5.3d shows plots of Eρ and Ez over time, respectively, just above the ground

at a distance of 480 km along the path. In Figure 5.3c the agreement is very good

between Runs 1 and 2a,b. Figure 5.3d is more interesting, showing that the field

levels are smaller and exhibiting a train of pulses for the different waveguide modes.

For Run 2a the agreement is again excellent with Run 1 for the entire duration. For

Run 2b, which ends at about 4100 timesteps, the results capture up to just past the

4th pulse-train. Error is evident in Run 2a beginning near timestep 3400. Figure

5.3e shows a zoom-in of the Ez field to better illustrate the error that is introduced

by the SLP technique in Run 2b. The solution of Run 2b rings about the solutions

of Run 1 and Run 2a. To explain this error we notice that for both Run 2a and

Run 2b the input fields into each segment are truncated in time when they are saved

from the prior segment. The FDTD spaces are then run past the truncation, in

time, of the input source fields. This truncation is a discontinuity in the source

fields which can then propagate through the space. The sequence of timesteps for

Run 2a is such that these ’discontinuity’ fields, say in Segment ‘N ’, never reach the

surface ‘SN ’ of Segment ‘N ’ and, therefore, are not saved as input fields into the next

segment. However, for Run 2b, the sequence of timesteps are successively increasing

in the number of timesteps and the ’discontinuity’ fields do reach surface ‘SN ’ of

segment ‘N ’ to be saved as input fields, thereby propagating through succeeding

segments. Even though Run 2b introduces nonphysical waves into the system, it still

matches Run 1 and Run 2a until timestep 3400 and reasonably captures the pulse

up to timestep 4000. One possible fix for this truncation error might be to decay the

source fields, say starting 100 timesteps before the truncation, to reduce the effects

of this discontinuity. This a topic of current and future research is not explored in

this dissertation. An important conclusion regarding differences in simulation results

between Run 2a and 2b is that one must be careful with the SLP technique when

trying to attain significant CPU hour savings especially with an extremely dispersive
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path medium such as a waveguide.

For Test 2, we model the entire space in Figure 5.1, which is about 2500 km in

length. For the SLP technique, the sequence of segment lengths L (in km) where

L = (100, 500, 500, 500, 500, 500), 6 segments in all, with 20 km overlap as in Test

1. For FDFD, our resources only allow us to run up to 500 km segments. We

therefore must apply the SLP technique. The results are plotted in Figure 5.4a for

only the SLP technique. Based on the excellent agreement between the standard

FDFD and the SLP technique from Test 1, we expect these results to be accurate.

For FDTD, in Run 1 we run the entire grid for 14000 timesteps. For Run 2 we

have the the following sequence of time steps for the sequence T of timesteps where

T = (8000, 8000, 8000, 8000, 8000, 8000) and Ti, the ith timestep entry, corresponds to

the amount of timesteps that ith segment runs for. Applying (5.1) results in a CPU

hour savings of about 40 percent. Figure 5.4b and 5.4c plot Eρ and Ez over time,

respectively, just above the ground at a distance of 2480 km along the path. Figure

5.4d shows a zoom-in of Ez. As expected the SLP technique, to the plot resolution,

matches with the full grid solution.

For the SLP tests, close examination of all of our calculations in this chapter

indicates that the backscattered fields are always negligible in magnitude (typically

smaller by a factor of > 50 dB) compared to the forward propagating fields. This

result is primarily due to the fact that other than the ground-to-sea transition (which

is a 1 cell transition) no scattering objects, e.g., regions of ionospheric conductivity

change, were placed along the path. The numerical results above were designed

to validate the SLP technique along a homogeneous ionospheric path. However,

as mentioned before based on purely theoretical arguments, by breaking our space

up into segments we neglect interactions between scattering regions from different

segments. To minimize effects of such error a scattering region should be entirely

contained within a segment so that the scattering is entirely solved for within the

segment.

In FDTD, the SLP technique as it relates to the moving-window technique of

Thevenot et al. (1999), requires more computation. This requirement arises because

the moving window technique moves with the pulse, while the SLP technique requires
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the pulse to pass through each segment. However, the SLP technique is more ver-

satile, as it is capable of capturing the entire dispersion of the pulse where a static

sized moving-window, in general, cannot. Especially for propagation in waveguides,

where the dispersion can be very large, the SLP is thus better suited. Also, for the

SLP technique the segment sizes and the number of timesteps run for each segment

can be varied throughout the space. For FDFD one cannot apply the moving win-

dow techniques at all since it is specifically designed for the time-domain. The SLP

technique is thus the only option for FDFD and performs quite well.



Chapter 6

Summary and Suggested Future

Work

In this dissertation, we addressed two important issues concerning the application

of finite-difference methods (FDTD and FDFD) for the solution of electromagnetic

problems, namely Perfectly Matched Layer boundary conditions for general media

and modeling of propagation on long paths.

6.1 Summary of PML work

In Chapter 2 we described a new time domain representation, the Nth order CCO-

PML, which proves to be simple to implement for any linear medium. Time domain

and frequency domain experiments were performed to validate the new method. The

N convolutions allow one to design a more robust PML over a desired frequency range

through the use of the numerical reflection coefficient calculation derived in Chapter

4.

In Chapter 3 we described a new PML formulation, referred to as the KPML,

which explicitly takes into account information on the k-vector direction of incident

waves. The use of the KPML method is necessitated for media in which the k-

vector and group velocity vector components normal to the PML are antiparallel, in

which case the traditional PML algorithms result in the growth of the waves (rather

75
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than their attenuation) within the PML region. We applied the KPML method to

the specific case of whistler-mode waves in a magnetized plasma and quantified its

effectiveness with both reflection coefficient calculations as well as demonstrating the

stability of the formulation with both implicit and explicit time domain simulations.

As was shown for the whistler-mode, even at a single frequency, the group velocity

and k-vector can have parallel or anti-parallel components with respect to the vector

normal to the PML, depending on the incident wave angle. In such cases the KPML

also becomes necessary for FDFD simulations.

In Chapter 4 we derive the numerical reflection coefficient for any plane wave

incident onto the PML, propagating or evanescent. This derivation was done for

both the Nth order CCO-PML and the KPML. The importance of this calculation is

that it quantifies the error from the PML within a finite-difference grid, thus providing

a quantifiable bound to how much we can trust the results of the simulations. We

can then apply various optimization techniques to reduce the error over our desired

range of frequencies and incident angles.

6.1.1 Suggested Future Work for PML

The KPML represents a solution to a shortcoming of the original PML, namely pro-

viding a k-vector dependent operation to still attenuate the waves when the group

velocity vector and k-vector differ in direction. The KPML and the CCO-PML seem

to complete the possible operations that the PML can perform on the waves propa-

gating within it, namely frequency and k-vector dependent operations. A next step

would be to develop a general recipe to derive a PML for any medium, using the

index of refraction surface(s) for that medium. This derivation would involve the

application of the KPML and/or the CCO-PML.

We show that, in general, the numerical reflection coefficient Γ is not a convex

function, therefore making it more difficult to optimize. The better the KPML and

CCO-PML are optimized for a given simulation, the more confidently we can trust our

solution. To better optimize Γ requires a better understanding of the mathematical

properties of it in relation to the PML coefficients. It would therefore be beneficial to
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better understand Γ to find the best way to optimize it. Currently, genetic algorithms

represent a popular method for optimizing non-convex functions, and thus represent

a possible method for optimizing Γ.

6.2 Summary of SLP work

In Chapter 5 we developed a new technique, called the Segmented Long Path (SLP)

technique, for efficiently modeling long propagation paths for use in both FDFD and

FDTD. The technique makes use of the total-field/scattered-field boundary technique

as well as the PML. For FDTD, the SLP technique is well suited for capturing both

fast and slow modes while providing both RAM and CPU hour savings. For FDFD,

the SLP technique is currently the only method for efficiently solving propagation on

long paths.

6.2.1 Future Work for SLP technique

Applying the SLP technique to model multiple scattering regions along the path

was discussed theoretically but was not numerically tested and is a topic of current

research. Further suggested applications of the SLP technique could be applying

the method to long path propagation within periodic structures or the modeling of

whistler-mode coupling, propagation, and exiting through magnetospheric ducts.



Appendix A

Finite Difference Equations

Presented below are the field equations for the both the Finite-Difference Time-

Domain [Taflove (1995); Taflove and Hagness (2000)] and the Finite-Difference Frequency-

Domain techniques [Zhao et al. (2002)] that are used in this thesis. For FDTD, the

notation for the fields, taking Ey for example is, Eyt |ni,j+.5,k, where n is the timestep,

and i, j, k is the grid node location. For FDFD, the notation for the fields, taking Ey

for example is, Eyt |ωi,j+.5,k, where ω is the radial frequency, and i, j, k is the grid node

location. The equations assume a constant permitivity ε and permeability µ0.

A.1 Finite-Difference Time Domain equations

ε
Ext |n+1

i+.5,j,k−Ext |ni+.5,j,k

∆t
+ Jxt |n+.5

i+.5,j,k = −Hyt |n+.5
i+.5,j,k+.5−Hyt |n+.5

i+.5,j,k−.5

∆z

+
Hzt |n+.5

i+.5,j+.5,k−Hzt |n+.5
i+.5,j−.5,k

∆y

(A.1)

ε
Eyt |n+1

i,j+.5,k−Eyt |ni,j+.5,k

∆t
+ Jyt |n+.5

i,j+.5,k =
Hxt |n+.5

i,j+.5,k+.5−Hxt |n+.5
i,j+.5,k−.5

∆z
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−Hzt |n+.5
i+.5,j+.5,k−Hzt |n+.5

i−.5,j+.5,k

∆x
(A.2)

ε
Ezt |n+1

i,j,k+.5−Ezt |ni,j,k+.5

∆t
+ Jzt |n+.5

i,j,k+.5 = −Hxt |n+.5
i,j+.5,k+.5−Hxt |n+.5

i,j−.5,k+.5

∆y

+
Hyt |n+.5

i+.5,j,k+.5−Hyt |n+.5
i−.5,j,k+.5

∆x
(A.3)

µ0

Hxt |n+.5
i,j+.5,k+.5−Hxt |n−.5

i,j+.5,k+.5

∆t
=

Eyt |ni,j+.5,k+1−Eyt |ni,j+.5,k

∆z

−Ezt |ni,j+1,k+.5−Ezt |ni,j,k+.5

∆y

(A.4)

µ0

Hyt |n+.5
i+.5,j,k+.5−Hyt |n−.5

i+.5,j,k+.5

∆t
= −Ext |ni+.5,j,k+1−Ext |ni+.5,j,k

∆z

+
Ezt |ni+1,j,k+.5−Ezt |ni,j,k+.5

∆x
(A.5)

µ0

Hzt |n+.5
i+.5,j+.5,k−Hzt |n−.5

i+.5,j+.5,k

∆t
=

Ext |ni+.5,j+1,k−Ext |ni+.5,j,k

∆y

−Eyt |ni+1,j+.5,k−Eyt |ni,j+.5,k

∆x
(A.6)
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Jxt |n+.5
(i+.5,j,k) = a12Jxt |n−.5

(i+.5,j,k)

+a12

(Jyt |n−.5
i,j+.5,k +Jyt |n−.5

i+1,j+.5,k +Jyt |n−.5
i,j−.5,k +Jyt |n−.5

i+1,j−.5,k)

4

+a13

(Jzt |n−.5
i,j,k+.5 +Jzt |n−.5

i+1,j,k+.5 +Jzt |n−.5
i,j,k−.5 + Jzt |n−.5

i+1,j,k−.5)

4
+k11Ext |ni+.5,j,k

+k12

(Eyt |ni,j+.5,k +Eyt |ni+1,j+.5,k +Eyt |ni,j−.5,k +Eyt |ni+1,j−.5,k)

4

+k13

(Ezt |ni,j,k+.5 +Ezt |ni+1,j,k+.5 +Ezt |ni,j,k−.5 + Ezt |ni+1,j,k−.5)

4
(A.7)

Jyt |n+.5
i,j+.5,k = a21

(Jxt |n−.5
i+.5,j,k +Jxt |n−.5

i−.5,j,k +Jxt |n−.5
i+.5,j+1,k +Jxt |n−.5

i−.5,j+1,k)

4
+a22Jyt |ni,j+.5,k

+a23

Jzt |n−.5
i,j,k−.5 + Jzt |n−.5

i,j,k+.5 +Jzt |n−.5
i,j+1,k−.5 + Jzt |n−.5

i,j+1,k+.5

4

+k21

(Ext |ni+.5,j,k +Ext |ni−.5,j,k +Ext |ni+.5,j+1,k +Ext |ni−.5,j+1,k)

4
+k22Eyt |ni,j+.5,k

+k23

Ezt |ni,j,k−.5 + Ezt |ni,j,k+.5 +Ezt |ni,j+1,k−.5 + Ezt |ni,j+1,k+.5

4
(A.8)

Jzt |n+.5
i,j,k+.5 = a31

(Jxt |n−.5
i+.5,j,k Jxt |n−.5

i−.5,j,k +Jxt |n−.5
i+.5,j,k+1 Jxt |n−.5

i−.5,j,k+1)

4

+a32

Jyt |n−.5
i,j−.5,k +Jyt |n−.5

i,j+.5,k +Jyt |n−.5
i,j−.5,k+1 +Jyt |n−.5

i,j+.5,k+1

4
+a33Jzt |n−.5

i,j,k+.5
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+k31

(Ext |ni+.5,j,k Ext |ni−.5,j,k +Ext |ni+.5,j,k+1 Ext |ni−.5,j,k+1)

4

+k32

Eyt |ni,j−.5,k +Eyt |ni,j+.5,k +Eyt |ni,j−.5,k+1 +Eyt |ni,j+.5,k+1

4
+k33Ezt |ni,j,k+.5

(A.9)

A.2 Finite-Difference Frequency Domain equations

jωεExt |ωi+.5,j,k +Jxt |ωi+.5,j,k = −Hyt |ωi+.5,j,k+.5−Hyt |ωi+.5,j,k−.5 ∆z

+
Hzt |ωi+.5,j+.5,k−Hzt |ωi+.5,j−.5,k

∆y

(A.10)

jωεEyt |ωi,j+.5,k +Jyt |ωi,j+.5,k =
Hxt |ωi,j+.5,k+.5−Hxt |ωi,j+.5,k−.5

∆z

−Hzt |ωi+.5,j+.5,k−Hzt |ωi−.5,j+.5,k

∆x
(A.11)

jωεEzt |ωi,j,k+.5 +Jzt |ωi,j,k+.5 = −Hxt |ωi,j+.5,k+.5−Hxt |ωi,j−.5,k+.5

∆y

+
Hyt |ωi+.5,j,k+.5−Hyt |ωi−.5,j,k+.5

∆x
(A.12)

jωµ0Hxt |ωi,j+.5,k+.5 =
Eyt |ωi,j+.5,k+1−Eyt |ωi,j+.5,k

∆z



82 APPENDIX A. FINITE DIFFERENCE EQUATIONS

−Ezt |ωi,j+1,k+.5−Ezt |ωi,j,k+.5

∆y

(A.13)

jωµ0Hyt |ωi+.5,j,k+.5 = −Ext |ωi+.5,j,k+1−Ext |ωi+.5,j,k

∆z

+
Ezt |ωi+1,j,k+.5−Ezt |ωi,j,k+.5

∆x
(A.14)

jωµ0Hzt |ωi+.5,j+.5,k =
Ext |ωi+.5,j+1,k−Ext |ωi+.5,j,k

∆y

−Eyt |ωi+1,j+.5,k−Eyt |ωi,j+.5,k

∆x
(A.15)

Jxt |ω(i+.5,j,k) = σ11Ext |ωi+.5,j,k

+σ12

(Eyt |ωi,j+.5,k +Eyt |ωi+1,j+.5,k +Eyt |ωi,j−.5,k +Eyt |ωi+1,j−.5,k)

4

+σ13

(Ezt |ωi,j,k+.5 +Ezt |ωi+1,j,k+.5 +Ezt |ωi,j,k−.5 + Ezt |ωi+1,j,k−.5)

4
(A.16)

Jyt |ωi,j+.5,k = σ21

(Ext |ωi+.5,j,k +Ext |ωi−.5,j,k +Ext |ωi+.5,j+1,k +Ext |ωi−.5,j+1,k)

4
+σ22Eyt |ωi,j+.5,k

+σ23

Ezt |ωi,j,k−.5 + Ezt |ωi,j,k+.5 +Ezt |ωi,j+1,k−.5 + Ezt |ωi,j+1,k+.5

4
(A.17)



A.2. FINITE-DIFFERENCE FREQUENCY DOMAIN EQUATIONS 83

Jzt |ωi,j,k+.5 = σ31

(Ext |ωi+.5,j,k Ext |ωi−.5,j,k +Ext |ωi+.5,j,k+1 Ext |ωi−.5,j,k+1)

4

+σ32

Eyt |ωi,j−.5,k +Eyt |ωi,j+.5,k +Eyt |ωi,j−.5,k+1 +Eyt |ωi,j+.5,k+1

4
+σ33Ezt |ωi,j,k+.5

(A.18)



Appendix B

Proof of generality of CCO-PML

equations

In this section we mathematically prove both in the continuous case and the discrete

case that the Nth order CCO-PML is of a more general form than the CPML of

Roden and Gedney. We start with the CPML of Roden and Gedney (2000) both in

the frequency domain and time domain:

s̄i(jω) =
1

ki

− σi/(ki
2ε0)

jω + σi/(kiε0) + αi/ε0

(B.1)

s̄i(t) =
δ(t)

ki

− σi

ki
2ε0

e−(σi/(kiε0)+αi/ε0)tu(t)

(B.2)

One can rewrite (2) as

s̄i(t) = aiδ(t)− bie
−citu(t)

(B.3)
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with the constraints that ai =1/ki, bi =σi/(ki
2ε0) and ci =σi/(kiε0) + αi/ε0. For an

N=2 case of the CCO-PML we have the following

s̄i(jω) =
1

1 + gx(jω)
= 1− bx1αx1

jω + αx1

− bx2αx2

jω + αx2

(B.4)

s̄i(t) = δ(t)− bx1αx1e
−αx1tu(t)− bx2αx2e

−αx2tu(t)

(B.5)

In the limit as αx1 →∞ we get

lim
αx1→∞

αx1e
−αx1tu(t) = δ(t)

(B.6)

We will prove this statement later. We then find

s̄i(t) = (1− bx1)δ(t)− bx2αx2e
−αx2tu(t)

(B.7)

where to get in the form of (3) we let 1 − bx1 = ai, bx2αx2 = bi and αx2 = ci. They

are now in identical form. We have, therefore, shown that the CPML equations are

a subset of the Nth order CCO-PML equations.

B.1 Proof of the delta function

It is easily shown that

lim
αx1→∞

αx1e
−αx1tu(t) = δ(t)

(B.8)



86 APPENDIX B. PROOF OF GENERALITY OF CCO-PML EQUATIONS

A delta function is defined by the following:

δ(t) =




∞ t = 0

0 otherwise

(B.9)

∫ ∞

−∞
δ(t)dt = 1

(B.10)

In general we have

u(t)αx1e
−αx1t =





0 t < 0

αx1 t = 0

e−αx1t t > 0

(B.11)

and

∫ ∞

−∞
u(t)αx1e

−αx1tdt = 1

(B.12)

In the limiting case we get

lim
αx1→∞

u(t)αx1e
−αx1t =





0 t < 0

∞ t = 0

0 t > 0

(B.13)

Therefore

lim
αx1→∞

u(t)αx1e
−αx1t = δ(t)
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(B.14)

Frequency domain analysis shows that the term

lim
αx1→∞

αx1

jω + αx1

= 1 for αxi >>> jω

(B.15)

We can always make αx1 much larger than our frequency range of interest. And

when you take the inverse fourier transform of unity, you get δ(t). As a third and

final proof, and perhaps the most relevant, let us look at the discretized version of

Ψ(t) = u(t)αx1e
−αx1t ∗F (t), where F (t) is any time domain function. We’ll start with

the the Piecewise Constant Recursive Convolution (PCRC) formulation

Ψ |n = Ψ |n−1 e−αx1∆t + F |n
[
1− e−αx1∆t

]

(B.16)

which as limαx1→∞ we get Ψ |n = F |n. This is the discretized version of Ψ(t) =

δ(t) ∗ F (t) = F (t). Similarly for the piecewise linear recursive convolution (PLRC)

formulation

Ψ |n = Ψ |n−1 e−αx1∆t + F |n
[
1− e−αx1∆t − 1− e−αx1∆t − αx1∆te−αx1∆t

αx1∆t

]

+F |n−1

[
1− e−αx1∆t − αx1∆te−αx1∆t

αx1∆t

]

(B.17)

we have as limαx1→∞ that Ψ |n = F |n which is also equivalent to Ψ(t) = δ(t) ∗
F (t) = F (t).

We have therefore shown, both in the continuous and discretized case that
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lim
αx1→∞

u(t)αx1e
−αx1t = δ(t)

(B.18)



Appendix C

Some Mathematical Properties of Γ

To better understand, mathematically, the reflection coefficient function we will first

analyze the system

Amxm = bm (C.1)

where Am is the matrix containing all the equations of the incident wave/PML inter-

action we derived in Chapter 4 and bm are the boundary conditions derived. Am is a

function of incident angle and the PML coefficients bx0(i), ..., bxn(i), eαx1(i)∆t..., eαxn(i)∆t

for the CCO-PML, or bx0(i), σx(i) for the KPML. More importantly, entries in the

matrix, Am containing the PML coefficients are linear combinations of the PML co-

efficients, this will later be shown to be important.

For simplicity, from the solution xm, we’ll only concern ourselves with Hyt |n+.5,ω
.5,j0,k0+.5

and Hzt |n+.5,ω
.5,j0+.5,k0

, the magnetic fields just outside the PML. For simplicity in notation

we’ll have Hyt0 = Hyt |n+.5,ω
.5,j0,k0+.5 and Hzt0 = Hzt |n+.5,ω

.5,j0+.5,k0
The reflection coefficient for

the ŷ-directed and ẑ-directed magnetic fields is

Γ =
|Hyt0 −Hyi0|2 + |Hzt0 −Hzi0|2

|Hyi0|2 + |Hzi0|2 (C.2)
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where [Hyi0,Hyi0] are the incident fields. We’ll now convert our matrix system into

an equivalent real system

Wm =


 Re(Am) −Im(Am)

Im(Am) Re(Am)


 , cm =


 Re(bm)

Im(bm)


 , ym =


 Re(xm)

Im(xm)




Where from ym we get Re(Hzt |n+.5,ω
.5,j0+.5,k0

) = Hzt0,r and Im(Hzt |n+.5,ω
.5,j0+.5,k0

) = Hzt0,i

and similar for Hyt. Cramer’s rule allows us to describe these fields in terms of

determinates of matrices where for Hyt0,r

Hyt0,r =
|WHyt0,r,cm|
|Wm| (C.3)

where the matrix WHyt0,r,cm is the matrix Wm replacing the entries in the column for

Re(Hyt |n+.5,ω
.5,j0,k0+.5) with the column cm. Likewise

Hzt0,r =
|WHzt0,r,cm|
|Wm| (C.4)

Our reflection coefficient then looks like

Γ =
(Hyt0,r −Hyi0,r)

2 + (Hyt0,i −Hyi0,i)
2

(Hyi0,r)2 + (Hyi0,i)2 + (Hzi0,r)2 + (Hzi0,i)2

+
(Hzt0,r −Hzi0,r)

2 + (Hzt0,i −Hzi0,i)
2

(Hyi0,r)2 + (Hyi0,i)2 + (Hzi0,r)2 + (Hzi0,i)2

=
(

det WHyt0,r,cm

det Wm
−Hyi0,r)

2 + (
det WHyt0,i,cm

det Wm
−Hyi0,i)

2

(Hyi0,r)2 + (Hyi0,i)2 + (Hzi0,r)2 + (Hzi0,i)2

+
(

det WHzt0,r,cm

det Wm
−Hzi0,r)

2 + (
det WHzt0,i,cm

det Wm
−Hzi0,i)

2

(Hyi0,r)2 + (Hyi0,i)2 + (Hzi0,r)2 + (Hzi0,i)2
(C.5)

In relation to the optimization of the PML the most important question is how does Γ
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behave as a function of the parameters bx0(i), ..., bxn(i), αx1(i)..., αxn(i) (CCO-PML).

A property of a real matrix, R, with linear varying parameters is that − log (det (R2))

is convex function of its linear varying parameters [(Boyd and Vandenberghe, 2004)],

which means that it can be globally optimized. From Γ we have the term

(
det WHyt0,r,cm

det Wm

)2

(C.6)

It should be noted that both, WHyt0,r,cm , Wm are linearly varying w.r.t the PML

coefficients and that goes for all matrices in Γ. Using the fact that det R det R =

det R2 and performing the log operation on the term (C.6) yields

log (det (W 2
Hyt0,r,cm

))− log (det (W 2
m)) (C.7)

Because (C.7) is the difference between two convex functions, it is in general not

a convex function. Only a sum of two convex functions absolutely yields a convex

function. Therefore, since at least some of the terms of Γ are non-convex functions,

Γ is, in general, a non-convex function and therefore exihibits at least two local

extremum. This makes the optimization of Γ much more difficult than if it were a

convex function. For this thesis, we therefore psuedo-optimize within a subspace of

the PML coefficients where a local minima is reached.
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